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In this paper, we present an algorithm to morph a zero-genus mesh model to a topologically equivalent 
one based on spherical parameterization, as it is the natural parameterization method for this kind of 
objects. Our algorithm starts by normalizing the two objects to the cube of unity, as a preprocessing 
step. Then, the two normalized models are parameterized onto a common spherical domain. We 
reposition the points of the objects on the sphere in accordance to the relative areas of their triangles. 
Repositioning on the sphere prevents point clustering and overlapping during the matching process. 
Experimental results are presented to demonstrate the efficiency of the algorithm. 
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INTRODUCTION 
 
Shape changing has gained attention due to the 
attraction of scenes people see on the screen. Indeed, 
morphing is derived from the biological term 
“metamorphosis”, meaning the change in form and often 
habits of the individual during normal development after 
the embryonic stage. Therefore, it suits very well 
modeling computer animation techniques dealing with the 
design of algorithms changing one object into another 
over time (Sompagdee, 2009). In other terms, morphing 
is an interpolation technique used to create from two 
objects a series of intermediate objects that change 
continuously to make a smooth transition from the source 
object to the target object. Morphing has been done in 
two dimensions by varying the values of the pixels of one 
image to make a different image, or in three dimensions 
by doing the same. We are presenting here a new type of 

morphing, which is applied to the geometry of three 
dimensional models, creating intermediate 3D objects 
which can be translated, rotated, scaled, and zoomed into. 

The history of morphing can be categorized into two 
categories: 2D and 3D morphing. 2D morphing seems to 
have reached its goals in finding the solutions for the 
transformations as well as feature handling, while 3D 
morphing is still far behind 2D success (Sompagdee, 
2009). 
 
 
Two-dimensional morphing 
 
In general, 2D morphing techniques require a lot of 
manual processes. They can be classified into two 
categories: image-based and geometric-based. 
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Image-based morphing 
 
Image-based approaches are used enormously in the 
entertainment industry. Algorithms here are generally 
composed of three major steps: control, warping and 
cross dissolving. For controlling the morphing process, 
these algorithms rely heavily on the experience and 
knowledge of animators to define correspondence points. 
Good results can be obtained by using images captured 
from similar angles and positions regarding the lack of 
the depth information for generating intermediate objects. 
Beier and Neely (1992) proposed the line segment 
feature based method. Where, animators have less work 
but the complexity of calculation is increased. Lee et al. 
(1995) used moving curves called snakes in order to 
capture features accurately and fasten the process of 
feature defining. 
 
 
Geometric-based morphing 
 
For geometric–based approaches, 2D polygons are given 
as input. Sederberg and Greenwood (1992) proposed a 
minimization method without user interaction. New 
vertices are added to the polygon that has less number of 
vertices. All possible paths are calculated but only the 
best path, the one that gives a minimum amount of work 
or less shrinkage, is selected. Gao and Sederberg (1998) 
improved the method to measure the amount of work as 
well as the way to find the least work path. Shapira and 
Rappoport (1995) embedded skeletons inside each 
polygon by decomposing the polygon into star-shaped 
pieces with a star origin inside each piece then they 
connected those star origins. For interpolation, skeletons 
are interpolated and star pieces are unfolded. 

 
 
Three-dimensional morphing 
 
Three- dimensional morphing algorithms transform a 3D 
model into another. The complexity of an algorithm 
depends on many factors, such as:  the object 
representation, genus, and convexity. The simplest 
morphing can be done when the initial and final shapes 
are convex and similar in their geometry and topology. 
Usually, 3D methods have restrictions on object models 
and how models are represented. Concave objects are 
more difficult to morph than convex ones. Objects with a 
different genus, e.g. with holes or with a closed surface 
are very complicated to transform. Without user 
intervention, it is not possible to get the desirable results. 
The existing solutions are categorized by object 
representations as follow (Sompagdee, 2009): 
 
(i) Polygonal-based representation: The objects are 
represented by their boundaries. This representation is 
commonly used and is easy to obtain. 
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(ii) Volumetric representation: The 3D models are 
described either by their geometric primitives or by 
volumes (volumetric data sets). A volumetric 
representation is ideal for modeling the behavior of 
objects with complex interior structures. In particular, this 
representation helps overcome the limitation on model 
types. 
 
