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An analytic study has been carried on steady MHD flow and heat transfer in a visco-elastic fluid flow 
over a semi-infinite, impermeable and non-isothermal stretching sheet with internal heat 
generation/absorption in the presence of radiation. Thermal conductivity is assumed to vary linearly 
with temperature. The governing partial differential equations are converted into ordinary differential 
equations by a similarity transformation. These equations are solved by homotopy analysis method 
(HAM). The results are then compared with numerical ones which showed excellent agreement. The 
temperature profiles are shown graphically for different physical parameters. 
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INTRODUCTION  
 
Boundary layer flow over a stretching sheet has gained 
much interest in recent years because of its numerous 
industrial applications in the polymer processing of a 
chemical engineering plant and in metallurgy for the 
metal processing. Crane (1970) was first to formulate this 
problem to study a steady two-dimensional boundary 
layer flow caused by stretching of a sheet that moves in 
its plane with a velocity which varies linearly with the 
distance from a fixed point on the sheet. Many 
investigators have extended the work of Crane (1970) to 
study heat and mass transfer under different physical 
situations by including quadratic and higher order 
stretching velocity (Gupta et al., 1977; Chen and Char, 
1988; Datta et al., 1985; McLeod et al., 1987; Chiam, 
1988, 1996). All these works are restricted to Newtonian 
fluid flows which have received much attention in the last 
three decades due to their occurrence in nature and their 
increasing importance in industry. Different types of non-
Newtonian fluids are visco-elastic fluid, couple stress 
fluid, micro polar fluid and power-law fluid. Rajagopal et 
al. (1984) and Siddappa and Abel (1985) studied the flow 
of a visco-elastic fluid flow over a stretching sheet. Troy 
et al. (1987), Wen-Dong (1989), Sam Lawrence and  Rao  
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(1985) and McLeod and Rajagopal (1987) have dis-
cussed the problem of uniqueness and non-uniqueness 
of the flow of a non-Newtonian visco-elastic fluid over a 
stretching sheet. Abel and Veena (1988) studied the heat 
transfer of a visco-elastic fluid over a stretching sheet. 
Bujurke et al. (1987) have investigated the heat transfer 
phenomena in a second order fluid flow over a stretching 
sheet with internal heat generation and viscous 
dissipation. Prasad et al. (2000) analyzed the problem of 
a visco-elastic fluid flow and heat transfer in a porous 
medium over a non-isothermal stretching sheet with 
variable thermal conductivity. Prasad et al. (2003) have 
investigated on the diffusion of a chemically reactive 
species of a non-Newtonian fluid immersed in a porous 
medium over a stretching sheet. In recent years, the 
study of MHD flow and heat transfer problems has gained 
considerable interest because of its extensive 
engineering applications and may find its applications in 
polymer technology related to the stretching of plastic 
sheets. Also, many metallurgical processes involve the 
cooling of continuous strips or filaments by drawing them 
through a quiescent fluid and while drawing these strips, 
they are sometimes stretched. The rate of cooling can be 
controlled by drawing such strips in an electrically 
conducting fluid subjected to a magnetic field in order to 
get the final products of desired characteristics as the 
final product greatly depend on the rate of cooling. In 
view of this, the  study  of  MHD  flow  of  Newtonian  and  



 
 
 
 
non-Newtonian flow over a stretching sheet was carried 
out by many researchers (Sarpakaya, 1961; Pavlov, 
1974; Chakrabarti and Gupta, 1979; Char, 1994; 
Andersson, 1992; Datti, 2004; Liao, 2003; Xu H et al., 
2005). In the present paper, we study the effect of 
variable thermal conductivity on the heat transfer of a 
non-Newtonian visco-elastic fluid of the type Walters 
Liquid B, where thermal conductivity is a function of 
temperature, subjected to a magnetic field, over a non-
isothermal stretching sheet with internal heat generation / 
absorption. We have assumed that the thermal con-
ductivity is a linear function of the temperature. Further, 
we consider two cases of non-isothermal boundary 
conditions namely: 
 
