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An analytic study on the two generalized forms of the nonlinear heat conduction equations is presented 
in this paper. The modified Kudryashov method is employed to construct exact solitary wave solutions 
of these equations. The results reveal that the modified Kudryashov method is a powerful mathematical 
tool to solve nonlinear partial differential equations (NPDEs) in terms of accuracy and efficiency. 
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INTRODUCTION 
 
“The most incomprehensible thing about the world is that 
it is at all comprehensible” (Albert Einstein), but the 
question is how do we fully understand incomprehensible 
things? Nonlinear science provides some clues in this 
regard. 

The world around us is inherently nonlinear. For 
instance, nonlinear evolution equations (NLEEs) are 
widely used as models to describe complex physical 
phenomena in various fields of sciences, especially in 
fluid mechanics, solid state physics, plasma physics, 
plasma waves, and biology. One of the basic physical 
problems for these models is to obtain their travelling 
wave solutions. In particular, various methods have been 
utilized to explore different kinds of solutions of physical 
models described by nonlinear partial differential 
equations (PDEs). In the numerical methods, stability and 
convergence should be considered, so as to avoid 
divergent or inappropriate results (Noor et al., 2011). 
However, in recent years, a variety of effective analytical 
and semi-analytical methods have been developed 
considerably to be used for solving nonlinear PDEs, such 
as the variational iteration method (VIM) (He et al., 2010; 
Jafari and Alipour, 2010), the homotopy perturbation 
method (HPM) (He, 2006; Biazar et al., 2011; Alam et al., 
2011), the homotopy analysis method (HAM) (Mohyud-
Din et al., 2011), the differential transform method (DTM) 
(Biazar and Eslami, 2011), the tanh-method (Malfliet and 
Hereman, 1996a, b;  Fan,  2002;  Wazwaz,  2005,  2008), 
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the homogeneous balance method (Fan and Zhang, 
1998), the Exp-function method (He and Wu, 2006; 
Kudryashov and Loginova, 2009; Kudryashov, 2009; 
Borhanifar and Kabir, 2009, 2010; Borhanifar et al., 2009; 
Kabir and Khajeh, 2009), the (G'/G)-expansion method 
(Abazari, 2010a, b; Neirameh et al., 2010; Kabir et al., 
2011a), and others. 

The generalized forms of the nonlinear heat conduction 
equation can be given as 
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and, in (2 + 1)-dimensional space, 
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Many authors have studied some types of solutions of 
these equations. Wazwaz (2005) used the tanh-method 
to find exact solitary solutions of these equations and a 
standard form of the nonlinear heat conduction equation 

(when 3=n  in Equation (1)). Also, Fan (2002) applied 

the solutions of Riccati equation in the tanh-method to 

obtain the travelling wave solution when ( 2=n ) in 

Equation (1). Lately, Kabir et al. (2009) implemented the 
Exp-function method to find exact solutions of Equation 
(1), and obtained more general solutions in comparison 
with Wazwaz’s results. In another study, Kudryashov and 
Chmykhov (2007) obtained approximate solutions to one-
dimensional nonlinear heat conduction problems with the 
heat flux at the origin  specified  in  the  form  of  a  power 
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time dependence. 

In this study, we use the modified Kudryashov method 
(Kabir et al., 2011b; Yusufoglu and Bekir, 2008; Demiray, 
2004) to obtain the exact solitary wave solutions of 
Equations (1) and (2). The aim of this method is the 
modification of the approach by Kudryashov (1988); 
therefore it can be entitled - The modified Kudryashov 
method (Kudryashov, 2009; Kabir et al., 2011b). 
 
 
THE MODIFIED KUDRYASHOV METHOD 
 
We first consider a general form of nonlinear equation 
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By using the wave transformation 
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where k and c are constants to be determined later. Then 
the nonlinear partial differential equation (3) is reduced to 
a nonlinear ordinary differential equation (ODE) 
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Here, we shall seek a rational function type of solution for 

a given partial differential equation, in terms of )exp(η , 

of the following form 
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where 
m

aaa ,,, 10 K  are some constants to be 

determined from the solution of (5). 
Differentiating (6) with respect to η , introducing the 

result into Equation (5), and setting the coefficients of the 

same power of 
η

e  equal to zero, we obtain algebraic 

equations. The rational function solution of the equation 

(3) can be solved by obtaining 
m

aaa ,,, 10 K from this 

system (Kudryashov, 1988, 2009; Kabir et al., 2011b). 
 
