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The magnetohydrodynamic (MHD) flow of third grade nanofluid between coaxial porous cylinders was 
investigated in this work. Two types of series solutions were presented for constant and variable 
viscosity. The resulting nonlinear coupled equations were solved by employing homotopy analysis 
method (HAM). The convergence of the series solutions has been discussed explicitly. The recurrence 
formulae for finding the coefficients were also given. Comparison with the existing studies was made 
and the role of pertinent parameters was graphically illustrated at the end. 
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INTRODUCTION 
 
In the past, much attention has been given to the non-
Newtonian fluids (Malik et al., 2011; Mahomed and 
Hayat, 2007; Hameed and Nadeem, 2007; Dehghan and 
Shakeri, 2009; Ellahi, 2009). Recent advances in 
nanotechnology have led to the development of a new 
innovative class of heat transfer fluids, called nanofluids 
created by dispersing nanoparticles (10 to 50 nm) in 
traditional heat transfer fluids (Choi, 2009). Very little 
efforts were devoted to examine the non-Newtonian 
nanofluids. Since, the nanotechnology has been widely 
used in industrial cooling applications, nuclear reactors, 
transportation industry (automobiles, trucks and 
airplanes), micro-electromechanical systems, electronics 
and instrumentation and biomedical applications (nano-
drug delivery, cancer therapeutics and cryopreservation) 
(Choi, 2009), therefore, many studies have focused on 
nanofluids these days. For instance, Khanafer et al. 
(2003) seems to be the first who have examined heat 
transfer performance of nanofluids inside an enclosure 
taking into account the solid particle dispersion. Bachok 
et al. (2010) examined the boundary  layer  of  nanofluids 
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over a moving surface when the plate is assumed to 
move in the same or opposite directions to free stream. 
The boundary layer flow induced in a nanofluid due to a 
linearly stretching sheet that was investigated by Makinde 
and Aziz (Makinde and Aziz, 2011). Kuznetsove and 
Nield (2010) examined the natural convection flow of 
nanofluid over a vertical plate. Some relevant work on 
nanofluids can be seen from the list of references (Choi 
et al., 2001; Khan and Pop, 2010; Lotfi et al., 2010; Ellahi 
et al., 2011). After these studies, nanotechnology was 
considered by many to be one of the significant forces 
that will drive the next major industrial revolution of this 
century. Nanotechnology represents the most relevant 
technological cutting edge currently being explored. It 
aims at manipulating the structure of the matter at the 
molecular level with the goal to innovate virtually every 
industry and public endeavor, including biological 
sciences, physical sciences, electronics cooling, 
transportation, the environment and national security as 
well. 

Moreover, porous media is been used to transport and 
store energy in many industrial applications, such as heat 
pipe, solid matrix heat exchangers, electronic cooling and 
chemical reactors. An important characteristic for the 
combination of the fluid  and  the  porous  medium  is  the 
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tortuosity which represents the hindrance to flow diffusion 
imposed by local boundaries or local viscosity (Vafai, 
2011). Furthermore, magnetohydrodynamic (MHD) is 
effectively used in many applications including power 
generators, pumps, accelerators, electrostatic filters, 
droplet filters, the design of heat exchangers, the cooling 
of reactors, etc., (Sutton and Sherman, 1965). To the 
best of our knowledge, no work has been reported yet in 
the literature on MHD flow of non-Newtonian nanofluid in 
coaxial porous cylinders. 

With this motivation, pertinent works (Hayat et al., 
2007; Ellahi and Riaz, 2010; Ellahi and Afzal, 2009) were 
reviewed for MHD flow of non-Newtonian nanofluids in 
coaxial porous cylinders to fill the gap in the existing 
literature. The nonlinear coupled equations along with 
nanoparticle concentration have been solved by the 
homotopy analysis method which does not require any 
small or large parameters and has been proven to be 
successful in tackling nonlinear equations (Liao, 2004, 
2003; Abbasbandy, 2006; Hayat et al., 2006; Ellahi, 
2010). Convergences of the obtained series solutions are 
properly discussed. To the best of our knowledge, the 
series solutions for this particular model have not been 
presented before. 
 
