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The aspects of heavy-particle diffusion in the tropical estuary is investigated. The two dimensional 
advection-diffusion equations with tidal and settling velocity were solved with steady state 
approximation. An analytic solution was obtained in term of Cosines Integral function. The results 
showed that the profile of concentration follow a tidal cycle with the concentration decrease when the 
tidal speed is low and increase as the tidal speed is up. On the other hand, at the low speed of tidal 
current, the pollutants will likely to stay in place. 
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INTRODUCTION 
 
Most coastal areas around the world are characterized by 
the presence of estuaries and embayment in which the 
water is predominantly driven by tides. The tide, 
especially tidal current is an important factor in dispersion 
processes of the passive scalar (pollutant) in the estuary. 
In general, ocean currents generated by tidal motion do 
not have a significant influence in the current circulation 
off the coast. In the area near the coast a tidal current 
has a significant effect even though we only discuss 
behavior to pollutants dispersion in the steady state 
condition. In the area near the coastline or estuary, the 
tidal current strengthened due to the shoaling effect. This 
flows generate the mixing processes and stratification in 
shallow waters which is closely related to the dispersion 
of pollutants. In short, the tide current is very important to 
support the pollutant  dispersion  in  the  estuary  and  the  

shallow coast. 
A shallow tidal coast in which the ocean dynamics were 

dominated by tide is one of the most complex coastal 
seas. For example, the tidal current can generate the 
high level turbidity (Hoitink, 2003). The asymmetry of tidal 
currents is also a very important factor in the transport 
and accumulation of sediments (Hoitink, 2003; Wolanski 
et al., 1996). The works show that asymmetry in the flow 
acceleration will increase the rate of suspended load 
transport for fine sediments. The observation indicates 
that tide-dominated estuaries usually characterized by a 
convergent shape. 

The complex processes of transport of pollutants in 
coastal areas is not only determined by a tidal 
hydrodynamics, but also by the variable propensity of 
many such contaminants (Eric et al., 2013). The example 
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of this problem is that we are dealing with heavy-particle 
pollutants such as a heavy metal (Cd, Cu, Hg, Pb, Zn). 
The heavy metal measurement performed on the Scheldt 
River basin show that a longitudinally dissolved Cd and 
Cu has a convex shape instead Gaussian as most 
pollutants with fine particle (Gao et al., 2013). The studies 
suggest there are three things that need attention in the 
study of heavy metal dispersion. They are, 
inhomogeneity of point source for different metals, 
difficulty in quantifying diffusive input and complication of 
the biogeochemical behavior. Some effort to understand 
the process is done by using mathematical models such 
as 1D dispersion model, WASP water quality model, 
Environmental Fluid Dynamics Code (EFDC), SiAM-3D 
etc (Eric et al., 2013; De Smedt et al., 2006, Lu et al., 
2014; Thouvenin et al., 2007). 

In line with numerical model, the analytical model is 
also worth studying due to the simple nature. The 
advantage of an analytical model is simplicity so that the 
solution can be easily applied to field observations. The 
model usually only consider the importance or dominant 
factor in the phenomena such as estuaries dominated by 
dispersion, dominated by advection, or having dispersion 
and advection of similar magnitude (Fernando et al., 
2012; Savenije 2005). For example the analytic solution 
of a simple depth-averaged 1D model has been used to 
investigate the sediments transport measurement with 
only consideration of the advection due to tidal motion, 
local resuspensions and deposition (Yu et al., 2012). 

The paper investigates the analytical modeling of the 
heavy-metal dispersion in an estuary. In this proposed 
model, the heavy metal is considered as heavy-particles 
where its gravitational effect significant enough and this 
must be taken into account in the model. This effect will 
be accommodated by the settling velocity ws. The settling 
velocity is the velocity at which pollutant falls through 
water and it is controlled by both the drag force and the 
gravitational force. The combined effect of gravitation and 
the tidal current is challenging to model in analytical 
ways. Although the analytic model can only be done in 
the simple case, it is still important because the physical 
interpretation is easy to be obtained. In this paper we will 
investigate how heavy-particle pollutants disperse in the 
estuaries by solving an advection-diffusion equation 
including settling velocity and tidal currents. The steady 
state of two dimensions of an advection-diffusion 
equation is solved by using the separation variable 
methods. The analytic solution with periodic advection 
velocity and polynomial diffusion coefficient were 
obtained in term of Cos Integral function. 

The paper is organized as follows: First is a description 
of heavy-particle pollutant dispersion followed by that of 
the analytic solution based on the separation variable. 
The advection processes due to tidal dynamics were next 
derived; thereafter, the simulation result of pollutant 
dispersion due to variation of horizontal and vertical 
coefficient were presented respectively,  followed  by  the  
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concluding remarks. 
 