1. Surface with prescribed surface temperature (PST 
Case) and 
2. Surface with prescribed wall heat flux (PHF Case). 
 
The momentum and energy equations are highly non-
linear and coupled form of partial differential equations 
(PDEs). These PDEs are then converted to couple non-
linear ordinary differential equations (ODEs) by using the 
similarity variables along with the appropriate boundary 
conditions. In this paper, we propose to solve these 
ordinary differential equations analytically by homotopy 
analysis method (Moghimi et al., 2010; Bararnia et al., 
2010; Liao, 2003). Computations are carried out for 
temperature profiles, Nusselt number when the walls are 
maintained with prescribed surface temperature and 
prescribed wall heat flux. Emphasis is given to the effect 
of thermal radiation on the other physical characteristics. 
 
 
BASIC IDEA OF HAM 
 
Let us assume the following non-linear differential 
equation in form of:  
 

[ ] ,0)( =τuN                                                   (1) 
 
where N is a non-linear operator, τ  is an independent 
variable and ( )u τ is the solution of the equation. We 

define the function, ( , )pφ τ  as follows: 
 

),(),(lim 00
ττφ up

p
=

→                                           
(2)

 
 
where, [0,1]p ∈  and 0 ( )u τ  is the initial guess which 
satisfies the initial or boundary conditions and  
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And by using the generalized homotopy method, Liao’s 
so-called zero-order deformation Equation 1 will be: 
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[ ] [ ],),()()(),()1( 0 pNHpupLp τφτττφ �=−−      (4) 
  
where �  is the auxiliary parameter which helps us 
increase the results convergence, ( )H τ  is the auxiliary 
function and L is the linear operator. It should be noted 
that there is a great freedom to choose the auxiliary 
parameter � , the auxiliary function ( )H τ , the initial 

guess 0 ( )u τ  and the auxiliary linear operator L. This 
freedom plays an important role in establishing the 
keystone of validity and flexibility of HAM as shown in this 
paper. Thus, when p increases from 0 to 1 the solution 

( , )pφ τ  changes between the initial guess 0 ( )u τ and the 

solution ( )u τ . The Taylor series expansion of 

( , )pφ τ with respect to p is: 
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where  [ ]

0 ( )mu τ  for brevity is called the mth order of 
deformation derivation which reads: 
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It is clear that if the auxiliary parameter 1= −� and 
auxiliary function ( ) 1H τ = , then Equation 1 will become: 
 

[ ] [ ] ,0),()()(),()1( 0 =+−− pNpupLp τφτττφ    (8) 
 
This statement is commonly used in HPM procedure. 
Indeed, in HPM we solve the non-linear differential 
equation by separating any Taylor expansion term. Now 
we define the vector of: 
 

{ }nm uuuuu
�����

,...,,, 321=
                                (9) 

 
According to the definition in Equation 7, the governing 
equation and the corresponding initial conditions of 

( )mu τ can be deduced from zero-order deformation 
Equation 1. Differentiating Equation 1 m  times with 
respect to the embedding parameter p  and setting 

0=p and finally dividing by !m , we will have the so-
called mth-order deformation equation in the form: 
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Figure 1. Physical model for hydromagnetic stretching 
sheet flow. 
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So by applying inverse linear operator to both sides of the 
linear equation, Equation 1, we can easily solve the 
equation and compute the generation constant by 
applying the initial or boundary condition. 
 
 
GOVERNING EQUATIONS AND SIMILARITY 
ANALYSIS 
  
Flow analysis 
 
Consider a steady, laminar flow of an incompressible and 
electrically conducting visco-elastic fluid over a semi-
infinite, impermeable stretching sheet (Figure 1). Two 
equal and opposite forces are introduced along the x-axis 
so that the sheet is stretched with a speed proportional to 
the distance from the origin. The resulting motion of the 
otherwise quiescent fluid is thus caused solely by the 
moving surface. A uniform magnetic  field  of  strength 

0B   

 
 