 
FORMULATION OF PROBLEM 

 
For an incompressible viscous fluid, the equations of conservation 
of mass, momentum, thermal energy and nanoparticles are, 
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along with the boundary conditions: 
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Here,  ru,0,0V  is the velocity,    is the temperature,    is 

the nanoparticle volume fraction,  f   is the density of the base 

fluid, p  is the density of the nanoparticles, g  is the gravitational 

acceleration and , k and T  are the viscosity, thermal 

conductivity and volumetric thermal expansion coefficient of the 
nanofluid, respectively. The Brownian diffusion coefficient and the 
thermophoresis diffusion coefficient are, respectively denoted by 

bD  and .TD   

For third grade fluids, physical considerations were taken into 
account by Fosdick and Rajagopal [1980] in order to obtain the 
following form for the constitutive law: 
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where p is the  pressure,  is the dynamic viscosity, I is the 

identity tensor and )2,1(ii  and )31( jj are material 

constants. Moreover, the coefficients 21 ,, and 3  must 

satisfy the following inequalities: 
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Defining the dimensionless parameters: 
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where P  is porosity parameter, is the third grade parameter, 

M  is the MHD parameter, rG   is the thermophoresis diffusion 

constant, rB  is the Brownian diffusion constant, 0v  is the 

reference velocity, 0  is the reference viscosity, w  is the 

reference temperature,  is the pipe temperature, m  is the fluid 

temperature, R  is the radius of pipe and fw  is the density of the 

base fluid.  
In view of constitutive law and governing equations from 

Equations 1 to 3, after dropping bars for simplicity, lead to the 

following non-dimensional coupled form: 
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The corresponding boundary conditions are, 
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SOLUTION OF PROBLEM 

 
Here, we find the series solutions of the nonlinear governing 
equations using homotopy analysis method for two  cases,  namely, 



 
 
 
 
constant and variable viscosity. 

 
 
Case 1 

 
For constant viscosity model, we take: 
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as an initial approximations of v  ,  and , respectively, which 

satisfy the corresponding boundary conditions given in Equation 11. 
We use the method of higher order differential mapping (Van 
Gorder and Vajravelu, 2009) to define an auxiliary linear operator 

L  by, 
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with the property, 
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where  1c   and  2c   are the arbitrary constants. 

From Equations 8 to 10, we define the following nonlinear 
operators: 
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and then construct the homotopy: 
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where is a nonzero auxiliary parameter. 

Setting ,0)],([)],([)],([ 321 prprprv HHH
 

we have the zero  order deformation equations: 
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subject to the boundary conditions: 
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where ]1,0[p  is an embedding parameter. When p increases 

from 0 to 1,  ),,( prv  ),,( pr    ),( pr
 

vary from  
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Since in homotopy analysis method (HAM) solution, the 

convergence depends upon the choice of  , therefore, at  ,1p  

we obtain: 
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The m th order deformation problems with the corresponding 

boundary conditions are given by: 
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are recurrence formulae, in which 
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Case 2 

 
For space dependent viscosity, we choose:  
 

r                (35) 

 
For HAM solution, we select the initial guess and linear operator 
given in Equations 13 and 14, respectively. With the same contrast, 

the respective  zeroth  and m th order deformation problems are: 

 

],,),,(),,([)](),([)1( 40 prprprvprvprvLp N
 (36) 

  

],,),,(),,([)](),([)1( 50 prprprvprprLp N (37) 

 

],,),,(),,([)](),([)1( 60 prprprvprprLp N
    (38) 

 

,0

0),(,1),(

0),(,1),(

0),( ,1),(

21

21

21

rr

rr

rr

prpr

prpr

prvprv

  (39) 

 

