

International Journal of the Physical Sciences Vol. 6(25), pp. 5961-5981, 23 October, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.029
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Hybrid differential evolution and gravitation search
algorithm for unconstrained optimization

Xiangtao Li*, Minghao Yin and Zhiqiang Ma

College of Computer Science, Northeast Normal University, Changchun, Jilin, P. R. China.

Accepted 27 May, 2011

This paper proposed an algorithm called DE-GSA. The proposed algorithm incorporates both the
concepts from Differential evolution algorithm (DE) and Gravitation search algorithm (GSA), updating
particles not only by DE operators but also by GSA mechanisms. The proposed algorithm is tested on
several benchmark functions including unimodal and multimodal test functions, multimodal test
function with fix dimension, and some real life problems. Then, experimental results have shown that
the proposed algorithm is both efficient and effective.

Key words: Gravitation search algorithm, differential evolution algorithm, differential evolution with gravitation
search algorithm (DE-GSA), hybrid meta-heuristic, algorithm.

INTRODUCTION

Optimization problems play an important role on both
industrial application fields and the scientific research
world. During the past decade, we have viewed
significant progresses on tackling optimization problems.
Different kinds of classical techniques have been
advanced to handle optimization problems, including
branch-and-bound (Lawler and Wood, 1996), meta-
heuristic (Glover and Kochenberger, 2003), dynamic
programming (Bellman, 1952) and gradient-based
methods (Snyman, 2004). Among them, Meta-heuristic
based methods, such as simulated annealing algorithm
(SA) (Suman, 2004), genetic algorithm (GA) (Horn et al.,
1994; Reid, 1996), artificial immune system algorithm
(AIS) (Kalinlia and Karabogab, 2005), particle swarm
optimization algorithm (PSO) (Bergh and Engelbrecht,
2006; Clerc and Kennedy, 2002; Du and Li, 2008;
Kennedy and Eberhart, 1995; Liu et al., 2007), ant colony
algorithm (ACO) (Ahmed, 2005; Dorigo et al., 1996;
Ellabib et al., 2007; Zhang and Li, 2007), differential
evolution algorithm (DE) (Omran et al., 2005, 2006; Qin
and Suganthan, 2005; Qian and Li, 2008), gravitation
search algorithm (GSA) (Rashedi and Nezamabadi-pour,
2009) and estimation of distribution algorithm (EDA)
(Zhang and Muhlenbein, 2004; Zhang and Sun, 2004),

*Corresponding author. E-mail: ymh@nenu.edu.cn. Tel: +86-
0431-84536338. Fax: +86-0431-84536338.

may be one of the most popular methods. Particularly,
gravitation search algorithm (GSA) is a novel meta-
heuristic algorithm introduced recently. The basic idea of
GSA is based on the law of gravity and mass interaction.
The individuals of the population in this algorithm can be
regarded as different masses. Using the gravitational
force, information is shared among the individuals to
direct the search towards the best location in the search
space. Compared with other meta-heuristic methods like
PSO, RGA and CFO, GSA usually provides better
results.

During the last decade, meta-heuristic methods have
been proved to have superior features to other traditional
methods, and have been widely applied in the
optimization field. However, these meta-heuristic
methods often suffer some limitations. In some cases,
they may be easy to fall into the local minimum or
converge too slowly. Recently, researchers have found
that a skilled combination of two meta-heuristic
techniques can improve the performance when dealing
with real-world and large scale problems (Hendtlass,
2001; Kim et al., 2007; Talibi Bautouche, 2004). Many
hybrid heuristic based optimization methods have been
investigated in the past few years. Angeline (Angeline,
1998) proposed a new hybrid swarm integrating PSO
with tournament selection method. Zhang and Xie (2003)
introduced a hybrid particle swarm with differential
operators. Shi and Liang (2005) introduced a novel

5962 Int. J. Phys. Sci.

algorithm based on the VPGA and the particle swarm
optimization. Omran et al. (2007) proposed a hybrid
version combining with PSO and DE. The DE is used to
mutate, for each particle, the attractor associated with the
particle, defined as a weighted average of its position and
best position. Zhang et al. (2009) proposed a novel
algorithm for unconstrained optimization. This algorithm
updates particles according to the DE operation and
mechanism of PSO. Thangaraj et al. (2008) developed a
new hybrid algorithm combining with PSO and DE. This
proposed algorithm can preserve the strengths of both of
the algorithms and so on. Qin (2005) and Omran et al.
(2005) proposed a self-adaptive DE (SaDE) algorithm, in
which both trail vector generation strategies and their
association control parameter values are self-adaptive by
learning from their previous experiences in generating
promising solution. The experiment results show that the
SaDE is more stable with the relatively small standard
deviation, and higher success rates. Brest et al. (2006)
proposed an efficient technique for adaptive control
parameter setting associated with differential evolution.
The experimental results show that the self-adaptive DE
can obtain better solutions than other algorithms. Sun et
al. (2004) proposed a new algorithm combining the DE
algorithm and the EDA algorithm, which tried to guide its
search toward a promising area by sampling new solution
from a probability model. Liu and Lampinen (2005)
introduced a new version of the differential evolution
algorithm with control parameters-the fuzzy adaptive
Differential evolution algorithm (FADE). The algorithm
uses the fuzzy logic controllers to adapt the parameters.
Ratnaweera et al. (2004) introduced a novel parameter
automation strategy for the particle swarm algorithm and
two further extensions to improve its performance after a
predefined number of generations. Wang and Dang
(2007) proposed a novel evolutionary algorithm (EA) for
global optimization, an application of Latin squares leads
to a new and effective crossover operator. Noman and
Iba (2008) proposed a crossover-based adaptive local
search (LS) operation for enhancing the performance of
standard differential evolution (DE) algorithm. This
algorithm presents a LS technique to solve this problem
by adaptively adjusting the length of the search, using a
hill-climbing heuristic. Zhang and Sanderson (2009)
proposed a new differential evolution (DE) algorithm,
JADE. The algorithm uses a new mutation strategy
“DE/current-to-pbest” with optional external archive and
updating control parameters in an adaptive manner.
Jasper et al. (2009) proposed an evolutionary algorithm,
entitled “A multialgorithm genetically adaptive method for
single objective optimization (AMALGAM-SO)”. The
algorithm shown that AMALGAM-SO obtained similar
efficiencies as existing algorithms on relatively simple
unimodal problems, but is superior for more complex
higher dimensional multimodal optimization problems.

Yao et al. (1999) proposed “fast EP” (FEP) which uses a
Cauchy instead of Gaussian mutation as the primary
search operator. Lee and Yao (2004) proposed an
evolutionary programming algorithm using adaptive as
well as nonadaptive Lévy mutations, which applied to
multivariate functional optimization. However, this field of
study is still in its early days, a large number of future
researches are necessary in order to develop hybrid
algorithm for optimization problems. Particularly, within
our knowledge, there is almost no paper concerning a
hybrid heuristic method combining GSA.

Therefore in this paper, we propose a hybrid meta-
heuristic algorithm integrating differential evolution
heuristic into gravitational search algorithm, as we called
DE-GSA. Differential evolution algorithm is first proposed
by Storn and Price (1997). This algorithm is a population-
based heuristic evolutionary algorithm that is simple to be
implemented and has little or no parameters to be tuned.
One of the remarkable advantages of DE is that this
algorithm can use mutation, cross, select operators to
increase the population diversity. In this sense, DE
algorithm can be viewed as a complement of GSA
algorithm, which is well known for its ability of global
search. Therefore, combining these two methods should
be a reasonable approach. Specifically, in this paper, the
proposed algorithm starts from the DE process, and uses
GSA to improve the quality of solution for the global
population. Both processes run alternatively until the
algorithm meets the stopping criterion.

