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In this paper, a numerical method for solving 7 th-order fuzzy differential inclusions with fuzzy initial
conditions is considered. A scheme based on the classical Taylor method is discussed in full details,
which is followed by a complete error analysis. The method is illustrated by solving some linear and

nonlinear fuzzy initial value problems.
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INTRODUCTION

Knowledge about dynamic systems modeled by
differential equations is often incomplete or vague. For
example, parameter values, functional relationships, or
initial conditions, well-know methods for solving initial
value problems analytically or numerically can only be
used to find selected system behavior, such as, fixing
unknown parameters to some plausible values. However,
in this way it is not possible to characterize the hole set of
system behaviors compatible with our partial knowledge.
We may set the fuzzy input somehow transformed into
the fuzzy output by corresponding crisp systems, thereby,
motivating us to refer to such systems as fuzzy input-
fuzzy output (FIFO) systems. Here, we are going to
"operationalize" our approach, that is, we are going to
propose a method for computing approximation of the
solution for a fuzzy differential equation using numerical
methods. Since finding this set of solutions analytically
does only work with trivial examples, a numerical
approach seems to be the only way for "solving" such
problems. The topics of fuzzy differential equations which
attracted growing interest for some time, in particular in
relation to fuzzy control, have been rapidly developed in
recent years. The concept of fuzzy derivative was first
introduced (Chang and Zadeh, 1972). It was followed up
by Dubois and Prade (1982), who defined and used the
extension principle. The fuzzy differential equation and
the initial value problem were regularly treated by Kaleva
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(1990) treated the numerical methods. Recently
Hullermeier (1990) suggested a different formulation of
FIVP based on a family of differential inclusions at each

a-level, 0<a <1, X't)e [fE,x1)],, x(0)e [x,],.
Where [f(.,.)]a:[O,T]xSK”—>Kf and & is the

space of nonempty convex compact subsets of R". Our
approach shows that the solution has the property that
diam(Supp x(1)) — 0 as t — oo .

This paper is organized as follows: some basic
definitions and results on fuzzy numbers and definition of
a fuzzy derivative, which have been discussed by Ma et
al. (1999) and Diamond (2000) are given. We also
defined the problem, which is a fuzzy initial value problem
showing that numerical solution is the main interest of
this work, and the numerical method for fuzzy differential
equation was discussed. Finally the proposed algorithm
is illustrated by solving some examples followed by a
conclusion.

PRELIMINARIES

Denote by k" the set of all nonempty compact subset of
R" and by k' the subset of k" consisting of nonempty
convex compact sets. Recall that
p(x,A) = min |x—0(||, is the distance of a point

acA

xe R" from Ae k" and that the Hausdorff separation



pP(A,B) of A,Be k" is defined as
p(A,B) =max _, p(a,B).

Note that the notation is consistent, since
pla,B) :p({a},B). Now, o is not a metric. In fact,
P(A,B)=0 if and only if A < B: The Hausdorff metric
d, on K" is defined by
d, (A,B) = max{p(A,B), p(B,A)}, and (x".d, ) is a
complete metric space. An open €& -neighborhood of
Ae k" is the set
NA,e)={xe R": p(x,A)<e}=A+eB", where
B" is the open unit ball in R".
F:R" — k" is upper semi-continuous at x, if for all
>0 0=0(&x,) such that
F(x)c N(F(x,,€))=F(x,+&B"), for all

x€ N(x,,0). Let D" denote the set of upper semi-

A  mapping

there exit

continuous normal fuzzy sets on R" with compact
support. That is, ue D", then u:R" —[0,1] is upper
Supp(u) = {xe R* u(x) > O} is
compact and there exists at least one &€ Supp(u) for
which u(&)=1. The a-level set of u, O<a<l1
is[u], = {xe R"u(x) 2 a}.

Clearly, for ¢ < 3, [u], 2[ul;. The level sets are

nonempty from normality and compact by usc and
compact support. The metric d,, is defined on D" as

d_(u,v)=supid, (u],.[v],):0<a<1}u,ve D", and

(D" ,) is a complete metric space. Denote by E" the

semi-continuous,

subset of fuzzy convex elements of D". The metric
space (E",d_) is also complete (Diamond and
Kloeden, 1994). Let I =[0,T] be a finite interval,

Y, € R" and G be a map from I X R" into the set of all

subsets of R", one must find an absolutely continuous
function x(.) on I such that, we have:

{x'(t)e G(t,x(1)), foralmost all te I, "

x(0)=y,eY, cR".

