Review

Pseudo-prime and pseudo-irreducible submodules

Kürsat Hakan Oral
Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Davutpasa Campus 34210, Istanbul, Turkey. E-mail: khoral@yildiz.edu.tr. Tel: +90-212-383-4337. Fax: +90-212-383-4314.

Accepted 23 August, 2010

Abstract

In this paper, we will extend the pseudo-prime and pseudo-irreducible ideals to pseudo-prime and pseudo-irreducible submodules in multiplication modules. After this, we give the correspondence between these submodules and prime submodules almost prime submodules.

Key words: Almost prime submodules, multiplication modules, pseudo prime submodules, pseudo irreducible submodules.

INTRODUCTION

Throughout this paper, all rings are considered commutative ring with non-zero identity and all modules are unitary. Let R be a ring and M be an R-module. An R-module M is called multiplication if for any submodule N of M we get $N=I M$, where I is an ideal of R. One can easily show that, if M is a multiplication module, then $N=(N: M) M$ for every submodule N of M. Here $(N: M)$ is the ideal $\{r \in R \mid r M \subseteq N\}$ of R. A proper submodule N of M is called prime if $r m \in N$, for some $r \in R$ and $m \in M$, implies that either $m \in N$ or $r \in(N: M)$. Abd El-Bast and Smith (1988) have shown that N is a prime submodule, if and only if ($N: M$) is a prime ideal of R, where M is a multiplication R-module. Recall that, multiplication of submodules in a multiplication module is defined by Ameri (2003). Let M be a multiplication R module and N, K are submodules of M. Then there exist ideals I and J of R,such that $N=I M$ and $K=J M$. Hence, the multiplication of N and K is defined as, $N K=(I M)(J M)=(I J) M$. Similarly, multiplication of two elements of M is defined as; let $x, y \in M$ then for the cyclic submodules $R x$ and $R y$ we have some ideals A and B of R such that $R x=A M$ and $\quad R y=B M$ and so $x y=(R x)(R y)=(A M)(B M)=(A B) M$. With these definitions, Ameri (2003) has characterized prime
submodules. Ameri has shown that a submodule N, is prime if and only if for some submodules U and V such that $U V \subseteq N$ implies that $U \subseteq N$ or $V \subseteq N$, if and only if for all $x, y \in M$ such that $x y \subseteq N$ implies that $x \in N$ or $y \in N$. We call a proper submodule N of M an almost prime submodule, if for all $r \in R$ and $m \in M$ such that $r m \in N \backslash N^{2}$ implies $m \in N$ or $r \in(N: M)$. It is clear that all prime submodules are almost prime submodules.

In this paper, we will extend pseudo-irreducible and pseudo-prime ideals to pseudo-irreducible and pseudoprime submodules respectively, in multiplication modules. Pseudo-irreducible and pseudo-prime ideals are defined by McAdam and Swan (2004), "Unique co-maximal factorization". After this work, Bhatwadekar and Sharma (2005) gives some properties of these ideals. Recall that, an ideal I of a ring R is called pseudo-irreducible if one cannot write $I=J K$ with $J+K=R \quad$ where $I \neq R, J \neq R$ be ideals of R. And an ideal I of a ring R is called pseudo-prime if whenever $J+K=R$ with $J K \subseteq I$, then either $J \subseteq I$ or $K \subseteq I$ for some ideals I, J of R.

Pseudo-prime and pseudo-irreducible submodules

Definition 1

A proper submodule N of the multiplication R-module
M is called strictly non-prime if there exist $m \notin N$, $r \notin(N: M)$, such that $r m \in N$ and $r M+R m=M$.

Theorem 1

Let N be a strictly non-prime submodule of the multiplication R-module M where R is a PID. Then ($N: M$) is a strictly non-prime ideal of R.

