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If identification of the stationary logical object (LO) is understood to be its identification with an adequate 
finite-automation model among set of finite automation, in cases where two completely different aims 
(object logical structural model construction and device logical control) are being pursued, serious 
contradictions might arise. With the help of an adequate model received, one tries both to construct 
appropriate structural model of the computing unit (CU) and consider the object as a control object (CO) 
to control it. It goes without saying that during the development of the controlling unit of CO, which 
represents the logical object, its structural model is also being under construction and the object 
identification, the digital signal processor (DSP), is used as the main central process unit for its high 
control ability and computing power. Through the introduction of a rough set theory into the 
multi-sensor information fusion technology, the principal distinction between finite-automation identification 
for development of the logical structure object model and for logical control of the technological device is 
shown in this paper. In this work, the conversion of potential dynamic technological object to the guided 
dynamic object is achieved. It is possible to reach the object of self-control. 
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INTRODUCTION 
 
The new logical-mathematical method (super-induction 
method) for proving common mathematical statements by 
means of a computer is described. The main features of 
this method are: (1) An analytical mathematical proof of 
an unusual reliable inference 'from a single to a common' 
of the form "IF there exists n* such that Q(n*) holds 
THEN for all n>n* P(n) is true", where Q and P are some 
number-theoretical predicates, and (2) a reduction of the 
proof of the common mathematical statement "P(n) for all 
n greater than or equal to n*" to a computer searching of 
a unique single natural number n* (a unique acupuncture 
point of the infinite natural number series) which 
possesses a unique collection of number-theoretical 
properties Q(n*). If such an acupuncture  number n*  is 
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found, then we can prove the common statement "P(n) 
for all n greater than or equal to 1", possibly, except for 
some n less than or equal to n*. Using a so-called 
cognitive computer graphics (CCG) visualization of 
abstract number-theoretical objects, the proof can be 
reduced in many cases to a demonstration of the 
corresponding CCG-pictures; the strict mathematical 
proof is reduced to a visually ostensive one. One of such 
ostensive proofs of real number-theoretical theorems is 
given. Relations of the super-induction method to other 
known ones are briefly discussed. 
 
 
GENERALIZATION OF THE COMPLETE 
MATHEMATICAL INDUCTION 
 
Blaise Pascal's method 
 
It is most fantastic that in general case, there are no 
restrictions to number-theoretical predicates P and Q. 
Indeed, you can take any P and any dependence Q= f (P). 
The most terrible that can occur is that you simply will not  
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Figure 1. The logical acupuncture of the mathematics infinity of the Godlike series (1): 
IF, We Have found a single threshold number n*, possessing property Q(n*); THEN, we 
know all about the behavior of the property P(n) for all n>n* up to infinity. 

 
 
 
prove the corresponding EA-Theorem, and nothing more. 

For example, let P be an arbitrary number-theoretical 
predicate. Then, using our choice freedom, we can define 
a new predicate Q= f (P), say, as follows: 
 

             (1) 
 
Where, n* is a variable natural number. Since n in 
Equation (1) is a bound variable, our predicate Q (n*) 
depends really from n* only. 
 
So, even by a formal way, substituting this Q (n*) in 
EA-Theorem (2), we obtain: 
 

                       (2) 
 

        (3) 
 
As it is easy to see, the expression (4) is the famous 
complete mathematical induction method by B. Pascal in 
its more correct notation than its traditional notation: 
 

        (4) 
 
The Super-Induction method works fine in such areas of 
discrete mathematics where the usual mathematical 
induction method simply does not work. 

Today, the choice of the predicate Q for a given 
predicate P, and the formulation of the mathematical 
connection Q= f (P) in the EA-Theorems do not have a 
theory, that is, they are quite "irrational", that is pure 
intuitive, informal, actions which realize a natural 
human-being's aspiration for an unrestricted freedom for 
the mathematical creativity, in complete accordance with 
the famous slogan by George Cantor. Of course, till this 
aspiration leads us out reasonable frames. 
 