DIFFERENTIAL EVOLUTION ALGORITHM

Differential evolution (DE) is an evolutionary algorithm
first introduced by Storn and Price (1997). Similar to other
evolutionary algorithms particularly genetic algorithm, DE
uses some evolutionary operators like selection
recombination and mutation operators. Different from
genetic algorithm, DE uses distance and direction
information from current population to guide the search
process. The crucial idea behind DE is a scheme for
producing trial vectors according to the manipulation of
target vector and difference vector. If the trail vector
yields a lower fitness than a predetermined population
member, the newly trail vector will be accepted and be
compared in the following generation. Different kinds of
strategies of DE have been proposed based on the target
vector selected and the number of difference vectors
used. In this paper, we use two strategies, DE/rand/1/bin
and DE/best/2/bin, described as follows.

For each target vector ()
i

x t , trail vector ()
i

v t , i = 1, …,

NP, let N be the dimension of target vector, and G be the
G generation. Two mutant vectors are generated in these
two strategies respectively:

For DE/rand/1/bin

, , , ,()i G a G b G c Gv x F x x= + − (1)

For DE/best/2/bin

, , , , , ,()i G best G a G b G c G d Gv x F x x x x= + + − − (2)

Where , , , [1, ,]a b c d NP∈ LL are randomly chosen

integers, and a b c d i≠ ≠ ≠ ≠ . F is the scaling factor

controlling the amplification of the differential evolution.
The cross-over operator, implements a recombination

of the trial vector and the parent vector to produce
offspring. This operator is calculated as:

, ,

, ,

, ,

, ([0,1]) ()

,

j i G j rand

j i G

j i G

v rand CR or j j
u

x otherwise

≤ =
= 


 (3)

Where],,1[Dj L= ; [0,1]jrand ∈ ;],,1[Dj
rand

L= is the

randomly chosen index, CR is the crossover rate Gijv ,, is

the difference vector of the jth particle in the ith

dimension at the Gth iteration, and Giju ,, denotes the trail

vector of the jth particle in the ith dimension at the Gth
iteration. Selection operator is used to choose the next
population between the trail population and the target
population:

, , ,

, 1

,

, () ()

,

i G i G i G

i G

i G

u f u f x
x

x otherwise
+

<
= 


 (4)

The standard differential evolution algorithm can be
described as the followings:

Step 1: Randomized initialization population, initialize
parameters CR, F. and set the current generation number
G = 0.
Step 2: Evaluate fitness for every individual.
Step 3: According to the mutation and crossover
operations, it can obtain a trail vector for each individual.
Step 4: Evaluate every trail vector.
Step 5: Selection, if the trail vector yields a lower fitness
than a predetermined population member, the newly trail
vector will be accepted.
Step 6: G = G + 1; Repeat Step 3 to Step 5 until the stop
criteria are reached.

GRAVITATION SEARCH ALGORITHM

Gravitation search algorithm is a stochastic, population-
based search method introduced by Rashedi and
Hossein (2009). The mechanism of GSA got inspired by
the law of Newtonian gravity: “In the universe, every

Li et al. 5963

particle attracts every other particle with a force, and the
force is directly proportional to the product of their
masses and inversely proportional to the square of the
distance between them.” A GSA algorithm maintains a
population of individuals, where each individual
represents a possible solution. For a D dimension space,
the position of a particle can be represented as:

1 2
(, , , , ,)

d D

i i i i iX x x x x= L L , NPi ,,1L= .

Given a specific time step ‘t’ and arbitrary two individuals
‘i’ and ‘j’, the gravity force acting on these individuals can
be represented as:

() ()
() () (() ())

()

pi ajd d d

ij j i

ij

M t M t
F t G t x t x t

R t ε

×
= −

+
 (5)

where

ajM is the active gravitational mass,
piM is the

passive gravitational mass, ()G t is gravitational constant

at time t,ε is a small constant, and ()ijR t is the Euclidian

distance between two particles:

2
() () , ()

i j i j
R t X t X t= (6)

The total force that acts on a given individual i in a
dimension d is a randomly sum of dth components of the
forces exerted from other agents:

∑
≠=

=
NP

ijj

d

ijj

d

i tFrandF
,1

)((7)

where [0,1]jrand ∈ is a random number.

According to the law of motion, “the current velocity of
any mass is equal to the sum of the fraction of its
previous velocity and the variation in the velocity or
acceleration of any mass is equal to the force acted on
the system divided by mass of inertia”. Consequently, the
acceleration rate of the individual i at time t, and in the

direction dth, denoted by ()
d

ia t , can be calculated by:

()
()

()

d

d i

i

ii

F t
a t

M t
= (8)

Where Mii is the inertial mass of individual i.

Furthermore, the position and velocity of the individual
can be updated as follows:

(1) () ()
d d d

i i i iv t rand v t a t+ = × + (9)

(1) () (1)
d d d

i i ix t x t v t+ = + + (10)

5964 Int. J. Phys. Sci.

Where [0,1]
i

rand ∈ is used to give a stochastic

characteristic to the algorithm.
Assuming the equality of the gravitational and inertia

mass, the value of mass are calculated using the map of
fitness. We update by the following equation:

iiipiai MMMM === , NPi ,,1L=

)()(

)()(
)(

tworsttbest

tworsttfit
tm i

i
−

−
=

∑ =

=
NP

i j

i
i

tm

tm
tM

1
)(

)(
)(

(11)

Where)(tfit
i

denotes the fitness value of the agent I at

time t and)(tbest ,)(tworst are defined as follow:

{ }
)(min)(

,,1
tfittbest i

NPj L∈
=

{ }
)(max)(

,,1
tfittworst i

NPj L∈
= (12)

The followings are the standard version of this algorithm:

Step 1: Search space identification.
Step 2: Randomized initialization.
Step 3: Fitness evolution of agents.
Step 4: Update the G, best, worst of the population.
Step 5: Calculation of the total force in different
directions.
Step 6: Calculate M and a for every agent.
Step 7: Updating agents’ velocity and position.
Step 8: Repeat Step 3 to Step 7 until the stop criteria are
reached.

PROPOSED DE-GSA ALGORITHM

Here, discusses the structure and relational of this hybrid algorithm.
Figure 1 describes the framework of the proposed DE-GSA
algorithm. As shown, there are mainly two strategies to update the
agent in the proposed algorithm: the DE strategy and the GSA
strategy. For the DE updating strategy, we have discussed in
differential evolution algorithm. For the GSA updating strategy, we
propose a new method to restrain the most and least bounds of the
individuals for GSA.
 The GSA algorithm assumes that the whole population should be
in an isolated and finite space. During the searching process, if
there are some individuals that will move out of bounds of the
space, the original algorithm stops them on the boundary. In other
words, the particle will be assigned a boundary value. The
disadvantage is that if there are too many individuals on the
boundary, and especially when there exists some local minimum on
the boundary, the algorithm will lose its population diversity to some
extent.

In order to tackle this problem, there are mainly two improvements
made in the proposed GSA updating strategy. First, we restrict the
speed of the particles during searching process. The intention is

to avoid the individuals moving towards the boundary too fast.