 
PROPOSED MODEL 
 
Pollutant dispersal around the estuaries will depend on two factors, 
that is, advection processes due to hydrodynamics motion and 
diffusion factors due to turbulence motion. By assuming advection 
velocity flow faster than pollutant dispersion, pollutant dispersion 
can be viewed as a steady state. Therefore, the steady state of an 
advection-diffusion equation describing dispersion of heavy-particle 
in the estuary can be written as, 
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where Kx and Kz are diffusion coefficients in zonal and vertical 
direction respectively, U is the zonal velocity and ws are the particle 
settling velocity. The settling velocity is the key factor to study the 
suspended load transport where the response of the sediment is 
characterized by H/ws with H denoting the water depth. It is well 
known that increasing of flow rate can entrain the sediments near 
the bed and then moves vertically upward until a steady state is 
reached (Hoitink, 2003). Previous studies show that most of the 
solution to be found are for special cases of this equation (James, 
2002; Stockie, 2012). The boundary value problem is depicted in 
Figure 1. In this paper a special case will be used to get an analytic 
solution. The boundary and initial condition for C(x, z) are written 
as, 
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For simplicity, first it was assumed that diffusion coefficients are 
constant, say K. It is not difficult to show that generalization can be 
inferred from the solution, if the diffusion coefficients are not 
constant. Further, let us assume that the depth of estuary is 
constant. This approximation is useful for the alluvial estuaries. 

In the coastal ocean, there is a disparity between horizontal and 
vertical scales. It means that the horizontal and vertical diffusion are 
usually considered separately and have very different values 
(James, 2002). It can be inferred that, an assumption that the 
separation variable is a solution can be made. By using the 
approximation, suppose the solution has the form of, 
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we have, 
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Multiplying by 1/(ϕψ) yields, 
  

 
              
 

  0
11




































dx

d

dx

d

dz

d
w

dx

d

dx

d

dx

d
xU xsx














   (5) 



42         Int. J. Phys. Sci. 
 
 
 

 
 

Figure 1. The boundary problem of heavy-particle dispersion in estuary. The horizontal 
axis is represented the distance from offshore to the river mouth. 

 
 
 
The equation can be written in two ordinary differential equations as 
follow, 
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Next we solve the second equations with wrote back into, 
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In the first step, it must be shown that the differential equation is 
exact. The equation is exact if we choose m = 0. This means that 
the equation should be solved,  
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An exact linear second-order ordinary differential equation (ODE) 
can be solved by reduction to a linear first-order ODE (Kreyzig, 
1993). This equation can be integrated if the dispersion coefficient 
is prescribed. For the most case in the estuary, the vertical motion 
is dominated by mixing processes due to the meeting of fresh water 
from a river and salts water from the off-shore. The mixing also 
caused by the breaking of internal waves due to shoaling effect 
when the wave propagates into the coastline. The physical 
mechanism of the processes is called the Kelvin-Helmholtz 
instability where the detail study is out of this paper (Smyth and 
Moum, 2012; Thorpe, 2007). The mixing experiment in the estuary 
has been done to get the vertical dispersion coefficient (Thorpe, 
2007). The result shows that in the most case the vertical 
dispersion coefficient has the power series form or logarithms 
profile especially for close to the seabed. Following this result, it 

was assumed that the vertical dispersion has the form of K(z) = azb 
with the solution being, 
  

 
              
 

 
 




 d
ba

wab
z b

s

b

 















12

2
exp

21

0

                              (9) 
 
This is obtained by using DSolve Mathematica Package. 

Further, the equation for ϕ(x) should read, 
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This is not an exact differential equation as such cannot be reduced 
to the first order differential equation. That equation can be written 
in the form of the following, 
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There is no general solution of this equation that must take special 
form of Kx(x) and U(x). To the pollutant dispersion in an estuary, the 
dispersion coefficient generally can be approached by the form of a 
polynomial function which is Kx(x) = pxq with p and q are constant. 
In the alluvial estuaries the longitudinal dispersion usually has the 
form of exponential (Vallino and Hopkinson, 1998). Interest in the 
dynamics of pollutants due to tidal current will result in the flow 
taking the form of function U(x) = An cos(nπx). The general solution 
is given by, 
 

         

      



dqininq

ininqininq
p

A
x

qq

x
qqqq

lnexp,1

,1,1
2

exp

11

1111

0






















  (12) 

 
where Г(ζ) is a Gamma function. For example in the case of Kx(x) = 
px the solution is, 
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where Ci(ζ)=γ+ln(ζ)+∫0

ζ (cos(η)-1)/ηdη is a special function called 
Cos-Integral and γ = 0.5772156 is Euler’s constant. Now the 
complete solution is given by, 
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with the boundary condition given by Equation 4. 
 