 
Super-induction method 
 
The Super-Induction (SI) method itself is based on the 
EA-Theorems and has the following absolute, evident 
and natural formulation (Chase et al., 1990; Cherem and 
Rugina, 2004): 

1. It is necessary to prove a given general 

statement . 
2. A conditional EA-statement: 
 

                              (5) 
 
is constructed (is devised!), where the number-theoretical 
predicates Q and P are distinct, that is: 
 
Q= f (P) ≠ P. 
 
3. The EA-statemenet (2) is proved analytically (that is, 
as usually, less general statements are deduced from 
more general ones). 
4. The truth of the single statement ∃ n*Q (n*) of the 
(already, after point 3) EA-Theorem (2) is proved; that is, 
a natural number n*, possessing the number-theoretical 
property Q, is found. 
5. If we succeed in finding such a unique number n*, then 
the proved truth of the single statement ∃n*Q (n*) and the 
proved truth of the EA-Theorem ∃n* Q (n*) → ∀n>n* P 
(n) implay (by modus ponens) the authentic truth of the 
general statement ∀n> n* P (n). 
6. The truth of the predicate P (n) is checked for all n ≤ 
n*: 
(a) If ∀n≤n* P (n), then we have proved ∀n≥1 P(n); 
(b) Otherwise, we find (explicitly!) all elements of the finite 
exclusive set,  
N* = {1 ≤ n ≤ n*: ¬P (n)}, and thus, 
7. We prove our general statement in the form: 
 
∀n≥1 P (n), except for n ∈N*. 
 
So, the logical and mathematical sense of the 
Super-Induction method is demonstrated in Figure 1.  

It is believed that if A. Wiles proved that the Last 
Fermat's Theorem is true for all powers, r≥2 except for 
some exclusive set, that is to say, if N* of the r values 
enumerated all such elements of the set N*, no 
mathematician would object the statement that A. Wiles 
has solved (and closed) the problem; because in 
Mathematics, to solve a common problem of the form 
∀n≥1 P(n) denotes not to prove its true or false form, but 
to indicate explicitly a set of n where P(n) is true  and  a  



 
 
 
 
set of n where P(n) is false. In this sense, it can be said 
that the mathematical understanding of the common 
statement notion generalizes the usual understanding of 
the common statement notion of classical logic. 
 
 
Structural model of the logical object method 
 
Recall that if � is an alphabet, symbols of which are 
names of quantum of quantized signal, and if � is a 
naturally ordered set of nonnegative integers interpreted 
as the time moments, then �T = {� � � : 0 � �i1, 1 � �i2, 
… (= �0

�
1…)} is a set of all words above �, in particular, � 

{�} = {{�} � � : � � �(= a�)} = {a�} it is a set of all 
words above � of unit length and �Ø = {Ø � � : � 
�(= �)} = {�}, where � is an empty word. 
Let X, S, Y be an input alphabet, state alphabet and 
output alphabet, respectively.  

Let us introduce in the general case partial 
(incompletely defined) functions of transition � and 
outputs Mealy � or Moore �M: 
 
�: S{�} � �{�} � S{�+1} : ‹s�,x�› � s�+1, 
 
or (that is admissible from the physical point of view): 
 
�: S{�} � �{�} � (S{�+1}) : ‹s�,x�› � pred � (s�+1), 
 
Where, (S{�+1}){�} = {{v} �S{�+1} : � � s{�+1} (=pred � 
(s�+1))} and pred  � (s�+1))} is a current predication of 
state-descendant s�+1 
 
�/�M : S

{�} � �{�} � Y{�}: ‹s�,[x]�›)  **y�: 
 
Where, [X] = X/{e} and [� ]  = x/e. Usage of � 
transition functions and �/�M outputs instead of more 
general ratios is justified by the reason that artificial CU 
(artefact)-the logical circuits, are determinate (in 
extreme case-pseudo non determinate) whether they 
include natural, maybe non-determinate LO (natural 
factors) or not.  