Recall that a continuous function x: I =Y < R”" is said
to be absolutely continuous if there exist a locally

integrable function v such that jv(a)da = x(s)— x(1)
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for all ¢,s€ I. The differential inclusion Equation 1 is
said to have a solution x(z) on I if x(.) is absolutely
continuous, x(0)=1y, and x(.) satisfies the inclusion
a.e. in I. Let Z(yo,z'), be the reachable set that is,
Z(yo,z'):: {x : 1 — R"|xis solution of (1) }C C()a
nd A(y,,7)= {x(z‘) :x()e Z(yo,r)} be the attainable

set that is, the set of all points x(.) that are ends of
trajectories of Equation 1. Obviously
A(y,,7),0<7<T is a compact subset of R". As a

rule, the set Z(yo,z') consists of more than one

element that is we have a bundle of trajectories. We use
a finite difference scheme together with suitable selection
procedures resulting in a sequence of grid functions

y()’yla"" yN say, on a uniform grld
O0=t,<t,<---<t, =T with step size
T -1,

h=

=t —t_,i=12,--,N. In the Taylor

-1

method of order p for Equation 1, we have:

oY, cR", y,, ey, +hT(t,y,),i=0,--,N-1 (2

where
< ! %)
IT(t,,y,)= : G, y,)-
/Z:;) (j+D!
Definiton 1. The fuzzy number X € E"is called

pyramidal if its « -level sets n-dimensional rectangles
for0<r<1.

A FUZZY INITIAL VALUE PROBLEM

Let f:IXE" — E" and consider the fuzzy initial value
problem (FIVP) as follows:

{x’(t)z f(t,x(@), te I =[0,T], @)

x(0)=Y, e E",

interpreted as a family of differential inclusions. Set
[f(#.x)], = F(t,x;r) and identify the FIVP with the
family of differential inclusions.

{x; (t)=F(t,x (t);r), te I =[0,T], @

x,(0)=y,€[¥],,
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where r . g x[0,1] » « and Q) is an open subset of
I X E" containing (O,[Yo]a),re [0,1], Denote the set of

all solution of Equation 4 on I by Z([YO]Q,T) and the
attainable set by

A1, 7) =@ :x0e Y (%,1,.T)}. Let
Z,(R")={x()e C(O,TT;R") : x,() e L™ ([0,T;R")}
;I'he following Theorems 1 and 2 are consequence a

fuzzy initial value problem, likewise the definition earlier
(Blasi and Myiak, 1985).

Theorem 1

Let Y€ E" and let Q be an open set RxR"
containing {O}xSupp(YO). Suppose that f:Q — E”
is USC and write F(t,x;r):[f(t,x)]ae k. for all
(t,x,r)e R x[0,1]. Let  the
hold for all y,e Supp(¥,) and the
inclusion, x'(¢) € F(t,x;0),x(0) € Supp(Y,) .

Then the attainable sets A, ([YO]Q,T), ac[0,1], of
the family of inclusions of Equation 4 are the level sets of

a fuzzy set A(Y,,T)e D". The solution sets
> (¥,1,.7) of Equation 4 are the level sets of a fuzzy
set 3 (v,,7) definedon z, (%").

In this part of the work we prove that the solution of
Equation 4 is unique for each y, e sup p(¥,) c R".

boundedness
assumption,

Under some conditions suppose x(t):=z(t,y,) is a

solution of Equation 4 for each y,e Supp(Y,). The

authors (Vorobiev and Seikala, 2002) constructed n
families of « -parameterized interval-valued mappings

g )1 — [glk (t,r), g4 (t,r)] in the following way:

glk(t’r)zrnin{zk(t’yo):yOE[YO]zI}’ (5)
¢ (t,r)=max{z (6, y,) : v, € [Y, ], hare [0k =1+, n.

where Z(t’yo) = (Zl(t’ yo),"',Zn(t,yo))E SK” .
The minimum vector and maximum vector of z(,y,)

is, respectively, =z . (t,y,)= (gll(t,a),---,gl” (t,a)),
and z_ (t,y,)= (gé(t,a),---,g;f(t,a)), where obviously

2, Yy) €2t Yo ) 2 & o) Let X 1T — E" be

a fuzzy process then we have:

[xt)], =%, =gkt r. gk t.r), (6)

where X denotes the usual set-theoretical Cartesian
product, (Vorobiev and Seikala, 2002), then

{2ty t.y0): 7ty els €.r).g @ nli=1-n}=[X )], a0,
hence the convex hull of corners of n-dimensional

rectangles is [X(t)]a foranya € [0,1].

