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This paper describes a class of exact solutions of the equations of motion for an unsteady, 
incompressible non-Newtonian second grade fluid in the Cartesian co-ordinates. The exact solutions of 
non-linear equations governing the flow of second grade fluids are obtained through generalized 
separation variables method by assuming certain form of stream functions. The expressions for velocity 
profile and vorticity stream function are constructed. 
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INTRODUCTION  
  
The nature of Navier-Stocks equations is nonlinear, so it 
is very complicated to find the exact solutions except a 
few particular cases available in literature. This is, in 
general, due to the non-linearites, which occur in the 
inertial part. The exact solutions of the equations of 
motion have some physical meaning and it can be used 
as a check against complicated numerical codes that 
have been developed for much more complex flows. By 
taking vorticity to be proportional to the stream functions 
perturbed by a uniform stream, Taylor (1923) investigated 
that the non-linear convective term vanished and found 
an exact solution by representing doubly infinite array of 
vertices. Kovasnay (1948) showed that the non-linarites 
in the Navier-Stokes equations are self-canceling and 
found an exact solution which represents the motion 
behind a two dimensional grid. Wang (1996) was also 
able to linearize the non-linear part of Navier-Stocks 
equations and showed the results of Taylor (1923) and 
Kovasznay (1948) as special case in his work. Similar 
results were obtained by Lin and Tobak (1986) and Hui 
(1987) in which the non-linear inertial part canceled 
automatically. 

Turning to the non-linearity in non-Newtonian fluids, 
namely fluids of second grade, these problems become 
even difficult to solve because the non-linarites not only 
occur in the inertial part but  also  in  the  viscous  part  of  
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these equations. For this reason, inverse methods become 
attractive in the study of non-Newtonian second grade 
fluids. Rajagopal (1980) investigated that, in the 
equations of motion of a second grade fluids, the non-
linear convective term vanish for the specific problems. 
Rajagopal and Gupta (1981) also found a class of exact 
solutions to the equations of motion of second grade 
fluids in which the non-linearities are self-canceling and 
showed a subclass of the solutions obtained by Wang 
(1996) for the Navier-Stokes equations. Kaloni and 
Huschlit (1984), Siddiqui and Kaloni (1984) and Siddiqui 
(1986) found solutions for second grade fluids for steady 
case by considering certain forms of stream functions. 
Ting (1963) and Rajagopal (1982) obtained solutions for 
unsteady flows. Detail discussions on the exact solutions 
of the Navier-Stocks equations and equations of motion 
for the non-Newtonian fluids are given by Hamdan 
(1998), Siddiqui et al. (2006), Kamel and Hamdan (2006), 
Labropulu (2000) and Islam et al. (2008). 

Different types of solutions are in general described in 
the form of finite sums, (Polyanin, 2001; Polyanin et al., 
2004). In present paper we extended the work of 
Polyanin (2001) and Polyanin et al. (2004) by using the 
separation of variables method for an incompressible, 
second grade fluid.  
 
 

GOVERNING EQUATIONS 
 

The constitutive equation of an incompressible fluid of 
second grade is of the form (Rivlin and Ericksen, 1979) 
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pI µ α α= − + + +T A A A

                   (1)
                                         

 
 

where T is the Cauchy stress tensor, p denotes the 

pressure, I  is the identity tensor, 
21, ααµ and are 

measurable material constants. They denote, 
respectively, the viscosity, elasticity and cross-viscosity. 
These material constants can be determined from 

viscometric flows of any real fluid. 
21 AA and  are Rivlin-

Ericksen tensors (Rivlin and Ericksen, 1979) and they 
denote, respectively, the rate of strain and acceleration. 

Where 
21 AA and  are defined as 

   

 
1 ( ) ( ) (2)

T
grad grad= +A v v

                               (2)     
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( ) ( ) (3)

Td
grad grad
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= + +

A
A A v v A

   (3) 
 

Here v is the velocity, ∇ is the grade operator and 
d

dt
 

the material time derivative.  
The basic equations governing the motion of an 

incompressible fluid are 
 

 0, (4)div =v
                                                                  (4)                         

                                    
  d

div
dt

ρ ρχ= +
v

T
                                                 (5)

               

where ρ
 
is the density and  χ  the body force. 

Inserting (1) in (5) and making use of (2) and (3) we 
obtain the following vector equation 
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in which 
2∇  is the Laplacian operator, ,/ tV

t
∂∂=v and 

|
1A | is the usual norm of matrix 

1A . 