 
 
is imposed along y-axis. This flow satisfies the 
rheological equation of state derived (Beard et al., 1964). 
The steady two dimensional boundary layer equations for 
this flow in usual notation are 
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In deriving these equations it is assumed, in addition to 
the usual boundary layer approximations that the 
contribution due to the normal stress is of the same order 
of magnitude as the shear stress. Here, it is assumed 
that the magnetic field is applied in the transverse 
direction of the sheet and the induced magnetic field is 
negligible. The boundary conditions applicable to the flow 
problem are  
 

,)0,( bxxu =  ,0)0,( =xv  

,0),( ∞→→ yasyxu                         (15) 

,0),( ∞→→ yasyxu y  

 
with 0>b . Here x and y are, respectively, the directions 
along and perpendicular to the sheet, u  and v  are the 
velocity components along x and y directions. ρ ,γ , 0B , 

σ  and 0k  are, respectively, the density, kinematic 
viscosity, applied magnetic field, induced magnetic field 
and coefficient of visco-elasticity. The flow is caused 
solely by the stretching of the sheet, the free stream 
velocity being zero. Equations 13 and 14 admit a self-
similar solution of the form that follows: 
 

y
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where subscript η  denotes the differentiation with 
respect to η . Clearly u  and v  satisfy Equation 13 
identically. Substituting these new variables in Equation 
14, we have: 
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and prime denotes derivatives with respect to η . Using 
Equation 16, the boundary conditions become:  
 

,00)( == ηη atf                                                                    
(18a) 

,01)( ==′ ηη atf                                                                    
(18b) 

,0)( ∞→→′ ηη atf                            (18c)  
 
It is interesting to note that the Equation 17 has exact 
analytical solution of the form 
 

0, >=′ − ααηef                                           (19) 
 
Satisfying the boundary conditions Equation 18. 
Integration of Equation 18 and using of it, gives: 
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Therefore the velocity components are give as: 
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Heat transfer analysis 
 
The energy equation for a fluid with variable thermal 
conductivity in the presence of internal heat 
generation/absorption for the two-dimensional flow is 
given (Chiam, 1977): 
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Where pC  is the specific heat at constant pressure, T  is 

the temperature of the fluid, ∞T  is the constant 

temperature of the fluid far away from the sheet , )(Tk  is 

the temperature-dependent thermal conductivity and  q� is 
the volumetric rate of heat generation. We consider the 
temperature-thermal conductivity relationship of the 
following form (Chiam, 1977): 
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where ∞−=∆ TTT w , wT  is the sheet temperature, 

∞

∞−−=
k

kkwε    is   a   small  parameter  and  ∞k  is  the  
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conductivity of the fluid far away from the sheet. By using 
Rosseland approximation (Quinn, 1992), the radiative 
heat flux is given by: 
 

,
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4 4
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                                          (24) 
 

where *σ  and *k  are, respectively, the Stephan–
Boltzmann constant and the mean absorption coefficient. 
We assume that the differences within the flow are such 
that 4T  can be expressed as a linear function of 
temperature. This is accomplished by expanding 4T  in a 
Taylor series about ∞T  and neglecting higher order 
terms, thus: 
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Substituting Equations 25 and 23 in Equation 22, we 
have: 
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The thermal boundary conditions depend on the type of 
heating process under consideration. Here, we consider 
two different heating processes, namely, (1) prescribed 
surface temperature and (2) prescribed wall heat flux, 
varying with the distance. The boundary conditions 
assumed for solving Equation (26) are given as: 
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where A  is a constant and depends on the thermal 
properties of the liquid, r is the wall temperature 
parameter , wq  is  the heat flux on the wall surface , 

b
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constant. It is obvious now that 
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We now use a dimensionless scaled η -dependent 
temperature of the form 
 

,)(
T
TT

∆
−= ∞ηθ

                                                 (30) 
 
The imminent advantage of using Equation 27 is that the 
temperature-dependent thermal conductivity turns out to 
be x -independent. Equation 26 reduces to the non-linear 
differential equation using Equations 16, 29 and 30: 
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Equations 27 and 28 on using Equations 29 and 30 can 
be written as: 
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ANALYTIC SERIES SOLUTIONS USING HOMOTOPY ANALYSIS 
METHOD 
 
