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INTRODUCTION

A continuous complex-valued function f =u+iv defined

in a simply complex domain D is said to be harmonic in
D if both u and v are real harmonic in D. In any
simply connected domain, we can write f =h+g, where

h and g are analytic in D. A necessary and sufficient
condition for f to be locally univalent and sense
preserving in D isthat | h'(z) 1>l g'(z)|, ze D.

Denote by §,, the class of functions f =h+g that are
harmonic univalent and sense preserving in the unit disc
U={z:lzI<1} for which f(0)=f(0)-1=0. Then for
f=h+geS, we may express the analytic functions h
and g as:

h() =2+ a2 g =Yha (1 K1), (1)
k=2 k=1

In 1984, Clunie and Sheil-Small investigated the class
S, as well as its geometric subclasses and obtained

some coefficients bounds. Since then, there have been
several related papers on S, and its subclasses. The
differential operator D™ was introduced by Séalagean
(1983). For f =h+g given by Equation (1), Jahangiri et
al. (2002) defined the modified Salagean operator of f
as:

D" f(2) = D"h(z)+(=1)"D"g(2), )

where

Dmh(z) — Z+kaakzk and Dmg(z) — kabkzk-

k=2 k=1
For 0<a<1, 20, me N, neN,, m>n and zeU,
let S, (m,n,c, B) denote the family of harmonic functions
f of the form (1) such that

Ny {D'"f(z)}> S|P

) 3
o) o) T ©

[a\l
~

where D" is defined by (2).

If the co-analytic part of f =h+§ is identically zero,
then the family S, (m,n,, B) turns out to be the class
N_ (a,p) introduced by Eker and Owa (2009) for the

m,n

analytic case. Let we denote the subclass S, (m.n.a, )

consist of harmonic functions  f,=h+g, in

S, (m,n,a, f) sothat h and g, are ofthe f, = h+g, for
hz)=z-Yaz", g,(2)=D)"">b7" (a.b 20). (4)
k=2 k=1

The class S, (m.n,a, /) includes a variety of well known
subclasses of S, . For example E(l,O,a,O)zHS(a) is
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the class of sense-preserving, harmonic univalent
functions f which are starlike of order @ in U,
S, (2,1,a,0) is the class of sense-preserving, harmonic
univalent functions f which are convex of order & in U
and S, (n+1,n,0,0)=H(n,) is the class of Salagean-
type harmonic univalent functions.

For the harmonic functions f of the form (1) with
b =0, Avci and Zlotkiewicz (1991) showed that if
D k(a, 1+1b <1 then
> k*(la, 1+1b, <1 then re mK (0).
(1998) proved that the above two coefficient conditions

are also necessary if f=h+g has negative coefficients.

Later, Silverman and Silvia (1999) improved the results of
Avci and Zlotkiewicz (1991) and Silverman (1998) to the

case b, not necessarily zero. For the harmonic functions
f of the form (4) with m=1,8=0, Jahangiri (1999)
showed that f € HS(«) iff

fe HSO0) and if
Silverman

dk—a)la 1+ (k+a)lb, K1-a
k=2 k=1

and fe HK(o) iff

dkk—a)la 1+ k(k+a) b, [<1-a.
k=1

k=2

In this paper, we will give a sufficient condition for
f=h+g Qiven by (1) to be in s, (m.n.a.p) and it is

shown that this condition is also necessary for functions
in 5, (m.n a, p)- Distortion theorems, extreme points,

convolution conditions, convex combinations and
neighborhoods of such functions are considered. The
following results will be required in our investigation
Ahujai et al.(2002).

Lemma 1

If & is areal number and @ is a complex number , then

Re(w)zaslo+(1-a)|-1lwo—(1+a) 120.

Lemma 2

If @ is a complex number and «, [ are real numbers,
then

Re(@)> Bl w-1l+a = Re{ a1+ fe®)— Be”} > o ~m <0< 7).