 
CONTRIBUTION 
 
Our approach is focused on creating the series of 
intermediate objects, using spherical parameterization as 
a common domain of the source and target zero-genus 
objects. This parameterization domain is the natural 
domain to use, given when our object is a sphere, and as 
such- makes the mapping step easier.  

To create this series of intermediate objects, we start 
by parameterizing the source and target objects on the 
sphere. We use progressive meshes (Hoppe, 1996; Zhou 
et al., 2004) in combination with a local smoothing 
strategy (Shen and Makedon, 2006) to find the final 
spherical parameterization. Then we create the point-to-
point correspondence between the objects using the 
AABB tree search technique (CGAL, 2010). The 
spherical parameterization which we have used makes 
the mapping step easier since the objects are mapped to 
their natural parameterization domain. 
 
 
Initial spherical parameterization 
 
Parameterization of 3D mesh data is important in such 
applications as, texture mapping, remeshing and 
morphing. Closed manifold genus-0 meshes are 
topologically equivalent to a sphere; hence this is 
regarded as the natural parameterization domain for it. 
Parameterizing a triangle mesh onto a sphere means 
assigning a 3D position on the unit sphere to each of the 
mesh vertices, such that the spherical triangles induced 
by the mesh connectivity are not too distorted and do not 
overlap. Satisfying the non-overlapping requirement is 
the most difficult and critical component of this process. 
Moreover, it is usually an expensive optimization 
procedure for large meshes. Here, we describe the 
spherical parameterization algorithm we use, which is 
based on the algorithm proposed in (Praun and Hoppe, 
2003; Zhou et al., 2004; Shen and Makedon, 2006). The 
later algorithm incorporates a local parameterization 
scheme into the progressive mesh representation 
(Hoppe, 1996). This reduces the complexity of global 
optimization for large meshes.  

Given a triangle mesh , the problem of spherical 

parameterization is to form a continuous invertible map  

from the unit sphere to the mesh. That’s, . The 

map is specified by assigning for each mesh vertex  a 

parameterization  .   Therefore,   each   mesh  
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Figure 1. An edge collapse operation. (A) (Left) the edge  to be collapsed. (B) (Middle) The mesh after 

the edge contraction. (C) (Right) Parameterizing the deleted vertices using the created triangles. 

 
 
 
edge is mapped to a great circle arc, and each mesh 
triangle is mapped to a spherical triangle bounded by 
these arcs. The spherical parameterization algorithm 
consists of two major steps: 
 
(i) A progressive mesh representation, 

, with embedded local 
parameterization information is generated from the 

original mesh . This is performed by iterating the 
successive edge collapse operations until the current 

simplified mesh becomes a convex polyhedron . The 
obtained polyhedron is considered as the base mesh 

of . For each edge collapse, the two decimated vertices 
are parameterized over the resulting simplified mesh. The 

local parameterization information is recorded in . 

(ii) Suppose that the centroid of the base mesh is the 
center of the unit sphere. The projection of the vertices of 

onto the considered sphere produces an initial 
spherical mesh. Starting from this initial spherical mesh, 
the sequence of vertex split operations, the inverse of the 
edge collapse, in  is performed progressively. For each 
vertex split operation, the two split vertices are positioned 
on the unit sphere using the recorded connectivity and 
embedded parameterization information. 