 Secondly, when the individual moves outside the boundary, we
scatter them in a feasible region away from the boundary, instead
of stopping them just on the boundary. The proposed GSA updating
strategy is as following:

Algorithm UGSA (GSA updating strategy)

Input: ix [G], iv [G] (ix [G] denotes the position of the ith agent at

the Gth iteration, iv [G] presents the velocity of the ith agent at the

Gth iteration)

Outpt: ix ’ [G], iv ’ [G] (ix ’ [G] denotes the position of the ith agent

at the Gth iteration, iv ’ [G] presents the velocity of the ith agent at

the Gth iteration)

Step 1: Generate ix [G], iv [G] using Equation (9) and (10).

Step 2: Tackle the boundary of the position and velocity.

If (ix [G]> maxx) then

maxmax *()*][' xrandcxGxi −=

End if

If (ix [G] < minx) then

)(*()*][' minmin xrandcxGxi −+=

End if

If (iv [G]> maxv) then

maxmax *()*2][' vrandvGvi −=

End if

If (iv [G] < minv) then

)(*()*2][' minmin vrandvGvi −+=

End if

Remark

c plays an important role in different test functions. If the value is
too high, the individual will not be set in a feasible region. If it is too
low, the algorithm will lose population diversity. Through a careful
selection based on lots of experiments, c is set to be 0.01 in this

paper. We set the minv is equal to the minx and the maxv is equal to

the maxx .

Based on the p r ev i ous description, the algorithm of DE-GSA
can be presented subsequently. In this proposed algorithm, DE
process is first called. Then after the mutation operation and cross
operation, if DE cannot generate a better solution, GSA is
activated to update the current population. This p r o c e s s runs
alternatively until the stopping criterion meets.

Algorithm DE-GSA

Input: itermax (maximal number of generations)
NP (population size)
D (the dimension of the agent)
 Output: bestvalue () (the best optimal solution)

Step 1: Initialization.

Generate an initial population P with NP agents.

Li et al. 5965

Figure 1. The framework of the proposed DE-GSA algorithm.

5966 Int. J. Phys. Sci.

Evaluate the fitness for each agent value (). Set the best position
for the bestvalue ().Set the current iteration number G = 0.
Step 2: stopping criterion
If (G==itermax) then
Output the optimal solutions bestvalue () and stop.
End if
Step 3: mutation and crossover.

Select a, b, c randomly and a b c≠ ≠

Select jrand D∈
For i = 1 to D do
if (rand()<CR or i = jrand) then

, , , ,*()i G a G bG cGu x F x x= + −

End if
End for
Step 4: Selection.
Evaluate the fitness for each trail vector for each dimension. Set the
fitness for the tempvalue ().
For j=1 to NP do
If (tempvalue (j) < value (j)) then

, ,i G i Gx u=

Else
GSA active. We can use GSA to find a new solutions, this solution
is GX.
End if
Evaluate the fitness of GX for GXvalue ().
If (GXvalue (j) <value (j)) then

,i G
x GX=

Else

, 1,i G i Gx x −=

End if
End for
Step 5: Let the best optimal solution to the bestvalue().
If (bestvalue () keeps fixed at consecutive L steps) then

, , , , , ,()i G best G a G b G c G d Gu x F x x x x= + + − −

End if
Step6: G=G+1; goto Step2.

Remark

An important problem that needs to be intentioned is the value of
the CR,)1,0(∈CR . CR is the crossover rate which affects the

diversity of population for the next generation. In our knowledge,
hardly a good choice of the crossover rate has been proposed in
the literature of DE. If the value of CR is too large, it is conducive to
local search and speeds up the convergence rate. However, if the
value of CR is too small, it is conducive to the population diversity
and the ability of the global search. In our paper, CR is set to be
0.1. This value can enhance the population diversity as well as the

convergence rate. The scaling factor F ()2,0(∈F) is also

important because it affects the differential variation between two
individual. In this paper, the value of F is 0.5, for the functions of
Table 1. Additionally, for the functions of Table 2, we will assign
different values of F for the different functions. For the proposed
DE-GSA algorithm, the value of the L is also quite significant, since
it is crucial for the proposed algorithm to obtain a optimal solution. If
we set up the value too large, the effect of the GSA will be reduced.
On the contrary, if the value of L is too little, it will affect the role of

DE. Therefore, in this paper, the value of L is set to 15; this value
can enhance the effect of both algorithms. The last problem is the
G of the GSA algorithm, G is set using the equation as follows:

T

t

eGtG
α−

= *)(0
,

where G0 is equal to 100, t denotes the current iteration, T

represents the maximum iteration. The value of α is also important

for it affects the effect of the GSA algorithm, if we set α too high,

the stability of the algorithm will become very poor. On the other
hand, small value will make the convergence rate slowly. Therefore,

we set α to 20.

EXPERIMENTAL RESULTS

To evaluate the performance of our algorithm, we applied
it to 20 standards benchmark functions and 2 real life
problems. The first five functions are unimodal functions,
and the following five functions are multimodal test
functions. These ten test functions can be seen in Table
1. Then, ten multimodal test functions with fix dimension
are used in our experimental study. Table 3 has shown
the details of these functions. We also use two real life
problems, gas transmission compressor design and
optimal capacity of gas production facilities, to validate
the proposed algorithm. So far, these problems have
been widely used as benchmarks for study with different
methods by many researchers.

The algorithm is coded in MATLAB 7.0, and
experiments are made on a Pentium 3.0 GHz Processor
with 1.0 GB of memory.

For unimodal and multimodal test functions, we will do
three kinds of experiments for F1-F10:

(1) Population size = 20, dimension = 20, run = 30,
itermax = 1000
(2) Population size = 40, dimension = 40, run = 20,
itermax = 2000
(3) Population size = 80, dimension = 80, run = 15,
itermax = 4000

Here, run presents the number of times an algorithm is
executed.
For multimodal test function with fix dimensioning, we will
experiment for F11 to F20:
Population size = 60, run = 30, itermax = 500

The results of unimodal and multimodal high–
dimension test functions

Here, the performance of DE-GSA is compared with
other well-know algorithms based on the 10 functions.
The results are listed in Table 1. We apply DE-GSA to

Li et al. 5967

Table 1. Unimodal and multimodal high–dimension test functions.

Test function Range Optimum

2
11() n

i iF x x== ∑

[-5.12, 5.12] 0

1 12 () nn
i ii iF x x x= == +∑ ∏

[-10, 10] 0

2 2 21
13 1() 100() (1)n

i i i i
F X x x x−

= +
 = − + −∑  

[-30, 30] 0

2

4 1
() ([0.5])

n

ii
F x x

=
= +∑

[-100, 100] 0

4

5 1
() [0,1]

n

ii
F X ix random

=
= +∑

[-1.28,1.28] 0

6 1
() sin()

n

i ii
F X x x

=
= −∑

[-500,500] -418.9829*n

2

7 1
() [10cos(2) 10]

n

i ii
F X x xπ

=
= − +∑

[-5.12, 5.12] 0

2

8 1 1

1 1
() 20 exp(0.2) exp(cos(2)) 20

n n

ii i
F X x e

n n
π

= =
= − − − + +∑ ∑

[-32, 32] 0

2 2 21() {10sin() (1) [1 10sin () (1)]} (,10,100,4)1 19 1 1
n nF x y y y y u xi ii ii nn

π
π π−= + − + + − +∑ ∑= =+

1
1

4

i

i

x
y

+
= +

()