MAIN RESULTS

In our first theorem, we introduced a sufficient coefficient
bound for harmonic functions in S, (m,n, &, ) .

Theorem 1

Let f=h+g be given by (1). Furthermore, let

i[(nﬁ)k”—(mﬁ)k" ak+(“ﬁ)"m‘(‘1)m"(“+ﬁ)""kasz (5)

k=1 -« -

(a,=1, a0<a<l), 20, me N, neN, and m>n).
Then f is sense-preserving, harmonic univalent in U
and feS,(mn,ap).

Proof

If z, #2z,,then

S =) \
k=1

S k k
(z,— Z2)+Zak (zy —2)
=2

[f @)=, 8@ -s@)| _ 1_‘
| h(z)~h(z) | |h(z)~h(z,)

= (14 Bk™ —(=1)""(a+ p)k"
DR 2]

Dklb, | i
= >1- < >0

l—iklakl 1—i(l+ﬂ)"m_(“+ﬂ)"n la |
k=2 k=2

-«

>1

which proves univalence. Note that
preserving in U . This is because

f is sense-

K| 21-Ykla, Iz |"-1>1_i(1+/)’)k’" —(a+ k" ]
k=2 k=2 -«

LS UHOR =" @ PR,
k=1

-«

LS ULEPR" =™ @ PR, e
k=1

-«

>Sklb/1212]¢ ().
k=1

Let f of the form given by (1) satisfy the condition (5).
We will show that the inequality (3) is satisfied and so
feS,(mn,a pB). Using Lemma 2, it is enough to show
that



Re{—Dmf <Z)<1+,8e"9>—,b’e”}>a (-7<6<x). (6)

D'f(2)

That is, Re {?} >« , where

(2)

A(z)=(1+ Be”)D" f(z) - B D" f(2)
=z +i[k’" + B (k" —k”)]akzk
k=2

+ (—1)”2[(—1)’"*’%'" + B (=) k" K" )]bk? ,
k=1

B(Z) - an(Z) — Z+ k”akzk +(_1)nzknbkzk )
k=1

k=2

In view of Lemma 1, we only need to prove that
|A(2)+ (1-@)B(2)| —|A(z) - (1+ @) B(2)| 2 0.

It is easy to show that;

|A(2) +(1-a)B(2)| - |A(z) - (1+ @) B(2)| 2 2(1- @) | z|

—2i[(1+ Pk" —(a+Bk"la i zI*
k=2
TR+ (1= 1+ (1R (L ook T 2
k=1

S [21Dk —k bl
k=1

21-0) 1 2123 (14 AR —(er+ Bl F

k=2

2 Y1+ AR +(ar+ BRI B N 21 moniis odd

k=1

21-a)lzl —2i(l+,[>’)k’"—(a+ Ak Na i zI*

k=2

2D JA+PK" —(a+BK"11b, I 2I; m—n is even

k=1

=2(1—a)|z|{l—i[(l+ﬂ)km —(@+ K] la, Iz
=2 l-a

L PR @ PR lkl}

=1 l-a

> 2(1—05){1—5:[(1"‘/3)“’ —(a+ p)k"] g
k=2

-« !

Seker 803

Sl PR (@ pR |}

k=1 l-a

The last expression is non-negative by (5), and so the
proof is complete. The harmonic univalent function

e -« .
T L e —av i

. oy k
+kz=1: 1+ Bk" = (=D)""(a+ Pk" Vit

: (7)

(meN, neN,, m>n and D =~ Ix I+ " Iy I=1)
shows that the coefficient bound given by (5) is sharp.
The functions of the form (7) are in S, (m,n,a,/f)
because

|

= (1+ k"™ —(a+ P)k"
Z( B B

1-a

LA+ BRI @+ HK Ibli

k=1 -

=143 143y, =2,
k=2 k=1

In the following theorem it is shown that the condition (5)
is also necessary for functions f, =h+g, where h and
g, are of the form (4).