If this model is required to be compatible with 
thermodynamics, then the material constants must meet 
the restrictions (Dunn and Fosdick, 1974; Fosdick and 
Rajagopal, 1979) 
 
 

1 1 2
0, 0, 0. (7)µ α α α≥ ≥ + =                       (7) 

 
 
 
   
On the other hand, experimental results of tested fluids of 

second-grade showed that 
1 0α <  and  021 ≠+ αα  

which contradicts the aforementioned conditions and 
implies that they are unstable. This controversy is 
discussed in detail in Rajagopal (1995). However, in this 

paper we will discuss only the case, where
1 0α > . 

Let us consider the motion of an unsteady 
incompressible second grade fluid in which the velocity 
field is of the form 

 
 [ ]1 2( , , , ) ( , , , ) , ( , , , ) , 0 , (8)x y z t u x y z t u x y z t=v

      (8)   
  

     

where 
21 uandu  are the velocity components in the x 

and y-directions, respectively. Putting Equation (8) in (4) 
and (6) and making use of the assumption (7) we obtain, 
in the absence of body forces, the following equations 
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On setting 
1

0α =  in (10) and (11) and considering only 

steady case we recover the equation for Newtonian fluid 
(Berker, 1963). Eliminating pressure in (10) and (11), by 

applying the integribility condition 

2 2ˆ ˆp p

x y y x

∂ ∂
=

∂ ∂ ∂ ∂
we get 

the vorticity equation 
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Introducing the stream function 
 

1 2
, , (16)u u

y x

ψ ψ∂ ∂
= = −

∂ ∂                             (16)

                                   
We see that the continuity Equation (9) is satisfied 
identically and (13) in (12) yields. The following 
compatibility equation in terms of stream function 
 
 

2 2 4 2

1 1{ , } { , } (17)
t t

ρ ψ ψ ψ µ α ψ α ψ ψ
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∇ − ∇ = + ∇ − ∇  ∂ ∂    (17)

               

in which

 

4 2 2
.∇ = ∇ ∇  and the vorticity vector and 

poison bracket in terms of stream function are 
respectively given by 
 

2
,ω ψ= −∇                                                    (18) 
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On defining 
µ

υ
ρ

= and 1
α

α
ρ

=
,

Equation (17) can be 

written as: 
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t t
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EXACT SOLUTIONS WITH GENERALIZED 
SEPARATION OF VARIABLES METHOD 
 
The exact solutions of the second-grade flow equation in 
terms of stream function are obtained by generalized 
(incomplete) separation of variables method. Different 
types of solutions are in general described in the form of 
finite sums, as (Polyanin, 2001; Polyanin et al., 2004) 
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Here the unknown functions 
k

f  and 
k

g are arbitrary 

which should be chosen in such a way that they satisfy 
Equation (18). We specializes these functions by 
prescribing one set of the functions depending on 

coordinate [for example, )(xf
k

 ] in the following simple 

forms: 
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and their linear combinations in order to find exact 

solutions  to Equation (18). Here ,
k k

λ α and 

( 1 , 2 , 3 ,....., )
k

k nβ =  are arbitrary 

parameters. The other set of functions 
k

g is determined 

by solving corresponding nonlinear equations. 
 
 

Steady-state solutions 
 

Here the possible exact solutions of non-linear equations 
governing the flow of second grade fluids are obtained 
through generalized separation variables method by 
assuming certain form of stream functions. The ex-
pressions for velocity profile and vorticity stream function 
are constructed in the following cases. 
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where are constants of integration and  are 

arbitrary parameters. Figure 1 shows the behavior of the 
aforementioned stream function.  
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Figure 1. The streamline flow for A = B = C = 1, λ 

= υ = 1, and α = 0.5. 
 

 
 

 
 

Figure 2. The streamline flow for A = B = 2, C = 1,  λ = 

β  = 1, υ = 2, α = 0.5.  
 
 
 

 
 

Figure 3. The streamline flow for A = B = C = 1, β = λ = 

υ = 1, α = 0.3. 

 
 
 
 

 

 
 

Figure 4. The streamline flow for A = B = C 

= 1,λ = 2, υ = 0.5, α = 0.3. 
 
 
 

Here are constants of integration and  

represents arbitrary parameters. The behavior of the 
aforementioned stream function is presented in Figure 2. 
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where are constants of integration and 

 are arbitrary parameters. Figure 3 shows the 

behavior of the aforementioned stream function. 
 