Let us consider static LO as an object for which S = {s} 
(|S| = 1), that is for which we can formally (but not 
actually) ignore the transition function (� : {s}{�} � �{�}

� 
({s}{�+1}){�}:‹s�, x�› � s) and modify function of Mealy 
outputs �: �{�}

�Y{�} : � �
� y � (� : {s} � � �{�} �Y{�}:‹s�, 

x�› � y �). There is no point in modification of Moore 
function, because �	: {s}��Y{�} : s � y � is a constant 
output word of unit length. Thus the finite-automation 
mode of static LO is the ordered triad: 
 
SL =(X, Y, 
) 
 
Where, �: � {�}

�Y {�}: � �** y � or �: ��}: � ** y  is the 
output function. It is immediately obvious that behavior of 
static LO (SLO) is combinatorial.  

Structural model of binary static CU which does not 
include a feedback is directly limited by minimal system of 
Boolean formulas. Mentioned formulas  express  Boolean 
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outputs functions in way ensuring determination of the 
indeterminate values of output functions in order to reach 
minimal complexity of the projected scheme of CU. Note 
that without static CU introduction it would be 
fundamentally impossible to construct its structural model.  

Dynamic LO is an object for which |S| > 1. Thus the 
finite-automation model of Dynamic LO is the ordered 
pentad: 
 
DL =(X, S, Y, �, �/�/m) 
 
It is actually that behavior of dynamic LO is consequent or, 
incredible as it may seem, it is also combinatorial because 
if the function of outputs Mealy � is used and quantity of 
states of dynamic CU with combinatorial behavior is 
minimized, then as a result the static object is obtained.  

Let us introduce traditionally the transitions generalized 
function: 
 
� : S{0} � �{0,1…, �}

� (S{�+1}):‹s0, x0, x1. x. �› � s{�+1} 
 
Thus, if �0

�
1.�. � is an admissible output word in state 

s0,then 
 
� (s0, x0, x1. x. �) = �(�(s0, x0, x1. x. �-1), x�  
 
If apply on input of LO, being in an initial state s0 the 
input word �0

�
1.�. � admissible in s0 then the output 

word corresponding to it will be as follows: 
 
y0 y1. y. �= 
 (s0, x0) 
(s1, x1). 
 (s�, x�); [y0] y1y2.y. 
�+1= [
M (s0)] 
M (s2). 0)] 
M (s�+1). 
 
Dynamic LO is understood to be its such consequent 
behavior at which in case of object controlling ��, 
admissible in s�, LO transits from s� to �(s�, x�)= s�+1, and 
gives the response 
M(s�+1) = y�+1, and in this case the 
state s� parameterize the input-output pair (x�, y�) at 
�=0,1, �. But if the behavior of LO of Mealy type with not 
minimal quantity of states, or the behavior of LO of Moore 
type is combinational one, then, notwithstanding the fact 
that its behavior is similar to consequent behavior, it is 
pointless to consider it as dynamic one. Therefore we 
believe that consistently executed transitions between LO 
states, caused by the different influences, is just 
necessary, but not sufficient condition of dynamism of the 
object. Sufficiently LO is its own activity or automatism of 
realization of the transitions sequence caused by the 
same influence. That is, if LO will be influenced by words 
�

0
�

1.�. � at � 0= �1=…= � = � or �0
�

1.�. �-1 � �.� �+ik.�. 
�+(i+1)k-1-at � 0= �1=…= � �-1 = �(i+1)k-1= �, i =1,2…, then 
respectively, either: 
 

 
 
That is, the acyclic sequence of transitions ends in a 
steady (equilibrium) state s�+1 as  regard to �. �. , or 
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Figure 2. Sufficient conditions of LO dynamism. 

 
 
 

 
 
and 
 

 
 
the object, having passed acyclic sequence of transitions, 
gets in its final state in infinite (practically to final number 
of times) repeated cycle of states with period  ( > 0) 
(Figure 2).For example, in the given table of 
transitions (Table 1) dynamism of LO is illustrated 
by arrows.  

The structural model of binary dynamic CU, a prototype 
(contains feedback) represents a scheme of canonic 
decomposition of required binary static structural model 
which is projected in such a way that at excitation of a 
corresponding binary dynamic substitute of the prototype 
(as a rule, the parallel register of so-called remembering 
binary modules), it carried out transitions between own 
states, similar to transitions between the prototype  states. 