Theorem 2

Let f.= h+g_m be given by (4. Then
f, € Su(m,n,a, ) if and only if

S([a+pr - @+ Bk a,

k=1

+[(1+ Bk —(=1)""(a+ ,B)k”]bk ) <2(1-a) (8)

(a, =1, a(0<a<l), 20, me N, ne N, and m>n).

Proof

Since Su (m,n,a, B)c S, (m,n,ex, ), we only need to
prove the "only if" part of the theorem. Note that a
necessary and sufficient condition for f, =h+g, tobein

S, (mn,a, ) is that

R%(Hﬂé")%—ﬂe”’}z a
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This is equivalent to

R {(Hﬂe"”)D’"fm(Z) —pe’D"f, (2) —aD”fm(z)}
D"f,,(2)

(l—a’)—i[(l+ﬂei9)k"’ _ﬂeiﬁkn _akn:|akzk—l
= Ref f=2 9)

oo

1— knak Zk—l +§ (_1 )m+n—lzkn bk Zk—l
k=1

k=2

Ei[(1+ﬂei9)kn1 _ﬂeiﬁ(_l)mfn k" _a(_l)mfnkn Jl?
2k _ }>0.

oo

1_zknakzk71 +§ (_1)m+n71 zkn bkzkfl

k=2 k=1

The above required condition (9) must hold for all values
of z in U. Upon choosing the values of z on the
positive real axis where 0 <z =r <1, we must have

(1—(1)—{2( K" —ok")a ' + S1K” —(—1)'“048)@%‘}
k=2 k=1

Re

o

1 _Zz(nak rkfl + (_ 1)m+nfl n bk rkfl
k=2

k=1

ﬁe[ﬂ |:z(km _kn)akrkfl +z(km _(_1)mfn k")bkrkl:|
_ k=2 k=1 >0.

oo

1— zknak rk*l + (_1)m+n71 zknbk rk*l

k=2 k=1

Since Re(—e"‘g)z—‘e"a‘=—l, the above inequality
reduces to

l-a— i[(u Bk" —(a+ Bk la,r
k=2

1— anak rk—l _ (_l)m—n anbk rk—l
k=2 k=1

S+ BK™ = (=)™ (ar+ B)k" 1o, r*"
— 4=l >0. (10)

l_zknakrkfl _(_l)mfnzknbkrkfl
k=2 k=1

If the condition (8) does not hold, then the expression in
(10) is negative for r sufficiently close to 1. Hence there

exist z,=r, in (0,1) for which the quotient in (10) is
negative. This contradicts the required condition for
f,€ S (m,n,cr, B) . And so the proof is complete. Next
we determine the extreme points of the closed convex

hull of Sy (m,n,e, ), denoted by clcoSu (m,n,a, f3) .

Theorem 3

Let f, be given by (4). Then f, € Su(m,n,a,B) if and
only if

1= X5 A+ 38, ()

where h,(z) =z,
(-

(1+ DK™ —(a+ p)k"
m-1 (lI-o -
1+ Bk" = (=1)""(a+ p)k"

x=1->" (x+y)20. In
particular, the extreme points of Su(m,n,, ) are {h}
and {g,, }.

h(z)=z- 2 (k=2,3,..) and

gmk (Z)=Z+(_1) (k=1’2"")’

x,20,y, 20and

Proof

Suppose

1@ =3 5 D+ 38, )

=D (5 +y)z-
k=1

m—1 - 1_a _k
-1 .
Y A ey @ e

S -« .
LA @ e

Then

i (1+ Bk™ = (a+ B)k" [ -« xk]
P -« (1+ k" = (a+ B)k"

1+ AR =) " (a+ P -
%: l-a | (14+ K" — (1" (+ PR Y "J

= xk+2yk =1-x<1
k=2 k=1

and so fm(z)eclcogH(m,n,a’,,B).