(, , ,) 0

()

m

i

i

m

i

k x a

u x a k m

k x a

 −


= 


− −
i

i

i

x a

a x a

x a

>

− < <

< −

[-50, 50] 0

22 2 2 2() 0.1{sin (3) (1) [1 sin (3 1)] (1) [1 sin (2)]} (,5,100,4)10 1 1 1
n nF X x x x x x u x

i i n n ii i
π π π= + − + + + − + +∑ ∑= =

[-50, 50] 0

these minimization functions and compared the results
with GA, PSO, DE, and GSA. For unimodal function F1 to
F5, the objective of the algorithms is to improve their
convergence rate, not just to obtain optimal solutions.
The results are averaged at least 30 runs for 20
dimension, 20 runs for 40 dimension, 15 runs for 80
dimension and the averaged best-so-far solution are
listed in Table 2. As shown in Table 2, DE-GSA usually
provides better solutions than other four algorithms
expect for the test function F3. Moreover, the optimal
convergence rate of the algorithms is shown in Figures 2,
3, and 4. From these figures, we can see that DE-GSA
tends to find the optimal solutions faster than other

algorithms.
Multimode functions are more difficult to be solved than

unimodal functions, because they have many local
minima. For these functions, obtaining the optimal
solutions is more important because it can reflect the
ability of the algorithms to escape from the local minima.
As shown in Table 3, DE-GSA can provide better results
than other algorithms for F6 to F9. For F10, DE-GSA
cannot adjust itself and provide a better solution. Figures
5 and 6 have shown the optimal convergence rate of the
algorithms. From both figures, we can find DE-GSA has a
higher convergence rate and can generate better
solutions than other algorithms.

5968 Int. J. Phys. Sci.

Table 2. Minimization result of benchmark function in Table 1.

F Dim GA PSO DE GSA DE-GSA

F1

20
0.0862

(0.0651)

2.3921e-008

(1.458e-008)

1.1166e-016

(7.6700e-017)

1.9108e-016

(1.4131e-016)

7.2582e-018

(1.6864e-017)

40
0.0750

(0.0152)

2.1431e-007

(1.154e-007)

2.4395e-020

(5.3728e-020

5.5061e-017

(2.0107e-017)

1.2268e-021

(1.4505e-021)

F2

80
0.0546

(0.0131)

1.6600e-006

(5.200e-005)

6.3583e-022

(5.3732e-022

2.3377e-017

(2.6958e-018)

4.4763e-025

(1.5334e-024)

20
1.5415

(0.2228)

3.0915e-006

(2.2590e-006)

5.4799e-009

(1.6384e-009

7.5417e-008

(6.0403e-008)

1.4368e-009

(1.3166e-009)

40
2.1713

(0.2493)

1.2187e-005

(3.6595e-005

2.5695e-011

(2.6668e-011

4.2746e-008

(4.5332e009)

8.2103e-012

(6.8438e-013)

 80
2.6224

(0.3626)

9.5727e-004

(3.0258e-003

2.1804e-012

(2.6707e-011)

3.9757e-008

(7.0558e-010)

1.2316e-012

(6.8541e-012)

F3

20
892.2516

(5.2561)

28.1872

(7.9226

47.7445

(19.4010)

57.2537

(93.6483)

24.6655

(3.1346)

40
659.3939
(35.0295)

88.2824

(32.5186)

60.3302

(12.4921)

34.7175

(0.1729)

49.6038

(22.0396)

80
1757.4654

(45.4340)

203.9393

(69.2797)

77.3435

(13.6890)

72.0420

(0.0439)

75.848

(4.218)

F4

20
23.7364

(10.2218)

2.9861e-010

(2.4076e-010)

7.5301e-014

(6.3810e-014)

2.0798e-013

(1.1161e-013)

1.1925e-014

(1.6710e-014)

40
23.1347

(4.5841)

6.9759e-009

(1.200e-008)

7.8294e-018

(4.1231e-018)

4.9932e-017

(9.9231e-018)

1.6780e-018

(1.4098e-018)

80
23.0706

(2.8393)

2.6924e-008

(2.6924e-008)

2.1394e-019

(4.1231e-019)

2.0936e-017

(1.0697e-019)

1.7443e-020

(7.5054e-021)

F5

20
0.1431

(0.0664)

0.0418

(0.0120)

0.0224

(0.0060)

0.6554

(1.5655)

0.0113

(0.0024)

40
0.1307

(0.0518)

0.0908

(0.0268)

0.0288

(0.0075)

0.0539

(0.0147)

0.0232

(0.0070)

80
0.1132

(0.0323)

1.5212

(0.0475)

0.0547

(0.0434)

0.0549

(0.0041)

0.0533

(0.0021)

The results of multimodal test function with fix
dimension

Here, the performance of DE-GSA is compared with
other algorithms based on multimodal test function with
fix dimension listed in Table 4. A detailed description of
these functions is shown in appendix A. For these
functions, finding a better optimal solutions are more
important, because it reflects the ability of the algorithms
to locate near-global optimum of these functions. The
averaged best-so-far solutions are listed in Table 5, from
which we can see that DE-GSA performances better than
the other algorithms. From Figures 7, 8 and 9, we can

also find DE-GSA convergences faster than other
algorithms on these functions.

The results of real life problem

The performance of DE-GSA is also compared with
algorithm on some real life problems. In this paper, we
use two real life problems to validate the performance of
DE-GSA: Gas transmission compressor design problem
and optimal capacity of gas production facilities problem.
Gas transmission compressor design (Beightler and
Phillips, 1976).

Li et al. 5969

Table 3. Minimization result of benchmark function in Table 1.

F Dim GA PSO DE GSA DE-GSA

F6

20
-7.1444e+003

(225.1424)

-4.70750e+003

(4.8669e+002)

-8.3151e+003

(59.9792)

-1.9199e+003

(320.8131)

-8.1108e+003

(205.7557)

40
-1.4285e+004

(334.7862)

-9.7576e+003

(1.1116e+003)

-1.6641e+004

(0.0000)

-2.9486e+003

(498.9667)

-1.6641e+004

(0.0000)

80
-3.0304e+004

(177.9693)

-1.7004e+004

(1.8959e+003)

3.3479e+004

(68.4178)

-4.3034e+003

(751.4651)

-3.3519e+004

(0.0000)

F7

20
17.3415

(5.4070)

28.3329

(14.3352)

1.6160e-009

(1.4703e-009)

46.9666

(27.7972)

1.0622e-013

(3.4876e-013)

40
18.0032

(3.0007)

82.7479

(34.5265)

2.3882e-005

(5.4991e-005)

29.6829

(6.9052)

3.3810e-013

(5.2729e-013)

80
27.9166

(3.6881)

195.4091

(56.3481)

145.2627

(59.7323)

38.3059

(0.7035)

78.1390

(15.6996)

F8

20
3.0165

(0.0589)

0.0127

(0.0147)

1.0706e-007

(4.8870e-008)

1.2346e-008

(3.8539e-009)

9.5664e-009

(1.6838e-008)

40
2.9816

(2.5227e-004)

0.0098

(0.0102)

6.9785e-010

(3.7265e-010)

5.5114e-009

(5.3301e-010)

1.5410e-010

(1.3703e-010)

80
2.9812

(4.8999e-005)

0.0012

(0.0030)

8.3041e-011

(3.7348e-012)

2.1960e-009

(5.6204e-011)

1.4788e-012

(4.8736e-013)

F9

20
0.2972

(0.2080)