In general, it is quite difficult to solve highly non-linear partial 
differential equations analytically. The much celebrated perturbation 
technique can be used for this purpose but only for weakly non-
linear problems. Liao (1992a, 1992b) developed a new analytical 
technique called the homotopy analysis method (HAM) to tackle 
such non-linear problems (Liao, 1992, 1997, 1999, 2003). Being 
different from perturbation technique, HAM does not need any small 
parameter. As a matter of fact, the homotopy analysis method can 
be regarded as a unification of previous non-perturbation 
techniques such as Adomian method. By its very nature, HAM 
provides a family of series solutions whose convergence region can 
be adjusted and controlled by an auxiliary parameter. It is worth 
mentioning that the homotopy analysis method has successfully 
been applied to many non-linear problems in solid and fluid 
mechanics (Liao, 1999, 2002).  

The first step in the HAM is to find a set of base functions to 
express the sought solution of the problem under investigation. As 
mentioned by Liao (Liao, 2002), a solution may be expressed with 
different base functions, among which some converge to the exact 
solution of the problem faster than others. Noting that, from the 
boundary conditions of Equations 18 and 20 and according to rule 
of solution expression, it is straightforward to choose the initial 
guesses for  )(ηf  and )(ηθ in the following forms: 
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Furthermore, we choose 
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As our auxiliary linear operators, which have the following 
properties: 
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And )51( −=ici  are integral constants. Then we construct the 

so-called Zeroth-order deformation equations: 
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subject to the boundary conditions that follows: 
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where [ ]1,0∈P  denotes the embedding parameter , 1�  and 2�  

indicates non–zero auxiliary parameters. Obviously, for 0=p  and 

1=p , we have: 
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By Taylor's power series and using Equations 48 and 49, 

( ; )f pη and ( ; )pθ η  can be expanded in a power series of p 
as follows: 
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Note that the convergence regions of the series Equations 48 and 

49 are dependent upon the auxiliary parameters 1� and 2� . If 
these auxiliary parameters are properly chosen so that series 
Equations 48 and 49 are convergent at 1=p , therefore using 
Equations 46 and 47 we have: 
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Differentiating the Equations 40 and 41 m times with respect to p  

and then setting 0=p and finally dividing them by !m  we obtain 

the so-called mth-order deformation equations for )(ηmf and 

)(ηθ m   (Liao, 2007) as: 
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subject to the boundary conditions given as: 
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RESULTS AND DISCUSSION 
 
As proved by Liao (1992), as long as the series solutions 
(Equations 60 and 61) are convergent, they should 
converge to one of the solutions of Equations 17 and 31. 
Note that the Equations 60 and 61 contain auxiliary 
parameters 1� and 2�  which are not yet defined. These 
parameters play an important role in the framework of 
HAM. In fact, these parameters control the rate of 
convergence and the convergence region of the series. 
Proper values for these auxiliary parameters can be 
found by plotting the so-called � -curves. When the valid 
region of �  is a horizontal line segment then the solution 
is converged. Figure 2 shows the 1� -curve and Figures 3 

and 4 show typical 2� -curves for both PST and PHF 
cases for a given set of parameters, 

2.01 =k , 1=Mn , 1Pr = , 0=β , 0=ε , 2=r , 0=Nr  
A wide valid zone is evident in these figures ensuring 

convergence of the series for both PST and PHF cases.  
Having chosen the best values for� , we are able to 
present the velocity profiles obtained for different 
combinations of 1k and Mn ,  and  investigate  the effects 
of different parameters such  as  visco-elastic  parameter,  
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Figure 2. Typical 1� -curve for 2.01 =k , 1=Mn . 
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Figure 3. Typical 2� -curves for 2.01 =k , 1=Mn , 1Pr = , 0=β , 0=ε , 

2=r , 0=Nr , 71.01 −=h  for PST case. 