£, (2)€ clcoSu (m,n,a, B), then

Conversely, if



-«
a, <
T+ P = (a+ PK"

and

b, < I~ :
1+ BE" =(=1)""(a+ B)k"

Set

_ U+ k" —(a+ Pk"
B -«

a, (k=23,..)

k

and

_ 1+ BK" —(=D)" " (a+ Pk

1-a

b, (k=1,23,...).

k

Then note that by Theorem 2, 0<x, <1, (k=2,3,...) and
0<y, <l(k=1,2..). Wedefine x, =1-> " x ->"

and note that by Theorem 2, x, 20.
Consequently, we obtain

X, =1—z::2(xkhk (D) + 58, (z)) as required.

The following theorem gives the distortion bounds for
functions in Sy (m,n,a,f) which yields a covering
results for this class.

Theorem 4

Let f, € Su(m.n.a. ). Thenfor Izl=r <1 we have
L. (DI (+b)r
bl]r2

_(+p)-E=D)"" e+ )
(1+)2"" = (a+ f)

N 1 -«
2" (1+ 82" " —(a+ B)
and

| £ (D=2 (=b)r

_(A+ B -E=D)"" @+ p)
(1+2)2"" = (a+ p)

bl]r2

A 1a
2" A+ /2" " —(a+ )

Proof

We only prove the right hand inequality. The proof for the
left hand inequality is similar.

Let f, € Su(m,n,a,B) . Taking the absolute value of £
we have

Seker 805

| £, (2)IK(1+b)r+ i(ak +b)rt
k=2

<+b)r+rY (g, +b,)
k=2

-«
2" ((1+ pR"" —(a+ p))
y i 2"((1+ B)2"™" —(a+ p))

k=2 -«

=(1+b)r+r’

(a, +b)

-«

2'((1+ B)2" " —(a+ )

Xi(m PR ~(@+ Pk | (+BK" - @+ pk”
k=2

l-«a -«

<(1+b)r+r’

2" (1+ 22" " —(a+ )

<(1b)r+— -
‘ (1+B)2"" —(a+ B)

The following covering result follows from the left hand
inequality in Theorem 4.

Corollary 1

Let f, € Su(m,n,a,fB), thenfor | zI=r <1 we have
{w:l L2 m1=pR -2~ a2 -1
(1+ B)2" —(a+ B)2"
_(1+PQ" -DH=(a+ " -(=D"™)
(14 B)2" —(a+ B)2"

bl} c f, ).

Remark 1

If we take m=n+1 and =0, then for n=0 and n=1

the above covering result given in Jahangiri (1999) and
Jahangiri et al. (2002), respectively. For our next
theorem, we need to define the convolution of two
harmonic functions. For harmonic functions of the form

£.(2) = z—iakzk +(—1)’""ibkz_k (11)
k=2 k=1

and
(12)

F, (z) = Z_ZAka + (_l)m—lZBka7
k=2 k=1

we define the convolution of two harmonic functions f

)

_A+B)-CD)""@+p), jrz_
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and F, as

(fu *E)(2) = [, (2) % F,(2)
= Z—iakAkzk +(—1)’"‘likakz_k. (13)
k=2 k=1

Using this definition, we show that the class

S, (m,n,a, ) is closed under convolution.

Theorem 5

Let f, € Su(m.n.a.f) and F, € Su(m,n,7./3). Then

(f.(2)*E,(2))€ Su(m,n,a,B)  Su(m,n, 7, )

where 0<y<a<l.

Proof

Let f,(z) given by (11) be in S, (m.na.B) and F,(z)
given by (12) be in Sy (m,n,7,). Then the convolution
f,*F, is given by (13). We want to show that the
coefficients of f, *F satisfy the required condition
given in Theorem 2. For F, € Su(m,n,7.8), we note that
A, <1 and B, <1. Now, for the convolution function
f,, *F, we obtain

SUBE =P\ SA+BE V"GP
k=2 k=1

1=y 1=y
S UEBK =GP | S O+BR =V PR
k=2 -y k=1 I-y
SZ:(1+,b7)k —(a+ Pk a +Z(1+,b7)k —(-D)""(a+ Pk b
k=2 1_a k=1 1_a
<1

since 0<y<a<l and f, € Su(m,n,a,B). Therefore
(f.(2)%F,(2))€ St (m,n,ct, ) € S (m,n, 7, 8) .

