

Vol. Vol. 9(13), pp. 302-308, 16 July, 2014

DOI: 10.5897/IJPS2014.4157

ISSN 1992 - 1950

Article Number: 9BE0C0946337

Copyright © 2014

Author(s) retain the copyright of this article

http://www.academicjournals.org/IJPS

International Journal of Physical
Sciences

Full Length Research Paper

An efficient technique for morphing zero-genus
3D objects

A. Elef, M. H. Mousa* and H. Nassar

Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Egypt.

Received 30 April, 2014; Accepted 10 July, 2014

In this paper, we present an algorithm to morph a zero-genus mesh model to a topologically equivalent
one based on spherical parameterization, as it is the natural parameterization method for this kind of
objects. Our algorithm starts by normalizing the two objects to the cube of unity, as a preprocessing
step. Then, the two normalized models are parameterized onto a common spherical domain. We
reposition the points of the objects on the sphere in accordance to the relative areas of their triangles.
Repositioning on the sphere prevents point clustering and overlapping during the matching process.
Experimental results are presented to demonstrate the efficiency of the algorithm.

Key words: 3D morphing, zero-genus mesh, spherical parameterization, nearest neighbor matching.

INTRODUCTION

Shape changing has gained attention due to the
attraction of scenes people see on the screen. Indeed,
morphing is derived from the biological term
“metamorphosis”, meaning the change in form and often
habits of the individual during normal development after
the embryonic stage. Therefore, it suits very well
modeling computer animation techniques dealing with the
design of algorithms changing one object into another
over time (Sompagdee, 2009). In other terms, morphing
is an interpolation technique used to create from two
objects a series of intermediate objects that change
continuously to make a smooth transition from the source
object to the target object. Morphing has been done in
two dimensions by varying the values of the pixels of one
image to make a different image, or in three dimensions
by doing the same. We are presenting here a new type of

morphing, which is applied to the geometry of three
dimensional models, creating intermediate 3D objects
which can be translated, rotated, scaled, and zoomed into.

The history of morphing can be categorized into two
categories: 2D and 3D morphing. 2D morphing seems to
have reached its goals in finding the solutions for the
transformations as well as feature handling, while 3D
morphing is still far behind 2D success (Sompagdee,
2009).

Two-dimensional morphing

In general, 2D morphing techniques require a lot of
manual processes. They can be classified into two
categories: image-based and geometric-based.

*Corresponding author. E-mail: amira_mohamed@ci.suez.edu.eg, mohamed_mousa@ci.suez.edu.eg,

nassar@ci.suez.edu.eg

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons

Attribution License 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Image-based morphing

Image-based approaches are used enormously in the
entertainment industry. Algorithms here are generally
composed of three major steps: control, warping and
cross dissolving. For controlling the morphing process,
these algorithms rely heavily on the experience and
knowledge of animators to define correspondence points.
Good results can be obtained by using images captured
from similar angles and positions regarding the lack of
the depth information for generating intermediate objects.
Beier and Neely (1992) proposed the line segment
feature based method. Where, animators have less work
but the complexity of calculation is increased. Lee et al.
(1995) used moving curves called snakes in order to
capture features accurately and fasten the process of
feature defining.

Geometric-based morphing

For geometric–based approaches, 2D polygons are given
as input. Sederberg and Greenwood (1992) proposed a
minimization method without user interaction. New
vertices are added to the polygon that has less number of
vertices. All possible paths are calculated but only the
best path, the one that gives a minimum amount of work
or less shrinkage, is selected. Gao and Sederberg (1998)
improved the method to measure the amount of work as
well as the way to find the least work path. Shapira and
Rappoport (1995) embedded skeletons inside each
polygon by decomposing the polygon into star-shaped
pieces with a star origin inside each piece then they
connected those star origins. For interpolation, skeletons
are interpolated and star pieces are unfolded.

Three-dimensional morphing

Three- dimensional morphing algorithms transform a 3D
model into another. The complexity of an algorithm
depends on many factors, such as: the object
representation, genus, and convexity. The simplest
morphing can be done when the initial and final shapes
are convex and similar in their geometry and topology.
Usually, 3D methods have restrictions on object models
and how models are represented. Concave objects are
more difficult to morph than convex ones. Objects with a
different genus, e.g. with holes or with a closed surface
are very complicated to transform. Without user
intervention, it is not possible to get the desirable results.
The existing solutions are categorized by object
representations as follow (Sompagdee, 2009):

(i) Polygonal-based representation: The objects are
represented by their boundaries. This representation is
commonly used and is easy to obtain.