Let

F(t,x,(0),r) =[ft,xt)], € &".x, () e [X(1)],, e [0.]]
and

f:(fl,fz,...,f")t, f :(fll,...,fl")t,f2 :(le,...,fzn)t_
We construct n families of o -parameterized interval-
valued mappings

FEIXET S [ x, aia), £ x, ()] in the
following way:

frex, =1 U 0 =midf* 0):Ue[X@),}
A, @r0=1* €U, 00 =matf* (.U):Ue[X@)], k=1 s a<[ol]
(7)

Obviously, the  fuzzy set valued function

F :Qx[0,1] = &' is as follows:

A 0 a=¢ | ex Ol =1 6,0 £0x,0 dlerx 0 Xe) 0<os1
(8)

this means that

/' xorrrx or0)  ax e [ G 0.8 Cx 0riali =100
= F(t,x, (), a), ae[0]l], 9)

and also

[v, 1 = x|y} 0. @). y£(0.a)], is the surface of n-
dimensional rectangles for any ¢ € [0,1], where
0.0=( 0.0,y 0.a) ,0,0=(10a.y0a) Now

the problem of Equation 4 is transformed to the equation
that follows:

£,0Oelf,t.x,0).0. 1 x,0.0) x,0)e[Y,0.0.Y,0.0)]|=[¥,1,. forallac[0]].
(10)

x,(0) chosen randomly then the selection of x;l (1) is

random too that the set of all selections are formed the
reachable set hence Equation 10 converted to a crisp
differential inclusions for any & € [0,1]. The problem of

Equation 10 might be stiff differential equation, then by



considering the fact that R" be equipped with the scalar
product (.,.) and the corresponding induced norm ||.,
we have the following theorem.

Theorem 2

Suppose f" is satisfied in one-sided Lipschitz condition,
that is VU, U eR",IL, >0, such that

U= v <L -u fork=1n.
Then the problem of Equation 10 has a unique solution.

Proof
Let U'=(u],"--,u)'and U" = (u/,~--,u.)" . Then

FEU—FeNU U= 6U)~F Uik =)+ 4 U= Ul ~if)
L CU~F CUN i+ AP CU—F U i ~f] L+ -+ U -U

2

<nL|lu’-U”

where L = max{Ll,---,Ln } The proof is completed.

TAYLOR METHOD OF ORDER P

Let x,(t,)=y, () for all axe[0.,1], then the Taylor

method of order p for approximating the reachable set

of problem of Equation 10 is proposed as follows:

yo(@elY,], cR",

yau@e U (s, +hds(a,.s,:a)),i=0,--,N-1,Vae[0l]’
sqa€lY (@ )y

(11)

where

o (a;,5,,0) = Sh—jG(“(t,,sa;a),
= (j+D!

and

[Ye)l, =<, [y{‘ (t,,0,Y, (t,.,a)],i —0,--,N—1, ae[0]].

Lemma 1

Let a sequence of numbers {Wn}nN:0 satisfy
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|Wn+1 < A|Wn +B,0<n<N-1, for some given
positive constants A and B . Then
A -1
W,|<A"W,|+B 0SSN (Maetal., 1999).
1
Theorem 3

Let Fe C""(Q) in Equation 4 be a compact convex
valued mapping such that satisfies Lipschitz condition in
x with Lipschitz constant L >0 and x, be a solution of

Equation 4 then m yy(@)=x,(),forany ae[0,1].

Proof

Let x,(t, +D= U (xa+ho, (1, xe:0)) ae. And

xa€lX (1)),
yi+1(a'):7 U (;a+h¢F(z‘i,ya;a’))+O(hp+l), it is
Vel Y ()],
enough we prove
%Hym(“)‘xa(w =0,i=0,--,N-1, ae[0,l].

Since
V(@) =y,(@)+he, ¢y (@):a)+Oh™),and

Xalt,,) = xa(t,)+he, (&, xa(t,); ), where

p-l J )
@, (t,u;x) = . F'(t,u;). Then
d ;(]+1)!