 

Case (4) 
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where are constants of integration and  are 

arbitrary parameters. Figure 4 shows the behavior of the 
aforementioned stream function.

 



 
 
 
 

 
 

Figure 5. The streamline flow for A =1, B = 2, C 

= 1, λ = υ = 1,  α = 0.5.
 

 
 
 

 
 

Figure 6. The streamline flow for A =B = C=λ = υ =1 and 

α = 0.5. 

 
 
 
Case (5) 
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where are constants of integration and  are 

arbitrary parameters. Figure 5 shows the behavior of the 
aforementioned stream function.
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Case (6) 
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where are constants of integration and  are 

arbitrary parameters. Figure 6 shows the behavior of the 
aforementioned stream function.  
 
 
Case (7) 
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where are constants of integration and  are 

arbitrary parameters. Figure 7 shows the behavior of the 
aforementioned stream function. 
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3 2

1 2 3 4
( ) ,y C y C y C y Cψ = + + +  

2

1 1 2 3 2 1 23 2 , 0 , 6 2 ,u C y C y C u C y Cω= + + = = − −

 
 
Case (9) 
 

2 2

1 2 3 4 5

1 3 4

2 1 2

1 3

( , ) ,

2 ,

2 ,

2( ) ,

x y C x C x C y C y C

u C y C

u C x C

C C

ψ

ω

= + + + +

= +

= − −

= − +
 

 

where  are constants of integration. 

Figure 9 shows the behavior of the aforementioned 

stream function.          
 
 
Case (10) 
 
 

2

1 2 3 4 2

1 1 2 3

2

2 1 2

( , ) ; ,
1

2 ,

, 2 ,

y

y

y

x y C e C y C y ax C a

u C e C y C

u a C e C

λ

λ

λ

υλ
ψ

αλ

λ

ω λ

−

−

−

= + + + + =
−

= − + +

= − = − −  



5606          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 7. The streamline flow for A = B = C 

= λ = υ = 1, α = 0.5.
 

   
 
 

 
 
Figure 9. The streamline flow for the constant C1= C3 = C3 = C4 
= 1. 

 
 
 

 
 
Figure 10. The streamline flow for the C1= C3 = C3 =2, C4 

=1, λ = υ = 1, α = 0.5. 

 
 
 
 

where  are constants of integration 

and  are arbitrary parameters. Figure 10 shows the 

behavior of the aforementioned stream function. 
 
 
Case (11) 
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where are constants of integration and  

is arbitrary parameters. Figure 11 shows the behavior of 
the aforementioned stream function. 
 
 
Case (12) 
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where are constants of integration and 

 are arbitrary parameters. Figure 12 shows the 

behavior of the aforementioned stream function.  
 
 
Case (13) 
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where are constants of integration and 

 are arbitrary parameters. Figure 13 shows 

the behavior of the aforementioned stream function. 
 
 
Conclusion 
 
All the solutions were reduced to viscous solutions given 
in Polyanin (2001) and Polyanin et al. (2004). 

( ),x yψ  is a solution of the Equation (20), then 

( , )x yψ− ,           
1 2 1 3 4

( , )C x C C y C Cψ + + +
         

 and 



 
 
 
 

 
              
Figure 11. The streamline flow for A = B = C =2, D =1, and 

λ = κ = 1. 
 
 
 

 
 
Figure 12. The streamline flow for A = B = C = D =1, k 

=λ = υ  = 1.
 

 
 

 

  

Figure 13. The streamline flow for A = B = C =1, k =υ =λ = b = 

1, γ = β = 2 and α = 0.5. 
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( cos sin , sin cos )x y x yψ β β β β+ − +
 

are 

also solutions of the equation. 
For the creeping flow case 

in the solutions (1 to 7), (11) and (12) 
a

υ

αλ
= −

and in 

(13) 
a

υ

αγ
= −

,
b

υ

λγ
= −

.
 

In this paper, the exact solutions of non-linear equation 
governing the flow of second grade fluid in the steady 
case are obtained through generalized separation of 
variables method by assuming certain form of the stream 
functions. The expressions for the stream line, velocity 
and vorticity distributions are constructed in each case. 
The physical interpretations of the results are given with 
the help of several graphs. Figures 1 to 13 for the stream 
functions are plotted for different values of the integration 

constants  and for arbitrary parameters 

 respectively. Our results are strongly 

depends on the non-Newtonian parameter . It is 

obtained that increase in  leads to decrease in vorticity 

and vice versa. 
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