 
ADVECTION PROCESSES BY TIDAL CURRENT 
 
An equation of motion that describes the dynamics of tidal elevation 
and tidal current is the shallow waters equation. This research is 
only interested in the movement of the dynamics of the zonal 
direction that is dominant in the estuaries and near the coast, the 
dynamics of tidal elevation and current satisfy, 
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with η and U are long wave elevation and particle velocity 
respectively. H is the water depth. For the nonlinear term is not 
dominant, the perturbation methods can be applied. In this 
approximation, the tidal elevation η and velocity U were described 
as, 
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where ε= H/L is a small parameter and L, the zonal length scale. 
Note that in shallow water approximation H ≪ L was used. The 
physical meaning is that the higher order has the small influence of 
the smaller order; in otherwords the higher order act as a correction 
of the lower order. Substituting Equations 17 and 18 into Equations 
15 and 16 yields, 
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The first orders have the solution, 
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Where O is the term of third order and higher, An and Bn are the 
wave amplitude respectively. 
 
The dispersion relations must be fulfilled is, 
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where c = √gH is called linear tidal speed. Hence the tidal current 
was obtained by completing Equation 19 and 20 as follow,  
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Further, the second order can be written as, 
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This is the inhomogeneous wave equation where the solution is 
given by (Officer, 1978), 
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With the same manner, we obtain U(2) as, 
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This is a simple form of tidal elevation and current. In the simulation 
we use steady state tidal current as follow, 
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where this current can be obtained from a tidal measurement by 
applying the dispersion relation Equation 22. 

 
  
RESULTS AND DISCUSSION 
 
Here an example is given of a simulation model that was 
previously developed. The study areas to be learnt 
includes Tanjung Butung and Sumatra Indonesia. The 
estuaria is characterized by a micro tidal and gently 
sloping bathymetry. The time series of tidal elevation of 
this region is depicted in Figure 2. The first step in 
calculating pollutant dispersion, is to specify the tidal 
decomposition. Tidal phenomenon and the dynamics of 
sea associated with it in this region and the Indonesian 
water are very complex as the result of numerous strait, 
the complex topography as well as many small islands. 
Diurnal tides are unusually strong and are dominant 
along some coastlines (Ray et al., 2005; Gordon 2005; 
Wyrtki, 1961). From the figure, it can be seen that the 
tidal type is the mixed predominantly diurnal form. The
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Figure 2. Tidal elevation from Tandjung Butung, Sumatra with time interval in hours 
and elevation in meters. This is a tidal prediction with time period March, 18 2015 to 
May, 18 2015 

 
 
 

 
 

Figure 3. Power spectrum of tidal elevation and calculation of tidal current 
based on Equation 31. 

 
 
 
tidal composition can be obtained by applying the Fourier 
transform respect to time series data. This is depicted in 
Figure 3. The tidal compositions from high to low energy 
are 22.98, 24.65, 11.78 and 11.50 h respectively. 
Substituting these periods into Equation 23 with x = 0 
yields the tidal currents that is depicted in Figure 3. The 
advection velocity U(x) is obtained by substitution of tidal 
frequencies into the dispersion relation (Equation 22). 
With this relation, the wavelengths associated with its 
periods are 324.98, 348.61, 166.59 and 162.63 m, 
respectively.  The  tidal   elevation   associated   with   the  

wavelength is given by, 
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 (28) 

 
where we used the cosines function. Then the tidal 
current then can be obtained by substituting into Equation 
27. Finally, the tidal current decomposition into its 
component is depicted in Figure 4. The settling velocity 
0.2 to 0.5 ms

-1
 was used.  

The next step is determining the diffusion coefficient for  
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Figure 4.Tidal current decomposition for one tidal period. 

 
 
 
both longitudinal (Kx(x)) and vertical one [Kz(z)]. Most 
researchers have used oceanographic parameters such 
as salinity and temperature distributions, dye release 
studies, and parameter estimation techniques to 
determine the longitudinal (or tidal) dispersion coefficient. 
They show that the estimated dispersion coefficient has a 
polynomial form and varies from 3.6 to 670 m

2
s

−1
. The 

dispersion coefficient is larger to the offshore. This result 
is also confirmed in the study of Christensen and Li 
(2014). Generally, the studies show that for oceans and 
lakes, the horizontal dispersion coefficient (Eddy 
diffusivities) κx and κy are in the range of 10

4
 to 10

8 
cm

2
s

-

1
, and the vertical diffusivity κz is between 10

1 
to 10

3 
cm

2
s

-

1
 (Christensen and Li, 2014). In this paper, many cases of 

the form of longitudinal and vertical dispersion 
coefficients have been described. 