),(4)]()([ 1 rrvrvL mmmm         (40) 

 

),(5)]()([ 1 rrrL mmmm    (41) 

 

),(6)]()([ 1 rrrL mmmm    (42) 

 

,
11,1)1(,1)1(

02,02,0)2(

mmm

mmm

v

v
  (43) 

 
Where 

 

,1

32
)],(),,([

2
2

2

2
23

22

2

4

r

c

r

vM
v

dr

dv

r
PB

G
dr

vd

dr

dv

rdr

dv

rdr

vd

dr

dv

r
prprv

r

rN

(44) 

 
 
 
 

,],),,(),,([
2

2

14
dr

d

dr

d
N

dr

d
N

dr

d

r
prprprv btN (45) 

 

,
11

],),,(),,([
2

2

2

2

5
dr

d

dr

d

rN

N

dr

d

dr

d

r
prprprv

b

tN  (46) 

 

,

)1(3

2)(4

11

0

1

0

1

2

1

2

2

2

11

0

1

0

11

0

1

0
2

1

2

21

mri
kkm

k

i

m

k

mmrm

m
ikkm

k

i

m

k

ikkm
k

i

m

k

mm
m

rBv
dr

dv

dr

dv
rP

vprrGrvM

cr
dr

vd

dr

dv

dr

dv
r

dr

dv

dr

dv

dr

dv

dr

vd
r

dr

dv
rr

  (47) 

 

dr

d

dr

d
N

dr

d
N

dr

d

r
r kkm

m

k

b

m

t

m

m

1
1

0
2

1

2

1

1)(5 (48) 

 

.
11

)(6
2

1

2

1

2

1

2

1

dr

d

dr

d

rN

N

dr

d

dr

d

r
r mm

b

tmm
m   (49) 

 

Finally, by using Taylor's theorem, the series solutions at 1p   

has the following structure: 
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Convergence of the solutions 

 
Here, we discuss the convergence of the solutions. The solutions 

given in Equations 26 and 50  contain the auxiliary parameter ,  

which gives the convergence region and rate of approximation for 
the HAM solutions. As pointed out by Liao (2003), the convergence 
region and rate of approximations given by the HAM are strongly 

dependent upon .  Figures 1 to 6 are plotted for 20th order of 

approximations for the dimensionless velocity profile, temperature 
profile and nanoparticle concentration. These figures clearly 

elucidate that the range for the admissible values of    for all 

cases is approximately  5.1 0.   

 
 
RESULTS AND DISCUSSION 
 
Here, the influence of some interesting parameters on the 
velocity, temperature and mass concentration were 
discussed. To see the effects of emerging parameters for 



 
 
 
  

 
 

Figure  1.   curve for velocity profile for constant viscosity. 

 
 
  

 
 

Figure 2.   curve for temperature profile for constant viscosity. 

 
 
 

 

 
 

Figure 3.   curve for nanoparticle concentration profile for 
constant viscosity. 
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Figure 4.   curve for velocity profile for variable viscosity. 

 
 
  

 
 

Figure 5.   curve for temperature profile for variable viscosity. 

 
 
 

constant and variable viscosity, Figures 7 to 22 have 
been displayed. The investigations of the effects of MHD 

parameter M and porosity parameter P  on velocity are 
as shown in Figures 7 to 10. Figures 11 to 14 and 15 to 

18 have been prepared to explain the effects of bN  and 

tN  on velocity and temperature profiles, respectively. 

The effects of bN  and tN  on mass concentration have 

been plotted in Figures 19 to 22.  
In Figures 7 to 14, the velocity decreases by an 

increase in the MHD and porosity parameters. To see the 
effects of thermophoresis parameter and Brownian 
diffusion coefficient on temperature profile, Figures 15 to 
18 have been displayed. These figures elucidate that 
temperature increases by increasing the Brownian 
diffusion coefficient when thermophoresis parameter 
coefficient is fixed and behave in an opposite manner 
when we vary thermophoresis parameter keeping 
Brownian diffusion coefficient fixed. This is in accordance 
with the fact that for thermal boundary, the effects of 
thermophoresis. 
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Figure  6.     curve for nanoparticle concentration for variable 
viscosity. 