 
 
 
radiation parameter, magnetic number, Prandtl number, 
wall temperature parameter, and heat source/sink 
parameter on the temperature field above the sheet for 
both PST and PHF cases. The obtained analytical results 
are illustrated in Figures 5 to 19 and Tables 1 and 2.  
Figure 5 is a graphical representation which depicts the 
effect of magnetic field parameter Mn  on the horizontal 
velocity profile )(ηηf . It is found that the effect of 

magnetic field parameter Mn  is to reduce the horizontal 
velocity profile )(ηηf .This graphical representation 

reveals that magnetic field parameter Mn  decreases the 
horizontal velocity profile )(ηηf , significantly in the 

visco-elastic flow in comparison with the viscous flow, this 
is due to the fact that increase of Mn  signifies the 
increase of Lorentz force, which  opposes  the  horizontal
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Figure 4. Typical 2� -curves for 2.01 =k , 1=Mn , 1Pr = , 0=β , 

0=ε , 2=r , 0=Nr , 71.01 −=h  for PHF case. 
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Figure 5. Effect of magnetic parameter Mn  on horizontal velocity. 

 
 
 
flow in the reverse direction. Figure 6 shows the effect of 

visco-elastic parameter, 1k  on the horizontal velocity 

profile )(ηηf . The effect of visco-elastic parameter 1k is 

seen to decrease the boundary layer velocity throughout 
the boundary layer but significantly near the stretching 
sheet. Figures 7 and 8 represent variations in the 
transverse velocity for different numerical values of visco-
elastic parameter 1k  and magnetic parameter Mn . 
Obviously transverse velocity v  is enhanced as visco-

elastic parameter 1k  or magnetic parameter Mn  rises. 
Idrees and Abel (1996) have shown that visco-elasticity 
acts physically to increase the adherence to the wall of 
the hydrodynamic boundary layer, which in turn retards 
the flow in the horizontal direction explaining the mono-
tonically decreasing nature of the curves. The drag force 
appears as a term fM n ′  in the transform momentum of 
Equation 17 and serves to retire the momentum in the 
positive direction of the x-axis, also affecting via the 
coupling   with   the  other  terms,  the  momentum  in  the
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Figure 6. Effect of visco-elastic parameter 1k on horizontal velocity. 
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Figure 7. Effect of magnetic parameter Mn  on transverse velocity. 

 
 
 
the y-direction. The shear stresses are therefore lowered 
at the wall as Mn  is increased, which decreases both u  
and v velocities. In both cases the maximum values of 
shear stress are reported at 0=η . These findings of the 
study correlate very well with the general conclusions 
arrived at by other classical magnetohydrodynamic 
studies including those of (Cramer and Pai, 1973; 
Siddheshwar and Mahabaleshwar, 2005). It is noted that 
the depression in the horizontal velocity is less prominent 
than the transverse velocity. Thus the influence of 
magnetic field is to aid more strongly in decelerating the 

flow perpendicular to the plate. Figures 9 and 10 
demonstrate the effect of visco-elastic parameter 

1k � on 
the temperature profile )(ηθ  in the boundary layer in PST 
and PHF cases, respectively. It is observed that the 
temperature profile decreases in the boundary layer with 
the increase of distance from the boundary. It is also 
noticed that the temperature distribution is unchanged at 
the wall with the change of physical parameters. 
However, it tends to zero in the free stream. The 
temperature increases with the increasing values of 
visco-elastic parameter 1k  both in the  case  of  PST  and
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Figure 8. Effect of visco-elastic parameter 1k on transverse velocity. 
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Figure 9. Effect of visco-elastic parameter 1k  on the temperature profile in )(ηθ  PHF case. 
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Figure 10. Effect of visco-elastic parameter 1k  on the temperature profile in )(ηθ  PHF case. 
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Figure 11. Effect of magnetic parameter Mn  on temperature profile in )(ηθ PST case.    
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Figure 12. Effect of magnetic parameter Mn  on temperature profile )(ηθ  in PHF case. 
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Figure 13. Effect of wall temperature parameter r , on the temperature profile )(ηθ  in PST case. 
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Figure 14. Effect of wall temperature parameter r , on the 
temperature profile )(ηθ  in PHF case. 