2.2397e-004

(3.4072e-004)

4.2327e-015

(3.0724e-015)

0.0104

(0.0402)

2.3564e-016

(9.1262e-016)

40
0.1503

(0.1134)

0.3458

(0.8222)

2.1988e-018

(3.4942e-019)

0.0259

(0.0635)

1.1779e-032

(0.0000)

80
0.0171

(8.6606e-004)

8.2411e-004

(8.2886e-004)

7.2401e-019

(2.4944e-019)

5.3640e-020

(4.6214e-021)

5.8895e-033

(0.0000)

F10

20
0.0212

(0.0167)

0.3063

(0.6793)

-12.1253

(0.0000)

5.5391e-032

(6.8897e-032)

-12.1253

(0.0000)

40
0.0027

(6.4061e-004)

0.5000

(0.8927)

-12.1253

(0.0000)

4.4493e-032

(5.5703e-032)

-1.1504

(0.0000)

80
3.6692e-004

(2.5446e-004)

42.7568

(47.6000)

-12.1253

(0.0000)

1.4998e-032

(1.2726e-032)

-1.1504

(0.0000)

Min

5 1/2 2/3 2 1/2 4

1 2 3 2 3

8 1 0.219 6 1

1 2 1

() 8.61 10 (1) 3.69 10

7.72 10 765.43 10

f x x x x x x

x x x

− −

− −

= × × − + × ×

+ × × − × ×

Subject to: 110 55x≤ ≤ , 2
1.1 2x≤ ≤ , 310 40x≤ ≤ .

Optimal capacity of gas production facilities (Beightler
and Phillips, 1976):

Min

0.852
1 1

0.752
1 2

() 61.8 5.72 0.2623[(40) ln()]
200

0.087(40) ln() 700.23
200

x
f x x x

x
x x

−

−

= + + −

+ − +

Subject to：

1
17.5x ≥ ,

2
200x ≥ , 117.5 40x≤ ≤ , 2

300 600x≤ ≤

The experimental results of these real life problems are
listed in Tables 6 and 7. From the tables we can draw the
conclusion that DE-GSA usually generates better results.

Comparison of self-adaptive DE with fuzzy adaptive
differential evolution algorithm

Liu and Lampinen (2005) introduce a new version of the
differential evolution algorithm with control parameters

5970 Int. J. Phys. Sci.

Iteration

F
 b

e
s

t-
s

o
-f

a
r

Figure 2. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for
minimization of F1 with NP = 40, D = 40.

Iteration

F
 b

e
s

t-
s

o
-f

a
r

Figure 3. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization

of F4 with NP = 40, D = 40.

Li et al. 5971

 Iteration

F
 b

e
s
t-

s
o

-f
a
r

Figure 4. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization of F5

with NP = 40, D = 40.

Iteration

F
 b

e
s
t-

s
o

-f
a
r

Figure 5. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization of F7

with NP = 40, D = 40.

5972 Int. J. Phys. Sci.

Iteration

F
 b

e
s

t-
s

o
-f

a
r

Figure 6. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for
minimization of F9 with NP = 40, D = 40.

Table 4. Multimodal test function with fix dimensioning.

Test function Range Dimension

25 1

11 21 6

1

1 1
() ()

500 ()
j

i iji

F X
j x a

−

=

=

= +
+ +

∑
∑

[-65.53,65.53] 2

22
11 1 2

12 21
3 4

()
() []i i

ii

i i

x b b x
F X a

b b x x=

+
= −

+ +
∑

[-5,5] 4

2 4 6 2 4

13 1 1 1 1 2 2 2

1
() 4 2.1 4 4

3
F X x x x x x x x= − + + − +

[-5,5] 2

2 2

14 2 1 1 12

5.1 5 1
() (6) 10(1) cos 10

84
F X x x x x

π ππ
= − + − + − +

[-5,10]*[0,15] 2

2 2 2

15 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

() [1 (1) (19 14 3 14 6 3)]

[30 (2 3) (18 32 12 48 36 27)]

F X x x x x x x x x

x x x x x x x x

= + + + − + − + +

× + − × − + + − +

[-5,5] 2

24 3

16 1 1
() exp(())i ij j iji j

F X c a x p
= =

= − − −∑ ∑

[0,1] 3

24 6

17 1 1
() exp(())

i ij j iji j
F X c a x p

= =
= − − −∑ ∑

[0,1] 6

15

18 1
() [()()]T

i i ii
F X X a X a c

−

=
= − − − +∑

[0,10] 4

17

19 1
() [()()]T

i i ii
F X X a X a c

−

=
= − − − +∑

[0,10] 4

110

20 1
() [()()]T

i i ii
F X X a X a c

−

=
= − − − +∑

[0,10] 4

Li et al. 5973

Table 5. Minimization result of benchmark function in Table 4.

F Dim GA PSO DE GSA DE-GSA

F11 2
0.9980

(0.0000)

0.9980

(0.0000)

0.9980

(0.0000)

4.5297

(2.7184)

0.9980

(0.0000)

F12 4
0.0017

(3.6960e-004)

0.0046

(0.0012)

0.0014

(4.5493e-004)

0.0057

(0.0024)

7.1010e-004

(1.8186e-004)

F13 2
-1.0316

(0.0000)

-1.0316

(0.0000)

-1.0316

(0.0000)

-1.0316

(0.0000)

-1.0316

(0.0000)

F14 2
0.3981

(3.8806e-004)

0.3979

(0.0000)

0.3979

(0.0000)

0.3979

(0.0000)

0.3979

(0.0000)

F15 2
3.0036

(0.0028)

3.0000

(0.0000)

3.0222

(0.0014)

3.0000

(0.0000)

3.0000

(0.0000)

F16 3
-3.8620

(0.0018)

-3.8628

(0.0000)

-3.8628

(0.0000)

-3.7989

(0.1406)

-3.8628

(0.0000)

F17 6
-3.2744

(0.0651)

-3.2657

(0.5732)

-3.3220

(0.0000)

-2.4750

(0.7890)

-3.3220

(0.0000)

F18 4
-6.5630

(3.4866)

-5.0551

(0.0000)

-9.9104

(0.5209)

-5.0552

(0.0000)

-10.1532

(0.0000)

F19 4
-6.4789

(3.1670)

-5.0876

(2.1503e-007)

-10.1182

(0.3283)

-9.3399

(2.2007)

-10.4029

(0.0000)

F20 4
-10.5280

(0.0038)

-5.1284

(0.0000)

-10.2201

(0.3967)

-10.5364

(0.0000)

-10.5364

(0.0000)

Iteration

F
 b

e
s
t-

s
o
-f

a
r

Figure 7. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for
minimization of F12 with NP = 40, D = 40.

5974 Int. J. Phys. Sci.

Iteration

F
 b

e
s
t-

s
o

-f
a
r

Figure 8. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization
of F17 with NP = 40, D = 40.

Iteration

F
 b

e
s
t-

s
o

-f
a

r

Figure 9. Comparison of performance of GA, PSO, DE, GSA, DE-GSA for minimization

of F18 with NP = 40, D = 40.

Li et al. 5975

Table 6. Gas transmission compressor design.

Item DE GSA DE-GSA (Beightler and Phillips, 1976)

1x

52.3966 53.0547 53.5080 55

2x

1.1875 1.1919 1.1901 1.195

3x

24.6997 24.5070 24.7624 25.026

f(x) 2.96443e+006 2.96449e+006 2.96437e+006 2.96455e+006

Table 7. Gas transmission compressor design.