 
 
 

 
 

Figure 7. Effects of  M   on velocity profile when  

1,1 tb NN   and  5.0P   for constant viscosity. 

 
 
 

 

 
 

Figure 8. Effects of  M   on velocity profile when  

1,1 tb NN   and  5.0P   for variable viscosity. 

 
 
 
 

 

 
 

Figure 9. Effects of P  on velocity profile when 1,1 tb NN  

and 5.0M  for constant viscosity. 

 
 
 

 

 
 

Figure 10. Effects of P  on velocity profile when 1,1 tb NN  

and 5.0M  for variable viscosity. 

 
 
  

 
 

Figure 11. Effects of bN  on velocity profile when 

5.0,1 MN t  and 5.0P  for constant viscosity. 



 
 
 
 

 

 
 

Figure 12. Effects of bN  on velocity profile when 

5.0,1 MN t  and 5.0P  for variable viscosity. 

 
 
 

 

 
 

Figure 13. Effects of tN  on velocity profile when 

5.0,1 MNb  and 5.0P  for constant viscosity. 

 
 
 

 

 
 

Figure 14. Effects of tN  on velocity profile when 

5.0,1 MNb  and 5.0P  for variable viscosity. 
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Figure 15. Effects of bN  on temperature distribution for constant 

viscosity when 5.0MP and 1.0tN . 

 
 

 
 

 
 

Figure 16. Effects of Nb  on temperature distribution for variable 

viscosity when 5.0MP and 1.0tN . 

 
 
  

 
 

Figure 17. Effects of tN  on temperature distribution for constant 

viscosity when 5.0MP and 1.0bN . 
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Figure 18. Effects of tN  on temperature distribution for variable 

viscosity when 5.0MP and 1.0bN
 

 
 
 

 

 
 

Figure 19. Effects of bN  on nanoparticle concentration for 

constant viscosity when 5.0MP and 1.0tN
 

 
 
  

 
 

Figure 20. Effects of bN  on nanoparticle concentration for 

variable viscosity when 
5.0MP

and 
1.0tN

. 

 
 
 
 

 

 
 

Figure 21. Effects of tN  on nanoparticle concentration for 

constant viscosity when 5.0MP and 1.0bN
 

 
 
 

 

 
 

Figure 22. Effects of tN  on nanoparticle concentration for 

variable viscosity when 5.0MP and 1.0bN  

 
 
 

parameter and Brownian diffusion coefficient are 
different. Figures 19 to 22 bring out the influence of 
nanoparticles concentration. Here, it was revealed that 

the mass concentration is an increasing function of bN  

and decreases by increasing .tN  

 
 

Conclusion 
 
The effects of MHD flow of non-Newtonian nanofluid in 
coaxial porous cylinders were examined in this study. 
The resulting nonlinear differential system was solved by 
employing HAM. In this method, we control the 

convergence by an auxiliary parameter .  Variations of 

MHD parameter M  and porosity parameter P  on 
velocity and temperature profiles was analyzed for 
constant and variable viscosity as shown in  Figures  7  to 



 
 
 
 
18. The effects of thermophoresis parameter and 
Brownian diffusion coefficient on temperature profile are 
as shown in Figures 19 to 22. It is interesting to note that 

when 0rr BGMP , then one recovers the 

case (Sutton and Sherman, 1965). The problem reduces 
to the case Sutton and Sherman (1965) for 

.0rr BGP  The case of Ellahi and Riaz (2010) 

can also be recovered by  .0rr BGM  It is also 

worth mentioning that the presented solutions are valid 
for all values of sundry parameters. To the best of our 
knowledge, the series solutions by HAM for this particular 
model have not been published yet. 
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