In the first case, the constant form of longitudinal 
dispersion coefficient namely Kx(x) = p was chosen. The 
vertical dispersion coefficient is chosen in the form of Kz = 
κ. The solution is given by, 
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By using the Taylor expansion of this yields, 
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The result is depicted in Figures 5 and 6. This is the 
pollutant concentration at the depth of 5 m at one tidal 
circle with the tidal wavelength about 350 m. Generally, 
the pattern of pollutant concentration is similar to the tidal 
current where the  high  concentration  increases  at  high 

tide and low tide. A variation of the concentration 
occurred at the time ahead of high tide. The 
concentration profile showed that in general, the 
concentration will decline with the depth. The varying 
concentration occurred in the surface until 20 m depth. 
This means that the upper part of estuaries is act as the 
net of pollutant traps. 

The second case, we choose the linear function for the 
form of longitudinal dispersion coefficient namely Kx(x) = 
px. The vertical dispersion coefficient is chosen in the 
form of Kz = κ. The solution until second order accuracy is 
given by, 
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The result is depicted in Figure 7. The figure showed the 
pollutant diffusion in a tidal circle at five meters in depth. 
The profile of concentration in general is still follow a tidal 
cycle. The concentration decrease when the tidal speed 
is low and increase as the tidal speed up. The pollutant 
diffusion in the water body is depicted in Figure 8. The 
figure showed that the concentration of going down to the 
depth with a pattern follow a tidal cycle. At the time of low 
tide phase, pollutants will likely to stay in place. 

In the other case, it is assumed that there was a 
nonlinear form of the longitudinal dispersion and linear for 
the vertical dispersion coefficient, that is, K(x) = px

2 
and 

K(z) = κz. Then the solution until second order accuracy 
is given by, 
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Figure 5. The normalized pollutant concentration (C/ C0) in one tidal circle at z = −5 m for the constant 
horizontal coefficient. 

 
 
 

 
 

Figure 6. The two dimensional dispersion of normalized pollutant concentration (C/C0) in one tidal circle 
with the horizontal dispersion coefficient is a constant. 

 
 
 
where Si is the sinus integral function given by Si(ζ) = 
∫0

ζ
sin(τ)/τ dτ. The pollutant concentration at the depth of 5 

m is depicted in Figures 9  and  10  for  diffusion  in  water 

body. Again, the profile of pollutant concentration have 
similar pattern with tidal circle. The concentration 
decreases when it is  far  from  the  source  especially  for
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Figure 7. The normalized pollutant concentration (C/ C0) in one tidal circle at z = −5 m with the 
linear horizontal coefficient. 

 
 
 

 
 

Figure 8.The two dimensional dispersion of normalized pollutant concentration (C/ C0) in one tidal 
circle with the linear horizontal dispersion coefficient. 

 
 
 
linear and nonlinear diffusion coefficient. 
 
 
Conclusion 
 
An analytical model of heavy-metal dispersion induced 
tidal current has been investigated. By applying 
separation  variable  methods  the  analytic  solution  was 

obtained. The explicit solutions can only be obtained by 
selecting particular form of the horizontal coefficients 
dispersion. In the case of dispersion coefficient, the linear 
and quadratic solution is given in the Cos Integral and Sin 
Integral function. This research studied the diffusion of 
pollutants in a tidal circle. The profile of concentration in 
general follows a tidal cycle with the concentration 
decrease when the tidal speed is low and increase as the  
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Figure 9. The normalized pollutant concentration (C/ C0) in one tidal circle at z = −5 m for the nonlinear 
horizontal coefficient. 

 
 
 

 
 

Figure 10.The two dimensional dispersion of normalized pollutant concentration (C/ C0) in one tidal 
circle with the nonlinear horizontal dispersion coefficient. 

 
 
 
tidal speed up. All cases show that at the low speed of 
tidal current, the pollutants will likely stay in place. The 
expansion of the model is necessary for the case to be 
more realistically indispensable as taking into account the 
effects of the geometry of estuary. Previous studies show 
that the geometry is one of the most important 
parameters in the analytical estuary model (Tseng, 2002; 
Nguyen et al., 2012). On  the  other  hand,  the  analytical 

model of the pollutant transport due to the residual 
currents produced by mixing of fresh water and salt water 
is also interesting and this work is still in progress. 
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