Item DE GSA DE-GSA (Beightler and Phillips, 1976)

1x

17.5 17.5 17.5 17.5

2x

600 600 600 465

f(x) 169.844 169.844 169.844 173.76

Table 8. Comparison of self-adaptive DE with fuzzy adaptive differential evolution algorithm.

F #Gen
Fuzzy adaptive DE

Mean best (Std Dev.)

DE-GSA

Mean best (Std Dev.)

F1 5000 2.35e-10(2.97e-21) 1.0945e-43(1.1289e-43)

F3 7000 4.16e+1(1.82e-2) 4.441e+1 (6.125e-1)

F4 5000 0(0) 0(0)

F5 5000 1.9e+1(2.92e-1) 0(0)

F7 10000 2.58e+2(9.17e+1) 0(0)

F8 5000 5.9e-2(1.23e-6) 7.9936e-15(0)

F12 100 0.9980(2.5e-26) 0.9980(1.0368e-13)

F15 50 3.0001(3.35e-7) 3.000(0)

The fuzzy adaptive differential evolution algorithm. The
algorithm uses the fuzzy logic controllers to adapt the
parameters.

From the paper, the algorithm is tested with a set of
standard test functions, where it outperforms the original
DE when the dimensionality of the problem is high. The
following parameters are the same with the paper (Liu
and Lampinen, 2005): dimension = 50; population size =
10* dimension, itermax: 5000 for F1, F4, F5, F8 and
7000 for 5, F3, 10000 for F7, are listed on Table 8.

As shown in Table 8, The DE-GSA algorithm can
perform better than the FADE algorithm for the functions
expect the F3. Base on the experimental results, we can
find that DE-GSA outperforms the FADE for the high
dimension function. For lower dimension function, the
DE-GSA algorithm has the similar solution with the FADE
algorithm.

Comparison of FEP and CEP algorithms

Here, we will compare our algorithm with the FEP and
CEP algorithms (Yao and Liu, 1999). We set the
parameters as in Yao and Liu (1999), the following
parameters are used in our paper: population size = 100,
dimension: 30 for F1, F2, F3, F4, F5, F6, F7, F8, F9, F10,
2 for F11, F13, F14, F15, 4 for F12, F18, F19, F20, 3 for
F16, 6 for F17. itermax: 1500 for F1, F4, F8, F9, F10,
2000 for F2, 20000 for F3, 3000 for F5, 5000 for F7 and
100 for F11, F13, F14, F15, F18, F19, F20, 4000 for F12.
Therefore, in our paper, we set the same population size
and the same iteration as in Yao and Liu (1999), runs =
50 replications are conducted for each function. The
averaged best-so-far solutions are listed in Table 9. Form
Table 9, we can find the DE-GSA obtain better results
than the FEP and CEP algorithm. For unimodal and

5976 Int. J. Phys. Sci.

Table 9. Comparison of FEP and CEP algorithms.

F #Gen
FEP

Mean best (Std Dev.)

CEP

Mean best (Std Dev.)

DE-GSA

Mean best (Std Dev.)

F1 1500 5.7e-4(1.3e-4) 2.2e-4(5.9e-4) 1.1130e-17(8.6734e-18)

F2 2000 8.1e-3(7.7e-4) 2.6e-3(1.7e-4) 8.2379e-15(4.4905e-15)

F3 20000 5.06(5.87) 6.17(13.61) 0(0)

F4 1500 0(0) 577.76(1125.76) 1.5978e-17(9.2810e-18)

F5 3000 7.6e-3(2.6e-3) 1.8e-3(6.4e-3) 0(0)

F7 5000 4.6e-2(1.2e-2) 89.0(23.1) 0(0)

F8 1500 1.8e-2(2.1e-3) 9.2(2.8) 1.2150e-13(1.5632e-13)

F9 1500 9.2e-6(3.6e-6) 1.76(2.4) 9.3668e-10(4.0617e-10)

F10 1500 1.6e-4(7.3e-5) 1.4(3.7) 1.1930e-18(3.7725e-18)

F11 100 1.22(0.56) 1.66(1.19) 0.9980(1.0951e-12)

F12 4000 5.0e-4(3.2e-4) 4.7e-4(3.0e-4) 3.0749e-04(1.2122e-19)

F13 100 -1.03(4.9e-7) -1.03(4.9e-7) -1.0316(4.3205e-09)

F14 100 0.398(1.5e-7) 0.398(1.5e-7) 0.3979(2.9893e-06)

F15 100 3.02(0.11) 3.0(0) 3.000(0)

F18 100 -5.52(1.59) -6.86(2.67) -10.1532(4.6389e-5)

F19 100 -5.52(2.12) -8.27(2.95) -10.4029 (9.5130e-8)

F20 100 -6.57(3.14) -9.10(2.92) -10.5364(8.8497e-12)

multimodal function, the DE-GSA algorithm can gives
better solution than FEP and CEP for all functions.
Especially, for the multimodal function, the final results
are more important because of this function can reflect
the algorithm’s ability to escape form poor local optima
and obtain the near-global optimum.

Comparison of DEPSO and BBDE algorithms

Here, compares the performance of the DE-GSA with the
DEPSO algorithm (Zhang and Xie, 2003) and BBDE
algorithm (Omran et al., 2007). The DEPSO provides the
bell-shaped mutations with consensus on the population
diversity along with the evolution, while keeps the self-
organized particle swarm dynamics. The DEPSO is
shown to outperform the PSO and DE for a set of
benchmark functions. The BBDE presents a new
population-based algorithm, as a hybrid of the barebones
particle swarm optimizer (PSO) and differential evolution
(DE). The particle position update is changed to
probabilistically base a new position on a mutation of the
particle attractor, or a randomly selected best position.
The BBDE does not make use of the standard PSO
parameters and also removes the DE scale parameter.
The only parameter is the probability of recombination,
for which it was shown empirically that the BBDE is
insensitive. In the experiment, we used the same function
set and the parameter as in Omran et al. (2007), the
results reported here are the average and the deviations
for 30 independent runs. In Omran et al. (2007), 13 test

functions were used, and 7 of them are the same as the
benchmark function in Omran et al. (2007) and in our
paper, population size is 30 and iteration is 100000
function evaluations. The experimental results are listed
in Table 10. As shown in Table 10, the DE-GSA performs
better than the DEPSO and BBDE. It can conclusion that
the DE-GSA combines the DE algorithm and GSA is very
meaningful. For F10, The DEGSA algorithm cannot give
the optimal solution than other algorithm, but based on
the result, the robustness of the DEGSA is very good.

Comparison of adaptive LEP and best lévy algorithm

Here, we will compare our algorithm with the adaptive
LEP and best lévy algorithm (Lee and Yao, 2004). We set
the parameters as in Lee and Yao (2004), the following
parameters were used in our paper: population size =
100, dimension: 30 for F1, F3, F7, F8, F9, F10, 2 for F13,
F15, 4 for F18, F19, F20. itermax: 1500 for F1, F3, F7,
F8, F9, F10, 30 for F13, F15, 100 for F18, F19, F20. The
experimental results are listed in Table 11, From Table
11, for the unimodal function F1 and F3, the DE-GSA can
gives the better solution than adaptive LEP and best lévy
algorithm. For multimodal functions F7 to F10 with many
local minima, the final results are more important
because of this function can reflect the algorithm’s ability
to escape form poor local optima and obtain the near-
global optimum. The DE-GSA provided better solutions
than other algorithms. For F13 and F15, the dimension of
the function is very small. Therefore, all the algorithms

Li et al. 5977

Table 10. Comparison of DEPSO and BBDE algorithms.