 
A GENERALIZED FORM OF THE NONLINEAR HEAT 
CONDUCTION EQUATION 
 
By introducing a complex variable η  defined as Equation 

(4), then Equation (2) becomes an ordinary differential 
equation (ODE), which can be written as 
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or, equivalently, 
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To get a closed-form analytic solution, we use the 
transformation (Kabir and Khajeh, 2009) 
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which will convert Equation (8) into 
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By using the rational function in )exp(η , we may choose 

the solution of (10) in the form 
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where 10 , aa  are some constants to be determined from 

the solution of (10). Differentiating (11) with respect to η  

introducing the result into Equation (10), and setting the 

coefficients of the same power of 
ηe equal to zero, we 

obtain these algebraic equations: 
 

[ ]4
)exp(η  coefficient:  

 

,022 3

0

23

0

3

0

2

0

2

0

2

0

2 =−+−−+ annaanaaan  

 

[ ]3
)exp(η  coefficient: 

 

 
,0464228

844433

2

0

2

1

2

0

2

010

2

1010

23

01

2

0

2

0

3

0

3

0

2

1

2

01010

22

1

2

01

2

0

2

=+++++−+−

−−−+−+−−

ananaaaanaaanaaknaakcna

naaanakcaanaaanakaaaan
 

 

[ ]2
)exp(η  coefficient: 

 

,06123

622623

92912618

212666

2

010

2

1

22

10

2

3

0

2

10

2

01

2

10

2

01

2

10

2

01

2

1

2

1

2

01

22

0

2

0

22

01

2

10

3

0

3

0

22

1

222

1010

=+−+−

−+++−−

−+−−−++

−+−−+

aanaanaan

aakcaakcaanaakcnaaa

aaanaaannaanana

akcnanaananaknaaaa

       (12) 

 

[ ]1)exp(η  coefficient: 

 

,0864412612

18692428

4694222

2

010

2

0

2

11010

22

10

2

01

2

10

22

01

22

1

22

0

23

1

3

0

3

1

2

3

0

22

10

2

01

3

1

3

1

3

0

2

10

2

1

2

10

2

0110

222

1

2

10

22

1

222

01

3

1

=−++−−++

+−−++++−

−−−−−−++−

−−++−+

naaaanaanaaanana

anaaanaananannanaan

anaaaakcnaaaakcaaakcna

akcnaaanaknaakanaakanakakcakca

 



 
 
 
 

[ ]0
)exp(η  coefficient: 

 

.06

633222

242233

3

0

2

01

2

10

2

1

22

0

22

10

22

01

2

10

22

1

2

010

2

0

2

110

3

1

3

0

3

1

23

0

22

10

2

01

3

1

=−+

+++−−++−+

+−−++−−−−−

aana

anaananaanaanaananaaa

anaanananaananaaaaa

 

 
With the aid of Maple 12, the solutions of these algebraic 
equations are found to be in the following. 
 
 
Case 1 
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Substituting Equations (13) into (14) and inserting the 
result into the transformation (9), we get the exact solitary 
wave solution of Equation (1) as follows: 
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Case 2 
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Similar to the previous case, we can find the following 
exact solution: 
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THE GENERALIZED NONLINEAR HEAT 
CONDUCTION EQUATION IN TWO DIMENSIONS 
 

The wave variable )( ctyxk −+=η  transforms 

Equation (2) to the ODE 
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or, equivalently, 

Kabir          6063 
 
 
 

,02)1(2
12222 =+−′′−′−−′− −− nnn

UUUnUakUUnnakUkc    (18) 

 
then we use the transformation (9) which will convert 
Equation (18) to 
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By the same manipulation as illustrated previously in ‘A 
generalized form of the nonlinear heat conduction 
equation’, we obtain the following sets of solutions. 
 
 
Case 1 
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Substituting Equations (20) into (11) and inserting the 
result into the transformation (9), we get the exact 
travelling wave solution of Equation (2) as follows: 
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Case 2 
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Similar to the aforementioned, we can gain the following 
solitary wave solution: 
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Remark 
 
We have verified all the obtained solutions by putting 
them back into the original equations (1) and (1) with the 
aid of Maple 12. 
 
 
CONCLUSION AND FUTURE RESEARCH 
 
In summary, the purpose of the study is to show that 
exact solutions of two generalized forms of  the  nonlinear 
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heat conduction equation can be obtained by the 
modified Kudryashov method. The solution procedure is 
very simple and straightforward. Also, the obtained 
solutions have very concise and explicit forms. Overall, 
the results reveal that the modified Kudryashov method is 
a powerful mathematical tool to solve nonlinear partial 
differential equations (NPDEs) in the terms of accuracy 
and efficiency. We would like to mention that the 
proposed method or an extended kind of this technique 
will be used in further works to establish new and more 
general exact solutions of other kinds of nonlinear 
evolution equations in mathematical physics. Also, the 
physical interpretation of these solutions and actual 
applications in reality will be investigated in future papers. 
 
 
REFERENCES 
 
Abazari R (2010a). Application of (G'/G)-expansion method to travelling 

wave solutions of three nonlinear evolution equation. Comput. Fluid, 
39: 1957-1963. 

Abazari R (2010b). The (G'/G)-expansion method for Tzitzéica type 
nonlinear evolution equations. Math. Comput. Model, 52: 1834-1845. 

Alam Khan N, Ayaz M, Jin L, Yildirim A (2011). On approximate 
solutions for the time-fractional reaction-diffusion equation of Fisher 
type. Int. J. Phys. Sci., 6(10): 2483-2496. 

Biazar J, Eslami M (2011). Differential transform method for nonlinear 
fractional gas dynamics equation. Int. J. Phys. Sci., 6(5): 1203-1206. 