Now we show that E(m, n,a, ) is closed under convex
combinations of its members.

Theorem 6

The class S, (mnaf) is closed under convex

combination.

Proof

Let f

m.
1

€ Su(m,n,e, B), where f, is given by

o @=2=Ya, )" Yb, F (i=1.2.3.).
k=2 k=1

Then by (8),
= (1+ k™ —(ax+ PHk"

Z’ -« U,

3 UK —(1—1>'"—”<a+,6’>k” b <2 (14)
k=1 -a !

For >~ 1,=1,0<z <1, the convex combination of f,
may be written as

i’ifm,. (2)=2z- i[i i a jzk + (—1)"'12[2;[, b, jz_"
i=1

k=2\_i=1 k=1\_i=1

Then by (14),

T CAT L
k=1 -« i=1
LD ) @t PR S

- il
: {i(mﬂ)kt ((xa+ﬂ)k” o + DK —(I—_IZ'"(mﬂ)k" b, J}

L ;.

tibki

andso X" 1 f, (2)€ Su(m.n, e ).

Finally, we will give & -neighborhood of f e S, (m,n, e, )
which is given by (1). Ruscheweyh (1981) is introduced
by the & -neighborhood of f the set

Mn={F=c+ 312 5B SHlo- A4 B -8 <0

k=1

In our case, let us define the generalized o-
neighborhood of f to be the set

oo

N(f)=(F: Y ([(1+BK" —(a+ BK" ]

k=2

+ (1+ K" —(=1)"" (a+ )K" |

ak_Ak|

bk _Bk|)



+H A+ B - D" (@+B) ||b - B| < (1- )8},

Theorem 7

Let f be givenby (1). If f satisfies the conditions

ik([(Hﬁ)k’” —(a+Bk" la, 1+ (1+ BK" = (=))"" (@ + B)K" |15, 1)
k=2

<(-a)-[(1+ A" (@+p) | 1b | (15)

and

5< l—a(l_(1+,B)—(_1)m—n(a+,b’) b |J,

22—« -«
then N;(f)c S, (mn,a,p).

Proof

Let f satisfy (15) and F=Z+E+Z(Akz"+3,{z")

k=2

belong to N;(f).We have

[+ B ~CD)"" @+ B 1B
Y[+ @ pi [ a1+ [+ P~ 1 @+ i |18, )
k=2

<[+ B )" @+ B |1B,~b 1+ 1+ B~ (1)""(@+B)]1b,]

+> [+ BK" = (a+ Bk || A —a, |

+> [+ BK" =) "(@+ PK" || B, ~ b, |

M I8 1

+2 [+ Bk =@+ Bk |1 a1+ 1+ Bk" = (=1)"" @+ k" ] 1 b, 1)

=~
Il
)

<A-a)8+[(1+B)-(=1)""(a+ B |1b,|
+ﬁ§k([(l+ﬂ)k’” —(@+ B la, 1+[(1+ HEK" = (=1)""(@+ BK" | b, )
<A-a)8+[(1+B)-(=1)""(a+ B |1b,|
1
+ﬁ[(1—a)—[(l+ﬂ)—(—l) (@+B)]ib1]
<(l-a).

Hence, for

s< 1_a[l—(Hﬂ)_(_l)m_"(wﬂ)IbllJ,

22—« -«

Seker 807

we have fe S, (mn,ap).

Remark 2

The results of his paper, for =0, coincide with the

results in Yalgin (2005). Furthermore, if we take m=n+1
and £ =0 in our theorems, we obtain the results given in

Jahangiri et al. (2002). Therefore our present study is
generalization of Yalgcin (2005) and Jahangiri et al.
(2002).
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