F #Gen
DEPSO

Mean Best (Std Dev.)

BBDE

Mean Best (Std Dev.)

DE-GSA

Mean best (Std Dev.)

F1 100000 0.339409e-10(0.255639e-10) 0(0) 0(0)

F3 100000 30.243866(3.11839) 14.295707(0.948028) 0.1511(0.0589)

F4 100000 0.692243e-9(0.278905e-9) 0(0) 0(0)

F5 100000 0.436603e-14(0.348727e-12) 0(0) 0(0)

F7 100000 40.970572(2.021865) 72.185823(3.018019) 0(0)

F8 100000 13.435463(0.550129) 2.136173(0.159471) 4.4409e-15(0)

F11 100000 0(0) 0(0) 0.9980(0)

Table 11. Comparison of adaptive LEP and best lévy algorithm.

F #Gen
Adaptive LEP

Mean best (Std dev)

Best levy

Mean best (Std dev)

DE-GSA

Mean best (Std dev)

F1 1500 6.32e-4(7.6e-5) 6.59e-4(6.4e-5) 1.1130e-17(8.6734e-18)

F3 1500 43.40(31.52) 57.75(41.60) 30.1137(5.8759)

F7 1500 5.85(2.07) 12.50(2.29) 1.2150e-13(1.5632e-13)

F8 1500 1.9e-2(1.0e-3) 3.1e-2(2.0e-3) 9.3668e-10(4.0617e-10)

F9 1500 6.0e-6(1.0e-6) 3.0e-5(4.0e-6) 1.1930e-18(3.7725e-18)

F10 1500 9.8e-5(1.2e-5) 2.6e-4(3.0e-5) -7.4218(5.8663)

F13 30 -1.031(0.0) -1.031(0.0) -1.0316(4.2308e-07)

F15 30 3.000(0) 3.000(0) 3.0000(0)

F18 100 -9.54(1.69) -9.95(0.99) -10.1532(4.6389e-5)

F19 100 -10.30(0.74) -10.40(1.0e-4) -10.4029 (9.5130e-8)

F20 100 -10.54(4.9e-5) -10.54(3.1e-3) -10.5364(8.8497e-12)

find optimal solutions for these two functions. For F18 to
F20, The DE-GSA can provide all the optimal solution.
The algorithm performs superiorly better than adaptive
LEP and best lévy algorithm.

Comparison of MPSO-TVAC and HPSO-TVAC
algorithms

Ratnaweera et al. (2004) introduced a novel parameter
automation strategy for the particle swarm algorithm and
two further extensions to improve its performance after a
predefined number of generations. Firstly, time-varying
acceleration coefficients (TVAC) are introduced in
addition to the time-varying inertia weight factor in particle
swarm optimization (PSO) to efficiently control the local
search and convergence to the global optimum solution,
the concept of “mutation” is introduced to the particle
swarm optimization along with TVAC (MPSO-TVAC),
Secondly, we introduce a novel particle swarm concept
“self-organizing hierarchical particle swarm optimizer with
TVAC (HPSO-TVAC).” This algorithm selected modulus

of the velocity vector of a random particle by predefined
probability which added a small perturbation to it
randomly. In the experiment, we used the same function
set and the parameter as in Ratnaweera et al. (2004), the
results reported here are the average and the deviations
for 50 independent runs.

In Ratnaweera et al. (2004), 5 test functions were used,
and 3 of them are the same as the benchmark function in
Ratnaweera et al. (2004) and in our paper, the following
parameters were used in our experimental: population
size is 40, dimension: 10, 20, 30 for the functions. The
iterations are listed in Table 12, all functions have the
global optimal value of 0.0. The stopping criteria are
setting to 0.01. For F1, all algorithms can convergence to
0.01 for the 50 runs. For F3, The DE-GSA can give better
solution than the MPSO-TVAC and HPSO-TVAC for 10
and 20 dimensions. For 30 dimensions, the algorithm
gives the worst solution. For F7, the DE-GSA algorithms
can convergence to 0.01 for three different dimensions.
The experimental results show that the DE-GSA performs
superiorly better than the MPSO-TVAC and HPSO-
TVAC.

5978 Int. J. Phys. Sci.

Table 12. Comparison of MPSO-TVAC and HPSO-TVAC algorithms.

F Dimension #Gen
Mean best (Std dev)

MPSO-TVAC HPSO-TVAC DE-GSA

F1

10 1000 0.01 0.01 0.01

20 2000 0.01 0.01 0.01

30 3000 0.01 0.01 0.01

F3

10 3000 4.247(7.961) 12.967(11.538) 0.0222(0.0225)

20 4000 17.7148(60. 306) 14.093(9.641) 3.0755(0.5737)

30 5000 18.633(25.122) 13.666(11.006) 52.5691(28.2315)

F7

10 3000 0.01(0.0033) 0.01 0.01

20 4000 0.3415(0.588) 0.01 0.01

30 5000 2.050(1.910) 0.044(0.196) 0.01

CONCLUSION

This paper presented a hybrid differential evolution
with gravitation search algorithm called DE-GSA. The
proposed algorithm is tested on several benchmark
functions including unimodal and multimodal test
functions, multimodal test function with fix dimension,
and some real life problems. We have compared the
performance of DE-GSA with other evolution algorithm.
Experimental results have shown that the proposed
algorithm is more effective in obtaining better quality
solution, which are more robust with the relatively
smaller standard deviation.

ACKNOWLEDGEMENTS

This work is fully supported by the National Natural
Science Foundation of China under Grant Nos.
60473042, 60573067, 60803102.

REFERENCES

Ahmed AA (2005). Feature Subset Selection Using Ant Colony

Optimization. Int. J. Comput. Intell., 2:53-58.
Angeline PJ (1998). Using selection to improve particle swarm

optimization, IEEE Inter. Conf. on Evol. Comput.. Anchorage, 5:84-89.
Beightler CS, Phillips DT (1976). Applied Geometric Programming, John

Wiley and sons.
Bellman R (1952). On the theory of dynamic programming. Proceedings

of the National Academy of Sciences. 38:716-719.
Bergh FVD, Engelbrecht AP (2006). A study of particle swarm

optimization particle trajectories. Info. Sci., 176:937-971.
Brest J, Zumer V, Maucec MS (2006). lf-adaptive differential evolution

algorithm in constrained real-parameter optimization Proc IEEE
Congr. Evol. Comput.. (Vancouver, BC), pp. 215-222.

Clerc M, Kennedy J (2002). The Particle Swarm-Explosion, Stability,
and Convergence in a Multidimensional Complex Space. IEEE Trans.
Evol. Comput., 6:58-73.

Dorigo M, Maniezzo V, Colorni A (1996). The ant system: optimization
by a colony of cooperating agents. IEEE Trans. Systems, Man,
Cybernetics - Part B, 26 (1):29-41.

Du W, Li B (2008). Multi-strategy ensemble particle swarm optimization
for dynamic optimization. Infor. Sci., 178:3096-3109.

Ellabib I, Calamai P, Basir O (2007). Exchange strategies for multiple
ant colony system. Infor. Sci., 177:1248-1264.

Glover F, Kochenberger G (2003). Handbook of Meta-heuristics,
Kluwer, Boston.