Proof

Since N is a strictly non-prime submodule of M, there exist $m \notin N, r \notin(N: M)$ such that $r m \in N$ and $r M+R m=M$. Since $m \notin N$ we get $(m) \not \subset N$ where $(m)=I M$ for some ideal I of R. Then we have $I \not \subset(N: M)$. So if $I=(a)$ for some $a \in R$, we get $a \in I \backslash(N: M)$. Since $r m \in N$, we have $(r I) M=(r m) \subseteq N$. So $r I \subseteq(N: M)$, thus $r a \in(N: M)$. Now, we will show that $(r)+(a)=R$. Since $r M+R m=M$, we get $M=r M+R m=(r) M+(a) M$. Hence $(r)+(a)=R$.

Definition 2

Let N be a proper submodule of the multiplication R module $M . N$ is called pseudo- irreducible submodule if $N=U V$ with $U+V=M$ for any submodules U and V of M, then either $U=M$ or $V=M$.

Theorem 2

(El-Bast and Smith, Theorem 3.1) Let R be a commutative ring with identity and M a faithful multiplication R-module. Then the following statements are equivalent:
(i) M is finitely generated.
(ii) If A and B are ideals of R such that $A M \subseteq B M$ then $A \subseteq B$.
(iii)For each submodule N of M there exists a unique ideal I of R such that $N=I M$.
(iv) $M \neq A M$ for any proper ideal A of R.
(v) $M \neq P M$ for any maximal ideal P of R.

Theorem 3

Let M be a faithful finitely generated multiplication R module. Then the submodule N of M is pseudoirreducible, if and only if the ideal $(N: M)$ is pseudoirreducible.

Proof

Suppose that N is a pseudo-irreducible submodule of M and $(N: M)=I J$ where I and J are co-maximal ideals of $\quad R$. Then $N=(N: M) M=(I J) M=(I M)(J M)$ and we get $M=R M=(I+J) M=I M+J M$. Since N is a pseudo-irreducible submodule, we have $I M=M$ or $J M=M$. Since M is faithful, we get $I=R$ or $J=R$.
For the converse, assume that the ideal $(N: M)$ is pseudo-irreducible in R. Suppose that there exist submodules U, V of M such that $U V=N$ and $U+V=M$. Since M is a multiplication module, there exist ideals I, J of R such that $U=I M$ and $V=J M$. Then we get $N=U V=(I M)(J M)=(I J) M$ and $M=U+V=I M+J M=(I+J) M . \quad$ Therefore, $I J=(N: M)$ and $I+J=R$. Since $(N: M)$ is a pseudo-irreducible ideal, we obtain $I=R$ or $J=R$ that is $U=I M=R M=M$ or $V=J M=R M=M$.

Definition 3

Let N be a proper submodule of the multiplication R module $M . N$ is called pseudo-prime submodule if $U+V=M$ and $U V \subseteq N$ for any submodules U and V of M, then either $U \subseteq N$ or $V \subseteq N$.

Theorem 4

Let M be a multiplication R-module. If the submodule N of M is pseudo-prime then the ideal $(N: M)$ of R is pseudo-prime.

Proof

Let N be a pseudo-prime submodule of M and
suppose that for co-maximal ideals I, J of R we have $I J \subseteq(N: M)$. Then we get $(I+J) M=R M=M$ and $\quad(I J) M \subseteq(N: M) M=N . \quad$ And so $I M+J M=M$ and $(I M)(J M) \subseteq N$. Since N is pseudo-prime submodule we obtain that $I M \subseteq N$ or $J M \subseteq N$. Hence $I \subseteq(N: M)$ or $J \subseteq(N: M)$.

Theorem 5

Let M be a faithful finitely generated multiplication R module. Then the submodule N of M is pseudo-prime if and only if the ideal $(N: M)$ of R is pseudo-prime.

Proof

The one part is clear by the above Theorem. Now for the converse, assume that the ideal $(N: M)$ of R is pseudo prime for the submodule N of M. Let U and V be submodules of M such that $U V \subseteq N$ and $U+V=M$. Since M is a multiplication module, then there exist ideals I and J, such that $U=I M$ and $V=J M$. Then we get $U V=(I J) M \subseteq N \quad$ and $U+V=(I+J) M=M$. Therefore we obtain $I J \subseteq(N: M)$ and $I+J=R$. Since $(N: M)$ is a pseudo-prime ideal, we get $I \subseteq(N: M)$ or $J \subseteq(N: M)$. Hence we obtain $U=I M \subseteq N$ or $V=J M \subseteq N$.