 
 
 
PHF. This is due to the fact that the thickening of thermal 
boundary layer occurs due to the increase of visco-elastic 
normal stress. From Tables 1 and 2, we observe that the 
effect of visco-elastic parameter is to increase the wall 
temperature gradient )0(ηθ−  in PST case and the wall 

temperature )0(θ  in PHF case. The effect of magnetic 

parameter Mn  on temperature profile )(ηθ  in the 
presence/absence of variable thermal conductivity is 
shown in Figures 11 and 12 in case of PST and PHF, 
respectively. It is noticed that the effect of magnetic 
parameter is to increase the temperature profile )(ηθ  in 
the boundary layer. This is because of the fact that the 
introduction of transverse magnetic field to an electrically 
conducting fluid gives rise to a body force known as 
Lorentz force which opposes the motion. The resistance 
offered to the flow because of this force is responsible in 
enhancing the temperature. Also, the effect on the flow 
and thermal fields become more so as the strength of the 
magnetic field increases. The effect of magnetic 
parameter Mn  is to increase the wall temperature 
gradient )0(ηθ− in PST case and the wall temperature 

)0(θ  in PHF case. This is due to the fact that thermal 
boundary layer thickness decreases as the magnetic 
parameter Mn  increases which results in higher 
temperature gradient at the wall and hence higher heat 
transfer at the wall. For fixed values of Prandtl number 
and magnetic parameter the effect of wall temperature 
parameter r , on the temperature profile )(ηθ  in the 
boundary layer is shown in Figures 13 and 14. From the 
graphical representation we observe that the increase in 
wall  temperature  parameter  r   leads  the  temperature 

profile )(ηθ  to decrease and the magnitude of wall 
temperature gradient increases with wall temperature. 
This is due to the fact that, when 0>r , heat flows from 
the stretching sheet into the ambient medium and, 
when 0<r , the temperature gradient is positive and heat 
flows into the stretching sheet from the ambient medium. 
Figures 15 and 16 shows the effect of thermal radiation 
on temperature profile )(ηθ  in the boundary layer. It is 
observed that the increase in thermal radiation parameter 
Nr  produces a significant increase in the thickness of 
the thermal boundary layer of the fluid and so the 
temperature profiles )(ηθ  increases. The wall gradients 
of PST and PHF cases increase as the thermal radiation 
parameter increases which can be observed in Tables 1 
and 2. The effect of heat source/sink parameter β  on 

temperature profile )(ηθ  in the boundary layer is shown 
in Figures 17 and 18. It is observed that the effect of heat 
source 0>β in the boundary layer generates the energy 
which causes the temperature to increase, while the 
presence of heat sink 0<β  � in the boundary layer 
absorbs the energy which causes the temperature to 
decrease. From Tables 1 and 2 we see that the effect of 
heat source is more pronounced as compared to that of 
heat sink. These behaviours are even true in the 
presence of variable thermal conductivity. Figures 19 and 
20 demonstrate the effect of Prandtl number on 
temperature profile in the boundary layer. It is seen that 
the effect of Prandtl number is to decrease the 
temperature profile in the boundary layer. This is because 
of the fact that thermal boundary thickness decreases 
with increase in Prandtl number. It is also  observed  from
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Figure 15. Effect of thermal radiation on temperature profile )(ηθ  in PST case. 
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Figure 16. Effect of thermal radiation on temperature profile )(ηθ  in PHF case. 
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Figure 17. Effect of heat source/sink parameter β  on temperature profile in 
PST case. 
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Figure 18. Effect of heat source/sink parameter β  on temperature profile in PST 
case. 

 
 
 
Tables 1 and 2 that the heat transfer increases with 
Prandtl number because a higher Prandtl number fluid 
has relatively lower thermal conductivity which reduces 
conduction and there by increases the variation. This 
results in the reduction of the thermal boundary layer 

thickness and increase in the heat transfer at the wall. 
For PHF case, the temperature at the wall reduces as the 
Prandtl number increases because of the cooling effect 
on the surface caused by the increase in Prandtl number. 
Many   other   analytical   methods  investigated  in  many  
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Figure 19. Effect of Prandtl number on temperature profile in PST case. 