Hendtlass T (2001). A Combined Swarm Differential Evolution Algorithm
for Optimization Problems. In Proceedings of the Fourteenth
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, In: Lecture Notes in
Computer Science, Springer-Verlag, 2070:11-18.

Jasper AV, Bruce AR, James M (2009). Hyman Self-Adaptive
Multimethod Search for Global Optimization in Real-Parameter
Spaces. IEEE Trans. Evol. Comput., 13 (2):243-259.

Kalinlia A, Karabogab N (2005). Artificial immune algorithm for IIR filter
design. Engineering Applications of Artificial Intelligence, 18:919-929.

Kennedy J, Eberhart RC (1995). Particle Swarm Optimization, In Pro. of
the IEEE Inter. Joint Conf. on Neu. Net., 4:1942-1948.

Kim DH, Abraham A, Cho JH (2007). A hybrid genetic algorithm and
bacterial foraging approach for global optimization. Info. Sci.,
177:3918-3937.

Lawler EL, Wood E (1966). Branch-and-bound methods: A survey.
Operations Research, 14:699-719.

Lee CY, Yao X (2004). Evolutionary programming using mutations
based on the levy probability distribution. IEEE Trans. Evol. Comput,
8(1): 1-13.

Liu H, Abraham A, Zhang W (2007). A Fuzzy Adaptive Turbulent
Particle Swarm Optimization. Int. J. Innovative Comput. Appl., 1: 39-
47.

Liu J, Lampinen J (2005). A fuzzy adaptive differential evolution
algorithm. Soft Comput.: Fusion Found,. Methodologies Applicat.,
9(6): 448-462.

Noman N, Iba H (2008). Accelerating Differential Evolution Using an
Adaptive Local Search. IEEE Trans. Evol. Comput., 12(1):107-125.

Omran MGH, Engelbrecht AP, Salman A (2006). Empirical Analysis of
Self-Adaptive Differential Evolution. Euro. J. Oper. Res., 12:785-804.

Omran MGH, Engelbrecht AP, Salman A (2007). Differential Evolution
based Particle Swarm Optimization. IEEE Swarm Intel. Symp,(SIS
2007). 4:112-119.

Omran MGH, Salman A, Engelbrecht AP (2005). Self-Adaptive
Differential Evolution. In Lecture Notes in Artificial Intelligence,
3801:192-199.

Qian WY, Li AJ (2008). Adaptive differential evolution algorithm for

multiobjective optimization problems. Applied Mathematics and
Computation, 5:431-440.

Qin AK, Suganthan PN (2005). Self-adaptive differential evolution
algorithm for numerical optimization. In Proceedings of the IEEE
Congress Evol. Comput., 2:1785-1791.

Storn R, Price K (1997). Differential evolution-a simple and efficient
heuristic for global optimization over continuous space. J. Global
Optim., 11: 341-359.

Rashedi E, Nezamabadi-pour H (2009). GSA: A Gravitational Search
Algorithm. Infor. Sci., 7:2232-2248.

Ratnaweera A, Halgamuge SK, Watson HC (2004). Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients. IEEE Trans. Evol. Comput., 8(3): 240-255.

Reid DJ (1996). Genetic algorithms in constrained optimization.
Mathematical, 3:87-111.

Shi XH, Liang YC (2005). An improved GA and a novel PSO-GA-based
hybrid algorithm. Infor. Proc. Let., 93:255-261.

Snyman JA (2004). Practical Mathematical Optimization: An
Introduction to Basic Optimization Theory and Classical and New
Gradient-Based Algorithms. Kluwer Academic Publishers, Dordrect,
the Netherlands.

Suman B (2004). Study of simulated annealing based algorithms for
multiobjective optimization of a constrained problem. Computers &
Chemical Engineering, 8:1849-1871.

Sun J, Zhang Q, Tsang E (2004). DE/EDA: A new evolutionary
algorithm for global optimization. Info. Sci., 169:249-262.

Talibi H, Bautouche M (2004). Hybrid Particle Swarm with Differential
Evolution for Multimodal Image Regression. IEEE Inter. Conf. on Ind.
Tech, 3:1567-1573.

Thangaraj R, Pant M, Abraham A, Grosan C (2008). Hybrid differential
evolution-Particle Swarm Optimization algorithm for solving global
optimization problems. Digital Information Management, 2008, ICDIM
2008, Third International Conference on,11:8-24.

Li et al. 5979

Wang YP, Dang CY (2007). An Evolutionary Algorithm for Global

Optimization Based on Level-Set Evolution and Latin Squares. IEEE
Trans. Evol. Comput., 11(5): 579-595.

Yao X, Liu Y, Lin G (1999). Evolutionary programming made faster.
IEEE Trans. Evol. Comput., 3(2): 82-102.

Zhang BJ, Li SY (2007). Ant colony optimization algorithm and its
application to neuro-fuzzy controller design. J. Syst. Eng. Elec.,
18:603-610.

Zhang CS, Ning JX, Lu S, Ouyang DT, Ding TN (2009). A novel hybrid
differential evolution and particle swarm optimization algorithm for
unconstrained optimization. Operations Research Letters, 37:17-122.

Zhang JQ , Sanderson AC (2009). JADE: Adaptive Differential Evolution
with Optional External Archive, IEEE Trans. Evol. Comput.. 13(5) 945-
958.

Zhang Q, Muhlenbein H (2004). On the convergence of a class of
estimation of distribution algorithms. IEEE Trans on Evol. Comput.,
8:127-136.

Zhang Q, Sun J, Tsang E, Ford J (2004). Hybrid estimation of
distribution algorithm for global optimization. Eng. Comput., 21: 91-
107.

Zhang WT, Xie XF (2003). DEPSO: hybrid Particle Swarm with
Differential Evolution Operator. IEEE International Conference on
Systems Man and Cybernetics, 4:3816-3821.

5980 Int. J. Phys. Sci.

Appendices

Table A.1.
ija in

14
F

32, 16,0,16,32, 32 ,0,16,32
()

32, 32, 32, 32, 16, ,32,32,32
ij

a
− − − 

=  
− − − − − 

L

L

Table A.2.
i

a and
i

b in
15

F

i 1 2 3 4 5 6 7 8 9 10 11

i
a

0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0342 0.0235 0.0246

1

ib
−

0.25 0.5 1 2 4 6 8 10 12 14 16

Table A.3.
ija and

i
c in

19
F

i ija
,j = 1, 2, 3 i

c

1 3 10 30 1

2 0.1 10 35 1.2

3 3 10 30 3

4 0.1 10 35 3.2

Table A.4.
ijp in

19
F

i ijp
,j = 1, 2, 3

1 0.3689 0.1170 0.2673

2 0.4699 0.4387 0.7470

3 0.1091 0.8732 0.5574

4 0.0315 0.5743 0.8828

Table A.5. The planning and control components.

i ija
,j = 1, 2, 3, 4, 5, 6 i

c

1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2

Table A.6.
ijp in

20
F

i ijp
,j = 1, 2, 3

1 0.131 0.169 0.556 0.012 0.828 0.588

2 0.232 0.413 0.830 0.373 0.100 0.999

3 0.234 0.141 0.352 0.288 0.304 0.665

4 0.404 0.882 0.873 0.574 0.109 0.038

Li et al. 5981

Table A.7.
ija and

i
c in

21 22 23
, ,F F F

.

i ija
,j = 1, 2, 3, 4 i

c

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 5 5 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