[V i@ = xa ) <[yi (@ - x|+ Ly + O™
. By using the Lemma 1 for all ¢, in particular at 7' proof

is completed as H;N(“)—;a(T)HS %O(hﬂ)(eLT 1)

EXAMPLES
Example 1

Consider a fuzzy differential inclusions with constant
coefficients

dx,(t.@) _ 3x, (1) — 2x, (t,0),0 < £ < 0.01,

dt (12)

Me 2x1(t’a)_x2(t’a)’

as an initial value for the fuzzy initial-value problem of
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Table 1. The distance between reachable set and its approximations.

H 4th Taylor 2nd Taylor Euler
0.01 2.8725e-011 3.3661e-006 0.0789
0.005 1.8211e-012 8.571e-007 0.0716
0.0025 1.1083e-013 2.1886e-007 0.0710
0.00125 7.0672e-015 5.3138e-008 0.0694
0.000625 9.9301e-016 1.3425e-008 0.0611

Equation 12 we take a number Y, € E* such that
%], = {x 0.0,%,0,0)e ®* :x, ;@) € [ - 11~ x,(0,@) € [0.5+0.50,1.5-0.5a]}, @< [0,1].
where

Z([Yo]a’t):[xl(t,@j_[gt[x1(0,00+21(x1(0,00—x2(0,00)]J (13)
%60) [x,0.0)+2(x,0.0)—x,0.0)

And (x,(0,0),x,(0.@)e[Y,],. Let c=U(y,],.T)

and B be the approximation of C which is obtained by
numerical methods. In Table 1 we compare d_(C,B)

for Taylor method of order two and four and Euler
method.

Example 2
Consider the following fuzzy differential inclusions:

xX(ta)e —x,(t.a) +0.1x,(t. )0 — x, (1, @) —x, (t.@)* )+ w(@),
X,(t.a)e —x, (t,a) +0.1x, (t, @) 9 - x, (1, a0)” — x, (1, @) )+ w(a),

we take a number Y, € E* such that

%], ={x @250 xQelo-L1-dhxQaef0s+0s15-05d} eefor
and

wa)ela—-11-«a].

Then

—x,(t,0)+0.1x, (1, )9 —x,(r.)* — x, (1.2 )+ a1
—x,(t,0)+0.1x,(t, )9 —x, (t.@)* —x,(t,0)* )+ a—1 |

fit.x,(0),0) =(
and

. (— X, (1) +0.1x, (t, )0 - x, (t.&0)* — x, (t,a)2)+a—1}

—x,(t,2) +0.1x, (1. )0 — x, (1.00)> — x, (t.@)*)+ a1

For example if

fx, (), a)= f‘(t’x“(t)’a); fo(t xg (1), @)

chosen from [f, (¢, x,, (1), ), f, (1, x,,(t), @)}

Conclusion

The method presented in this paper for approximation
reachable set is based on pyramidal fuzzy numbers. The
o -level sets of this fuzzy numbers are n-dimensional
rectangles that the convex hull of the corners of
rectangles or the set of all points on them (in n-
dimensional space) forms the reachable set. In this paper
each point (n-dimensional vectors) which belongs to
reachable set is approximated by using the Taylor
method of order two and four, which in contrast with the
Euler method has a higher order of convergence.

REFERENCES

Chang SL, Zadeh LA (1972). On fuzzy mapping and control. IEEE
Trans, Systems Manybernet., 2: 30-34.

Dubois D, Prade H (1982). Towards fuzzy differential calculus: Part 3,
differentiation. Fuzzy Sets Syst., 8: 225-233.

Kaleva O (1990). Fuzzy differential equations, Fuzzy Sets Syst,
24(1987): 301-317.

Ma M, Friedman M, Kandel A (1999). Numerical Solutions of fuzzy
differential equations. Fuzzy Sets Syst., 105: 133-138.

Hullermeier E (1990). An approach to modeling and simulation of
uncertain dynamical systems. Int. J. Uncertainty, Fuzziness.
Knowledge-Bases Systems. 35: 389-396.

Diamond P (2000). Stability and periodicity in fuzzy differential
equations. IEEE Trance. fuzzy Syst., 8: 583-590.

Diamond P, Kloeden P (1994). metric spaces of fuzzy sets, Singapore:
World Scientific.

Vorobiev D, Seikkala S (2002). Towards the theory of fuzzy differential
equations. FSS, 125: 231-237.

Blasi FS, Myjak J (1985). On the solution sets for differential inclusions.
Bull Acad.Polon. Sci., 33: 17-23.