Biazar J, Ghanbari B, Gholami Porshokouhi Me, Gholami Porshokouhi 
Mo (2011). He’s homotopy perturbation method: A strongly promising 
method for solving non-linear systems of the mixed Volterra–
Fredholm integral equations. Comput. Math. Appl., 61(4): 1016-1023. 

Borhanifar A, Kabir MM (2009). New periodic and soliton solutions by 
application of Exp-function method for nonlinear evolution equations. 
J. Comput. Appl. Math., 229: 158-167. 

Borhanifar A, Kabir MM, Vahdat LM (2009). New periodic and soliton 
wave solutions for the generalized Zakharov system and (2+1)-
dimensional Nizhnik-Novikov-Veselov system. Chaos Soliton. Fract., 
42: 1646-1654. 

Borhanifar A, Kabir MM (2010). Soliton and Periodic solutions for (3+1)-
dimensional nonlinear evolution equations by Exp-function method. 
Appl. Appl. Math. Int. J. (AAM), 5(1): 59-69. 

Demiray A (2004). Travelling wave solution to the Korteweg–de Vries–
Burger equation. Appl. Math. Comput., 154: 665-670. 

Fan E, Zhang H (1998). A note on the homogeneous balance method. 
Phys. Lett. A., 246: 403-406. 

Fan E (2002). Traveling wave solutions for nonlinear equations using 
symbolic computation. Comput. Math. Appl., 43: 671–680. 

He JH (2006). New interpretation of homotopy perturbation method. Int. 
J. Mod. Phys. B., 20(18): 2561-2568. 

He JH, Wu XH (2006). Exp-function method for nonlinear wave 
equations. Chaos Soliton. Fract., 30(3): 700–708. 

He JH, Wu GC, Austin F (2010). The variational iteration method which 
should be followed. Nonlin. Sci. Lett. A., 1(1): 1–30. 

Jafari H, Alipour M (2010). Numerical Solution of the Davey-Stewartson 
equations using Variational Iteration Method. World Appl. Sci. J., 
8(7): 814-819. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Kabir MM, Khajeh A (2009). New Explicit Solutions for the Vakhnenko 

and a Generalized Form of the Nonlinear Heat Conduction Equations 
via Exp-Function Method. Int. J. Nonlin. Sci. Numer. Simul., 10(10): 
1307-1318. 

Kabir MM, Borhanifar A, Abazari R (2011a). Application of (G'/G)-
expansion method to Regularized Long Wave (RLW) equation. 
Comput. Math. Appl., 61: 2044–2047. 

Kabir MM, Khajeh A, Abdi Aghdam E, Yousefi Koma A (2011b). 
Modified Kudryashov method for finding exact solitary wave solutions 
of higher-order nonlinear equations. Math. Meth. Appl. Sci., 34(2): 
213-219. 

Kudryashov NA (1988). Exact soliton solutions of the generalized 
evolution equation of wave dynamics. J. Appl. Math. Mech., 52(3): 
360-365. 

Kudryashov NA, Chmykhov MA (2007). Approximate solutions to one-
dimensional nonlinear heat conduction problems with a given flux. 
Comput. Math. Math. Phys., (Historical Archive), 47(1): 107-117. 

Kudryashov NA, Loginova NB (2009). Be careful with the Exp-function 
method. Commun. Nonlin. Sci. Numer. Simul., 14(5): 1881-1891. 

Kudryashov NA (2009). Seven common errors in finding exact solutions 
of nonlinear differential equations. Commun. Nonlin. Sci. Numer. 
Simul., 14: 3507-3509. 

Malfliet W, Hereman W (1996a). The tanh method: I. Exact solutions of 
nonlinear evolution and wave equations. Phys. Scripta., 54: 563-568. 

Malfliet W, Hereman W (1996b). The tanh method: II. Perturbation 
technique for conservative systems. Phys. Scripta., 54: 569-575. 

Mohyud-Din ST, Yildirim A, Usman M (2011). Homotopy analysis 
method for fractional partial differential equations. Int. J. Phys. Sci., 
6(1): 136-145. 

Neirameh A, Ghasemi R, Roozi A (2010). Travelling wave solution for 
non-linear Klein-Gordon equation. Int. J. Phys. Sci., 5(16): 2528-
2531. 

Noor MA, Iqbal J, Khattri
 
S, Al-Said E (2011). A new iterative method for 

solving absolute value equations. Int. J. Phys. Sci., 6(7): 1793-1797. 
Yusufoglu E, Bekir A (2008). Symbolic computation and new families of 

exact travelling solutions for the Kawahara and modified Kawahara 
equations. Comput. Math. Appl., 55: 1113-1121. 

Wazwaz AM (2005). The tanh method for generalized forms of 
nonlinear heat conduction and Burgers–Fisher equations. Appl. Math. 
Comput., 169: 321-338. 

Wazwaz AM (2008). The extended tanh method for the Zakharov 
Kuznetsov (ZK) equation, the modified ZK equation, and its 
generalized forms. Commun. Nonlin. Sci. Numer. Simul., 13(6): 1039. 