 
 
 
Table 1. The best values of the auxiliary parameters and Wall temperature gradients )0(ηθ  for the PST case. 

 
� � � � �

�

�

�

�

�

�

�

�

�

�

0 1 0 0 2 0 1 -0.69 -0.47 -1.2155 
0.2 1 0 0 2 0 1 -0.71 -0.44 -1.16859 
0.4 1 0 0 2 0 1 -0.72 -0.53 -1.10125 
0.1 1 -0.1 0 2 0 0.1 -0.98 -0.58 -1.35219 
0.1 1 0 0 2 0 0.1 -0.98 -0.62 -1.30354 
0.1 1 0.1 0 2 0 0.1 -0.98 -0.67 -1.24954 
0.1 1 -0.1 0 2 1 0.1 -0.98 -0.5 -0.87594 
0.1 1 -0.1 0 2 3 0.1 -0.98 -0.23 -0.54886 
0.1 1 -1 0 0 0 0.1 -0.98 -0.82 -0.65243 
0.1 1 -1 0 -2 0 0.1 -0.98 -1 -0.58039 
0.2 1 0 0 2 0 0 -1.08 -0.64 -1.3 
0.2 1 0 0 2 0 2 -0.5 -0.51 -1.07009 
0.2 1 -0.1 0 2 0 1 -0.71 -0.44 -1.23432 
0.2 2 -0.1 0 2 0 1 -0.71 -0.3 -1.896 
0.2 3 -0.1 0 2 0 1 -0.71 -0.2 -2.2922 

 
 
 
scientific papers (Bayat et al., 2010, 2011a, b, c, d, e, f, g; 
Pakar et al., 2011; Shahidi et al., 2011; Soleimani 
Kutanaei, 2011; ganji et al., 2009; Hosein Nia et al., 
2009). 
 
 
CONCLUSION 
 
In this study the homotopy analysis method (HAM) was 
successfully applied on steady MHD flow and heat 

transfer in a visco-elastic fluid flow over a semi-infinite, 
impermeable, non-isothermal stretching sheet with 
internal heat generation/absorption in the presence of 
radiation. The accuracy of the method was investigated 
by a comparison which was made between numerical 
ones. The excellent agreement of the HAM solutions and 
the numerical ones show the reliability and the efficiency 
of the method. The homotopy analysis method (HAM) 
provides efficient alternative tools in solving non-linear 
equations.   The   method   is  useful  to  obtain  analytical

1k Pr β ε r Nr Mn 1� 2�
)0(ηθ
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Table 2. The best values of the auxiliary parameters and wall temperature )0(θ  for the PHF case. 
 

          

0 1 -0.1 0 2 0 1 -0.69 -0.4 0.78601 
0.2 1 -0.1 0 2 0 1 -0.71 -0.37 0.81025 
0.4 1 -0.1 0 2 0 1 -0.72 -0.46 0.97915 
0.1 1 -0.1 0 2 0 0.1 -0.98 -0.44 0.73953 
0.1 1 0 0 2 0 0.1 -0.98 -0.48 0.76712 
0.1 1 0.1 0 2 0 0.1 -0.98 -0.52 0.80024 
0.1 1 -0.1 0 2 1 0.1 -0.98 -0.48 1.14161 
0.1 1 -0.1 0 2 3 0.1 -0.98 -0.3 1.82175 
0.1 1 -0.1 0 0 0 0.1 -0.98 -0.98 1.53271 
0.2 1 -0.1 0 2 0 0 -1.08 -0.42 0.74127 
0.2 1 -0.1 0 2 0 2 -0.5 -0.41 0.87655 
0.2 1 -0.1 0 2 0 1 -0.71 -0.37 0.81025 
0.2 2 -0.1 0 2 0 1 -0.71 -0.19 0.52466 
0.2 3 -0.1 0 2 0 1 -0.71 -0.13 0.42053 
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Figure 20. Effect of Prandtl number on temperature profile in PHF case. 

 
 
 
solution for all non-linear equations. 
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