Elef et al. 303

(ii) Volumetric representation: The 3D models are
described either by their geometric primitives or by
volumes (volumetric data sets). A volumetric
representation is ideal for modeling the behavior of
objects with complex interior structures. In particular, this
representation helps overcome the limitation on model
types.

CONTRIBUTION

Our approach is focused on creating the series of
intermediate objects, using spherical parameterization as
a common domain of the source and target zero-genus
objects. This parameterization domain is the natural
domain to use, given when our object is a sphere, and as
such- makes the mapping step easier.

To create this series of intermediate objects, we start
by parameterizing the source and target objects on the
sphere. We use progressive meshes (Hoppe, 1996; Zhou
et al., 2004) in combination with a local smoothing
strategy (Shen and Makedon, 2006) to find the final
spherical parameterization. Then we create the point-to-
point correspondence between the objects using the
AABB tree search technique (CGAL, 2010). The
spherical parameterization which we have used makes
the mapping step easier since the objects are mapped to
their natural parameterization domain.

Initial spherical parameterization

Parameterization of 3D mesh data is important in such
applications as, texture mapping, remeshing and
morphing. Closed manifold genus-0 meshes are
topologically equivalent to a sphere; hence this is
regarded as the natural parameterization domain for it.
Parameterizing a triangle mesh onto a sphere means
assigning a 3D position on the unit sphere to each of the
mesh vertices, such that the spherical triangles induced
by the mesh connectivity are not too distorted and do not
overlap. Satisfying the non-overlapping requirement is
the most difficult and critical component of this process.
Moreover, it is usually an expensive optimization
procedure for large meshes. Here, we describe the
spherical parameterization algorithm we use, which is
based on the algorithm proposed in (Praun and Hoppe,
2003; Zhou et al., 2004; Shen and Makedon, 2006). The
later algorithm incorporates a local parameterization
scheme into the progressive mesh representation
(Hoppe, 1996). This reduces the complexity of global
optimization for large meshes.

Given a triangle mesh , the problem of spherical

parameterization is to form a continuous invertible map

from the unit sphere to the mesh. That’s, . The

map is specified by assigning for each mesh vertex a

parameterization . Therefore, each mesh

304 Int. J. Phys. Sci.

(A) (B) (C)

Figure 1. An edge collapse operation. (A) (Left) the edge to be collapsed. (B) (Middle) The mesh after

the edge contraction. (C) (Right) Parameterizing the deleted vertices using the created triangles.

edge is mapped to a great circle arc, and each mesh
triangle is mapped to a spherical triangle bounded by
these arcs. The spherical parameterization algorithm
consists of two major steps:

(i) A progressive mesh representation,

, with embedded local
parameterization information is generated from the

original mesh . This is performed by iterating the
successive edge collapse operations until the current

simplified mesh becomes a convex polyhedron . The
obtained polyhedron is considered as the base mesh

of . For each edge collapse, the two decimated vertices
are parameterized over the resulting simplified mesh. The

local parameterization information is recorded in .

(ii) Suppose that the centroid of the base mesh is the
center of the unit sphere. The projection of the vertices of

onto the considered sphere produces an initial
spherical mesh. Starting from this initial spherical mesh,
the sequence of vertex split operations, the inverse of the
edge collapse, in is performed progressively. For each
vertex split operation, the two split vertices are positioned
on the unit sphere using the recorded connectivity and
embedded parameterization information.

The key point of the progressive mesh hierarchical
structure is the choice of the order of the edges to be
collapsed. Here, we use the selection strategy proposed
by Garland and Heckbert (1997) to determine the edge
collapse order and to position the newly created vertices.
In the classical progressive mesh representation (Hoppe,
1996; Zhou et al., 2004), the geometrical and topological
information of each removed vertex are recorded in a
vertex splitting operation during the decimation process.
Thus the vertex can be completely recovered during
progressive refinement process. However, this
information is not suitable to reposition the recovered
vertex on the unit sphere when the same vertex split
sequence is performed on the corresponding spherical
mesh. In what follows, we present how to reposition the

recovered vertex according to the relative position with
respect to its first order neighborhood in the original
mesh. As shown in Figure 1 (left and middle), edge

is collapsed and a new vertex is created. Let

be first order neighborhood of the vertex . Using

the MAPS algorithm (Lee et al., 1998), is

flattened into a planar region . The vertices and

are embedded into and find the triangles and

containing and respectively. The barycentric

coordinates , of the embedding of and

inside and respectively. Therefore, and can
be locally parameterized with respect to the containing