Theorem 6

Let M be a multiplication R-module and N be a pseudo-irreducible submodule of M. Then N is pseudo-prime.

Proof

Suppose that N is a pseudo-irreducible submodule and $U V \subseteq N$ with $U+V=M$ for any submodules U, V of M.Then, $(U+V)(V+N)=U V+V N+U N+N^{2}=N$. Since N is a pseudo-irreducible submodule, we get $U+N=M$ or $V+N=M$. Thus $U \subseteq N$ or $V \subseteq N$.

Proposition 1

Let M be a multiplication R-module and N be a pseudo-prime submodule of M. If $x, y \in M$ with $x y \subseteq N$ and $(x)+(y)=M$, then $x \in N$ or $y \in N$.

Proof

It is trivial by the definition of pseudo prime submodules.

Theorem 7

Let M be a cyclic R-module and N be a submodule of M with the property, if $x, y \in M$ with $x y \in N$ and $(x)+(y)=M$ then $x \in N$ or $y \in N$. Then N is a pseudo-irreducible submodule.

Proof

Suppose that $N=U V$ with $U+V=M$ for some submodules U, V of M. Assume that $M=(m)$ for some $m \in M$ and $U \neq M, V \neq M$. Then we have $m \in M \backslash(U \cup V)$ but $m \in U+V$. So $m=u+v$ for some $u \in U$ and $v \in V$. Thus $M=(m)=(u)+(v)$. Since $N=U V$, we get $u v \subseteq N$. Hence $u \in N$ or $v \in N$. And so $v \in N=U V \subseteq U$ or $u \in N=U V \subseteq V$. It follows that $m \in U$ or $m \in V$ which is a contradiction.

Theorem 8

Let M be a multiplication R-module and N be a submodule of M.
(i) N is a pseudo-irreducible submodule
(ii) N is a pseudo-prime submodule
(iii) If $x, y \in M$ with $x y \subseteq N$ and $(x)+(y)=M$ then $x \in N$ or $y \in N$.
Then (i) \Rightarrow (ii) \Rightarrow (iii) is always true. If M is cyclic then the conditions are equivalent.

Proposition 2

(Ameri, Proposition 3.5) Let M be a multiplication R module. Then for submodules N, K of M such that $N+K=M$, we get $N K=N \cap K$.

Theorem 9

(Oral, 2010; Theorem 5) Let M be a finitely generated multiplication R-module and N, K are finitely generated submodules of M, then N is not an almost prime submodule.

Theorem 10

Let N be a finitely generated strictly non-prime submodule in a finitely generated multiplication module M. Then N is not an almost prime submodule.

Proof

Since N is strictly non-prime submodule, there exist $m \notin N, \quad r \notin(N: M) \quad$ such that $\quad r m \in N \quad$ and $r M+R m=M$. Then for the proper submodules
$K_{1}=N+r M \quad$ and $\quad K_{2}=N+R m$, we get $K_{1}+K_{2}=M$. So by the above proposition we obtain $K_{1} K_{2}=K_{1} \cap K_{2}=N$. Thus by Theorem 10 and since K_{1} and K_{2} are finitely generated submodules, we obtain that N is not almost a prime submodule.

REFERENCES

Abd El-Bast Z, Smith PF (1988). Multiplication Modules, Comm.Algebra, 16(4): 755-779.
Ameri R (2003). On The Prime Submodules of Multiplication Modules, Int. J. Math. Math. Sci., 27: 1715-1724.
Bhatwadekar SM, Sharma PK (2005). Unique Factorization and Birth of Almost Primes, Comm. Algebra, 33(1) 43-49.
McAdam S, Swan RG (2004). Unique comaximal factorization, J. Algebra, 276(1): 180-192.
Oral KH (2010). Almost Prime Submodules, in press.