The key point of the progressive mesh hierarchical 
structure is the choice of the order of the edges to be 
collapsed. Here, we use the selection strategy proposed 
by Garland and Heckbert (1997) to determine the edge 
collapse order and to position the newly created vertices. 
In the classical progressive mesh representation (Hoppe, 
1996; Zhou et al., 2004), the geometrical and topological 
information of each removed vertex are recorded in a 
vertex splitting operation during the decimation process. 
Thus the vertex can be completely recovered during 
progressive refinement process. However, this 
information is not suitable to reposition the recovered 
vertex on the unit sphere when the same vertex split 
sequence is performed on the corresponding spherical 
mesh. In what follows, we present how to reposition the 

recovered vertex according to the relative position with 
respect to its first order neighborhood in the original 
mesh. As shown in Figure 1 (left and middle), edge 

is collapsed and a new vertex  is created. Let 

be first order neighborhood of the vertex . Using 

the MAPS algorithm (Lee et al., 1998),  is 

flattened into a planar region . The vertices  and  

are embedded into  and find the triangles  and 

containing  and respectively. The barycentric 

coordinates ,  of the embedding of  and 

inside  and  respectively. Therefore,  and can 
be locally parameterized with respect to the containing 

triangles  and  using the barycentric 

coordinates . The local parameterization 
information of the two decimated vertices, together with 
all collapse information of the edge, is recorded in 
avertex split operation for later reconstruction on the 
sphere. The final form of the progressive hierarchy of the 

given mesh is , where is the 

convex base mesh and the  are the ordered split 

operations. That is . 
Starting from this base spherical mesh which is 

generated by projecting the convex base mesh  onto 
the unit sphere, the vertex split operations in 

 are performed progressively to 
simultaneously recover the original mesh and construct 

the spherical parameterization. Let be the recovered 

mesh after performing the ths vertex split operation,  

be its corresponding spherical mesh. The ths 
vertex split operation is then performed as follows. With 

the containing triangles  and barycentric 

coordinates of the two new vertices  and  

retrieved from ; two new vertices   and  are 

inserted into with the same connectivity as in  
and positioned on the unit sphere by: 
 

 



 
 
 
 

 
 

Figure 2. The local neighborhood  projected on the 2D 

plane. 

 
 
 

Where  and  are the triangles in  

corresponding to   and  respectively. 
 
 
Local spherical improvement 
 
The local spherical improvement uses iterations overthe 
vertices of the initial parameterization on the unit sphere 
(Shen and Makedon, 2006). At each vertex, it tries to 

reposition in the local neighborhood  to gradually 
improve the mapping quality. The triangles composing 

the local neighborhood  is piece-wise linear. 
Therefore it can be projected on the 2D plane while 
preserving the relative area of each spherical triangle. 
Given that the vertex to reposition, Figure 2 shows an 

example of the projection of  on a 2D plane. 

Supposing that , the signed area of the 
triangle can be computed by: 
 

 
 

Thus, replacing  with  and treating and as the 
only unknowns in the previous equation, we can 
formulate a system of linear equations using all the 

triangles in the spherical and solve it in the least 
squares sense to locate a new center vertex position. 
This new center position minimizes the square sum of the 

relative area differences between  on the object 

and   on the sphere . Note that only the center 
position is concerned here. This indicates that the  border  
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of spherical is fixed,and consequently that. the 

total area of the spherical cannot be changed. 

Therefore, each triangle in the spherical  aims to 
achieve not its correct absolute area but the correct area 

relative to the other triangles in . For example, 

Let  be the set of projected triangles depicted 

in Figure 2 and  be the corresponding 

triangles on the object. If we use  to denote the area 
of a triangle, the relative area of  can be given by: 

 

 =  

 
In order to preserve this relative area, on the 2D project 
should have an ideal area of, 
 

 
 

Where , is the total area of the 2D projection of the 

parameter submesh. To calculate the new location ) for 
the parameter submesh center on its 2D projection, the 
following system of linear equations is formulated: 
 

 
 

The new center location  is obtained by solving this 
linear system in a least squares sense. 
 