triangles and using the barycentric

coordinates . The local parameterization
information of the two decimated vertices, together with
all collapse information of the edge, is recorded in
avertex split operation for later reconstruction on the
sphere. The final form of the progressive hierarchy of the

given mesh is , where is the

convex base mesh and the are the ordered split

operations. That is .
Starting from this base spherical mesh which is

generated by projecting the convex base mesh onto
the unit sphere, the vertex split operations in

 are performed progressively to
simultaneously recover the original mesh and construct

the spherical parameterization. Let be the recovered

mesh after performing the ths vertex split operation,

be its corresponding spherical mesh. The ths
vertex split operation is then performed as follows. With

the containing triangles and barycentric

coordinates of the two new vertices and

retrieved from ; two new vertices and are

inserted into with the same connectivity as in
and positioned on the unit sphere by:

Figure 2. The local neighborhood projected on the 2D

plane.

Where and are the triangles in

corresponding to and respectively.

Local spherical improvement

The local spherical improvement uses iterations overthe
vertices of the initial parameterization on the unit sphere
(Shen and Makedon, 2006). At each vertex, it tries to

reposition in the local neighborhood to gradually
improve the mapping quality. The triangles composing

the local neighborhood is piece-wise linear.
Therefore it can be projected on the 2D plane while
preserving the relative area of each spherical triangle.
Given that the vertex to reposition, Figure 2 shows an

example of the projection of on a 2D plane.

Supposing that , the signed area of the
triangle can be computed by:

Thus, replacing with and treating and as the
only unknowns in the previous equation, we can
formulate a system of linear equations using all the

triangles in the spherical and solve it in the least
squares sense to locate a new center vertex position.
This new center position minimizes the square sum of the

relative area differences between on the object

and on the sphere . Note that only the center
position is concerned here. This indicates that the border

Elef et al. 305

of spherical is fixed,and consequently that. the

total area of the spherical cannot be changed.

Therefore, each triangle in the spherical aims to
achieve not its correct absolute area but the correct area

relative to the other triangles in . For example,

Let be the set of projected triangles depicted

in Figure 2 and be the corresponding

triangles on the object. If we use to denote the area
of a triangle, the relative area of can be given by:

 =

In order to preserve this relative area, on the 2D project
should have an ideal area of,

Where , is the total area of the 2D projection of the

parameter submesh. To calculate the new location) for
the parameter submesh center on its 2D projection, the
following system of linear equations is formulated:

The new center location is obtained by solving this
linear system in a least squares sense.

MESH MAPPING

Now that we have the source and the target 3D objects
parameterized on the sphere, the objective here is to find
the point-to-point correspondence between the two
parameterized objects. According to the number of points
in the two objects, we have two kinds of mesh mapping:

(i) M to M mapping: The two input objects have the
same number of points. We use the nearest neighbor
algorithm (Manolis et al., 1997) to find the point to point
correspondence. To avoid the case that multiple points
are matched to a single point, we associate with each
point an attribute, valued by true or false, to indicate
whether that point is selected before or not.
(ii) M to N mapping: The source and the target objects
have not the same number of points. Without loss of
generality, assume that the source object has more
points than the target object. To overcome this inequality
problem we subdivide the target object using the
subdivision algorithm (Kobbelt, 2000) such that the two

306 Int. J. Phys. Sci.

(A) (B)

Figure 3. (A) Left two images. The input triangular mesh of the Stanford Bunny (39 k points, 70 k triangles) and, its spherical

parameterization, (B) Right two images. The target triangular mesh of the Gargoyle (100 k points and 200 k triangles) and its
spherical parameterization.

objects have an equal number of points. We fall again in
the first kind-- M to M mapping. It can be seen that M to N
mapping is more costly than M to M mapping, simply
since we apply M to M mapping in addition to the
subdivision step.

M to N mapping has the disadvantage of being time
consuming. We use an enhanced implementation of
nearest neighbor searching called AABB tree (CGAL,
2010). The AABB tree features a static data structure and
algorithms to perform efficient intersection and distance
queries against sets of finite 3D geometric objects. Using
this static data structure, we build a tree with the vertices
of the target object. We then use the tree to find for each
point of the source object the corresponding nearest
neighbor from the tree.