The structure of the initial decomposition also includes 
binary output structural model (Chase et al., 1990; Birdie 
et al., 2007). 

As the substitute of set CU is also a dynamic CU, the 
sufficient conditions of dynamism are not obvious, 
because the structural model of LO automatically pass the 
set trajectory under the influence of the same control. 
 
 
Finite-automation model of control object method  
 
Considering CO as natural object, it is accepted for 
non-determinate object (at that the accident is caused by 
the influences on CO of implicit disturbances), or for 
determinate with obviously expressed disturbances 
(Chong and Rugina, 2003). Thus, it is traditionally 
assumed that the ratio, in particular function of transitions 
�, looks like:  
 

         (1) 
 

or: 
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Figure 3. Automatic logic control system. 

 
 
 

 
 
Figure 4. Logical control conflicts. 

 
 
 

                                                      
                                                    (2) 
 
Where, U, Z is alphabet of controls and obvious 
disturbances, respectively. It is also assumed that for 
injective and in particular for identical Moore outputs 
function �M, the following is valid: 
 

 
 
So, it is assumed that the ordered pentad is the 
final-automatic model of CO. 
 
CL = (U (Z), S.y, �, �M). 
 
As a rule, possessing the finite automation, one tries to 
find the finite automation model of artificial, that is, 
determined, controlling device  (CD),  believing  that  its 

transitions between own states are similar to transitions 
between states of CO that is obviously pointless. Because 
if to accept Mealy finite automaton for CD model, then, 
minimising number of its states, we receive static CD 
(Deutsch, 1994) that quite corresponds to control 
according to Bellman (Dolby and Chien, 2000) because 
for definition of current control u� it is enough to have a 
current state s�= 


M
-1(y�). However, the standard 

understanding of the logical control, as the actions made 
on CO by the controlling device in the system of automatic 
logical control (SALC), (Figure 3) by means of controls 
sequence face with the invincible obstacle. The given 
obstacle is what s�+1 steady relative u� to, it can be left 
only in the event if CD will be constrained to give such 
control u�+1 under s�+1 , what u�+1 � = u� . 

In other case, if using control u �+ik we get from the state 
s �+ik into finite circuit with period k it can be left from the 
state s �+ik only by means of such control u �+(i+1)k , what u 

�+ik � u �+(i+1)k (Figure 4).  
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Figure 5. Dynamic CO block scheme. 

 
 
 

 
 
Figure 6. Sufficient condition of LO dynamism. 

 
 
 

The given critical weakness of the logical control being 
used lies in the assumption that the sufficient conditions 
of CO dynamism are satisfied. And this connected with 
the fact that the CD designers who had previously 
created the structural models of CU dealt only with the 
dynamic objects, and that is why it is reasonable that, 
they consider the technological objects as dynamic ones. 
CU designer during identification of CO unwittingly tries 
to add to the control object the dynamism property. 
However, the set technological object is not the dynamic, 
but only potentially dynamic. Therefore, it is necessary to 
reformulate the task of logical control by potentially 
dynamic CO ensuring the CO dynamism.  

Thus, the finite-automation dynamic model of set 
potentially dynamic control object (PCO, Figure 5), or 
control pseudo-object, is the ordered pentad: 
 
CPL= (U, S, �, �m ). 
 
The ratio, in particular, function of transitions �  of  the 

given pentad, satisfying the sufficient condition of 
dynamism, looks like (Figure 6): 
 

 
 
or: 
 

 
 
Where, 
M is the injective, especially identical outputs 
function . 

Let, for example, PCO be set by the table of 
transitions. Then it is possible to construct the table of 
transitions of the dynamic CO. 
 
 
CONCLUSION 
 
Thus, the present work reveals the problem of logical 
object identification, taking into account the solving of two  



 
 
 
 
tasks, that is: constructions of logical structural model of 
the object and technological device logical control. We 
considered issues of construction of control object 
finite-automation model. We demonstrated the trans- 
formation of set potentially dynamic technological object 
(pseudo-object) into dynamic control object.  
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