 
MESH MAPPING 
 
Now that we have the source and the target 3D objects 
parameterized on the sphere, the objective here is to find 
the point-to-point correspondence between the two 
parameterized objects. According to the number of points 
in the two objects, we have two kinds of mesh mapping: 
 
(i) M to M mapping:  The two input objects have the 
same number of points. We use the nearest neighbor 
algorithm (Manolis et al., 1997) to find the point to point 
correspondence. To avoid the case that multiple points 
are matched to a single point, we associate with each 
point an attribute, valued by true or false, to indicate 
whether that point is selected before or not.   
(ii) M to N mapping: The source and the target objects 
have not the same number of points. Without loss of 
generality, assume that the source object has more 
points than the target object. To overcome this inequality 
problem we subdivide the target object using the 
subdivision algorithm (Kobbelt, 2000)  such  that  the  two  
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Figure 3. (A) Left two images. The input triangular mesh of the Stanford Bunny (39 k points, 70 k triangles) and, its spherical 

parameterization, (B) Right two images. The target triangular mesh of the Gargoyle (100 k points and 200 k triangles) and its 
spherical parameterization. 

 
 
 
objects have an equal number of points. We fall again in 
the first kind-- M to M mapping. It can be seen that M to N 
mapping is more costly than M to M mapping, simply 
since we apply M to M mapping in addition to the 
subdivision step. 

M to N mapping has the disadvantage of being time 
consuming. We use an enhanced implementation of 
nearest neighbor searching called AABB tree (CGAL, 
2010). The AABB tree features a static data structure and 
algorithms to perform efficient intersection and distance 
queries against sets of finite 3D geometric objects. Using 
this static data structure, we build a tree with the vertices 
of the target object. We then use the tree to find for each 
point of the source object the corresponding nearest 
neighbor from the tree. 

 
 
RESULTS 

 
The methods described in the preceding sections have 
been implemented in C++ and using CGAL the 
Computational Geometry Algorithms Library (CGAL, 
2010). The experiments are carried out on a PC with a 
2.8 GHZ dual-core processor and 2GB of memory. The 
input objects are in the form of triangular meshes. Before 
constructing the spherical parameterization of our 
objects, we apply the following two preprocessing steps: 

 
(1) Normalize the input models to a cube of unityto get a 
smooth and a robust transition between the input and 
output objects. This normalization of each object is 
performed separately. For each object, the centroid of the 
object is translated to the origin of the coordinates. Then, 

calculate the distance, of the farthest point with respect 
to the origin. Finally, divide the coordinates of each point,

 
,  by      to   get   the   normalized   point 

 

 

 

 
 

Figure 4. The AABB tree for the 
set of the spherical triangles of 
the gargoyle. 

 
 
 

. 

 
(2) If the objects are not sufficiently sampled, apply 
surface subdivision to enhance the mapping between the 
input and output objects. 

Figure 3 shows the spherical parameterization of two 
triangular meshes the input object is the Stanford bunny 
and the target object is the Gargoyle. In our experiment, 
the parameterization time is 79 s for the Gargoyle (100 k 
points and 200 k triangles). Once the spherical 
parameterization is constructed for the input and target 
objects, we construct the AABB tree for the set of 
spherical triangles of the target object (the gargoyle, in 
our case) for the mapping step, as shown in Figure 4.  
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Figure 5. The sequence of morphing the stanford bunny to the gargoyle. 

 
 
 
Each point in the spherical parameterization of the Bunny 
is matched with the closest spherical point in the AABB 
tree. 

Once the matching step is performed, a linear 
interpolation is performed between the set of points of the 
Bunny and the corresponding points in the Gargoyle. This 
interpolation creates the set of frames to be visualized as 
the final morphing animation. Figure 5 shows the series 
of the frames that creates the morphing of Bunny-
Gargoyle. 
 
 
CONCLUSIONS 

 
In this paper, we propose a novel technique for 3D mesh 
morphing capable to interpolate between arbitrary zero-
genus objects. The technique can be presented as an 
animation by creating a series of intermediate objects 
using the spherical parameterization as a common 
domain of the source and target objects. We converted 
both objects into the same spherical domain with suitable 
modifications to reposition of the points on the sphere. 
This repositioning prevents the morphing from creating 
overlapping or clustering of points on the sphere during 
the mapping step.Then we carry out mesh mapping to 
realize the morphing process and this happened by using 
the point-to-point correspondence between the objects of 
the AABB tree search algorithm. The spherical 
parameterization which is used to make the mapping step 
easy since the objects are mapped to their natural 
parameterization domain. 
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