RESULTS

The methods described in the preceding sections have
been implemented in C++ and using CGAL the
Computational Geometry Algorithms Library (CGAL,
2010). The experiments are carried out on a PC with a
2.8 GHZ dual-core processor and 2GB of memory. The
input objects are in the form of triangular meshes. Before
constructing the spherical parameterization of our
objects, we apply the following two preprocessing steps:

(1) Normalize the input models to a cube of unityto get a
smooth and a robust transition between the input and
output objects. This normalization of each object is
performed separately. For each object, the centroid of the
object is translated to the origin of the coordinates. Then,

calculate the distance, of the farthest point with respect
to the origin. Finally, divide the coordinates of each point,

, by to get the normalized point

Figure 4. The AABB tree for the
set of the spherical triangles of
the gargoyle.

.

(2) If the objects are not sufficiently sampled, apply
surface subdivision to enhance the mapping between the
input and output objects.

Figure 3 shows the spherical parameterization of two
triangular meshes the input object is the Stanford bunny
and the target object is the Gargoyle. In our experiment,
the parameterization time is 79 s for the Gargoyle (100 k
points and 200 k triangles). Once the spherical
parameterization is constructed for the input and target
objects, we construct the AABB tree for the set of
spherical triangles of the target object (the gargoyle, in
our case) for the mapping step, as shown in Figure 4.

Elef et al. 307

Figure 5. The sequence of morphing the stanford bunny to the gargoyle.

Each point in the spherical parameterization of the Bunny
is matched with the closest spherical point in the AABB
tree.

Once the matching step is performed, a linear
interpolation is performed between the set of points of the
Bunny and the corresponding points in the Gargoyle. This
interpolation creates the set of frames to be visualized as
the final morphing animation. Figure 5 shows the series
of the frames that creates the morphing of Bunny-
Gargoyle.

CONCLUSIONS

In this paper, we propose a novel technique for 3D mesh
morphing capable to interpolate between arbitrary zero-
genus objects. The technique can be presented as an
animation by creating a series of intermediate objects
using the spherical parameterization as a common
domain of the source and target objects. We converted
both objects into the same spherical domain with suitable
modifications to reposition of the points on the sphere.
This repositioning prevents the morphing from creating
overlapping or clustering of points on the sphere during
the mapping step.Then we carry out mesh mapping to
realize the morphing process and this happened by using
the point-to-point correspondence between the objects of
the AABB tree search algorithm. The spherical
parameterization which is used to make the mapping step
easy since the objects are mapped to their natural
parameterization domain.

Conflict of Interest

The author(s) have not declared any conflict of interest.

REFERENCES

Beier T, Neely S (1992). Feature-Based Image Metamorphosis.
Proceedings of SIGGRAPH 92:35-42.

CGAL (2010). Computational Geometry Algorithms Library,

http://www.cgal.org.
Garland M, Heckbert PS (1997). Surface simplification using quadric

error metrics. Proceedings of the 24th annual conference on

Computer graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co. 209-216.

Gao P, Sederberg TW (1998). “A Work Minimization Approach to Image

Morphing,” Visual Computer, pp. 390-400.
Hoppe H (1996). Progressive meshes. Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, ACM.

pp. 99-108.
Kobbelt L (2000). sqrt(3)-subdivision. Computer Graphics (Proc.

SIGGRAPH '00). 34:103-112.

Lee AWF, Sweldens W, Schroder P, Cowsar L, Dobkin D (1998).
MAPS: multiresolution adaptive parameterization of surfaces.
Proceedings of the 25th annual conference on Computer graphics

and interactive techniques, ACM: pp. 95-104.
Lee S, Chwa K, Shin SY, Wolberg G (1995). “Image Metamorphosis

Using Snakes and Free-form Deformations. Proceedings of

SIGGRAPH 95.
Manolis K, Hoomanvassef MDB, Krzysztof G (1997). "3D MOrphing."

MIT project (6.837)

http://web.mit.edu/manoli/morph/www/morph.html.
Praun E, Hoppe H (2003). "Spherical parametrization and remeshing."

ACM. Trans. Graph. 22(3):340-349.

Sederberg TW, GreenWood E (1992). A Physically Based Approach to
2D Shape Blending. Proceedings of SIGGRAPH 92. In Computer
Graphics Proceedings, Annual Conferences Series.

308 Int. J. Phys. Sci.

Shapira M, Rappoport AA (1995). "Shape Blending Using Star-Skeleton

Representation." IEEE Computer Graphics and Applications. pp. 44-
50.

Shen L, Makedon F (2006). "Spherical mapping for processing of 3D
closed surfaces." Image Vision Computing. 24(7):743-761.

Sompagdee P (2009). Survey of Morphing. C. S. Department,

Thammasat University. pp.1-8.
Zhou K, Bao H, Shi J (2004). "3D surface filtering using spherical

harmonics." Computer-Aided Design. 36(4):363-375.

