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A numerical method based on the differential transform method (DTM) and the Adomian decomposition 
method (ADM) is introduced in this paper for the approximate solution of delay differential equation 
(DDE). The algorithm is illustrated by studying an initial value problem. The results obtained are 
presented and show that only few terms are required to obtain an approximate solution which is found 
to be accurate and efficient. 
 
Key words: Delay differential equations, differential transform method, Adomian decomposition method. 

 
 
INTRODUCTION 
 
The differential transform method (DTM) has been 
successfully used by Zhou (1986) to solve linear and 
nonlinear initial value problems in electric circuit analysis. 
In recent years, DTM has been used to solve one-
dimensional planar Bratu problem, differential-difference 
equation, delay differential equations, differential 
algebraic equation, integro-differential systems (Rostam 
et al., 2011; Arikoglu and Ozko, 2006; 2008; Liu and 
Song, 2007; Ayaz, 2004; Karakoç and Bereketoğlu, 2009; 
Kurnaz and Oturanç, 2005; Evans and Raslan, 2004). 
We reformulate DTM to solve the following linear and 
nonlinear of delay differential equation (LDDE-NDDE) 
and compare our results with the Adomian decomposition 
method (ADM) (Evans and Raslan, 2004). 
 
 

DESCRIPTION OF THE METHODS 
 

The differential transform method (DTM)   
 
The differential  transformation of  the  k

th
-order derivative  

of function y(x) is defined as follows: 
 

         (1) 

 

Where  is the original function,  is the 

transformed function and  is the k
th
 derivative with 

respect to x. The differential inverse transform of  is 

defined as: 
 

                                   (2)   

 
Combining Equations 1 and 2 we obtain 
 

      (3)  

 

The following theorems that can be deduced from 
Equations 1 and 2 are given in Rostam et al. (2011).
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Theorem 1  
 

If the original function is , then the 

transformed function is . 

 
 
Theorem 2 
 

If the original function is , then the 

transformed function is . 

 
 
Theorem 3 
 

If the original function is , then the 

transformed function is . 

 
 
Theorem 4  
 

If the original function is ,y(x)h(x)=u(x)
 

then the 

transformed function is.  

 
 
Theorem 5 
 

If the original function is  then the 

transformed function is . 

 
 
Theorem 6 
 

If the original function is then the 

transformed function is: 
 

. 

 
 
Adomian decomposition method (ADM) 
 
Consider the DDE of the form (El-Safty et al., 2003; 
Abdel-Halim and Ertürk, 2007) 
 

                          (4) 

 

                              

                                                      (5) 
 

Where    the    differential    operator         is    given    by 
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The inverse operator 1L is therefore considered 

as; 
 

N fold integral operator defined by 

 

                                                (7) 

 

Operating with 
1L on Equation 1, it then follows 
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Where j are constants describing the boundary. The 

ADM assumes that the unknown function )(xy can be 

expressed as an infinite series of the form  
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So that the components )(xyn  
will be determined 

recursively. Moreover, the method defines the nonlinear 

term )))((),(,( xgyxyxf
 
by the Adomian polynomials. 
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Where nA are Adomian polynomials that can be 

generated for all forms of nonlinearity as follows: 
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Substituting Equations 6 and 7 into Equation 5 gives  
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To determine the composition ,0),( nxyn  first we 

identity the zero component )(0 xy by all terms that arise 

from the boundary conditions at 0x and from 

integrating  the  source  term if it exists then secondly, the  
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Table 1. The absolute errors in the approximation solutions using DTM and ADM (N = 13). 
 

X H = 0.001 (El-Safty et al., 2003) H = 0.001 (El-Safty et al., 2003) DTM ADM 

0.2 1.37 E-11 3.10 E-15 6.66134E -16 0.0 

0.4 3.27E-11 7.54E-15 1.08691E-12 2.22E-16 

0.6 5.86E-11 1.39E-14 9.56517E-11 2.22E-16 

0.8 9.54E-11 2.13E-14 2.30479 E-9 1.33E-15 

1.0 1.43E-10 3.19E-14 2.73127 E-8 4.88E-15 

 
 
 

remaining components of )(xy can be determined in a 

way such that each component is determined by using 
the preceding components. In other words, the method 
introduces the recursive relation: 

 

,
!

)(
1

0

0

j
N

j

j
x

j
xy 








,0),()( 1

1  

 nALxy nn       (13) 

 

For the determination of the components 0),( nxyn  of 

).(xy the series solution of )(xy follows immediately with 

the constants 1,...1,0,  Njj are as yet 

undetermined. The above analysis yields the Theorem 7. 

 
 
Theorem 7  

 
The solution of the DDE in form of Equation 4 can be 
determined by the series of Equation 9 with the iterations 
of Equation 10. To illustrate the Theorem 7, some 
examples of LDDE and NDDE are discussed in details 
and the obtained results are exactly the same with the 
one found by ADM. 

 
 
APPLICATIONS 

 
What follows examples for LDDEs and NDDEs will be 
examined by the two schemes presented above. Two 
physical models will be used for illustrative purposes 
regarding the comparison goal. 

 
 
Linear delay differential equations 

 
Example 1  

 
Consider the first order LDDE in the form (Evans and 
Raslan, 2004) 

 

         (14)      (14) 

The first solution by DTM method 
 
Using Theorems 1, 2, 3, 4, 5 and 6, Equation 14 
transforms to 
 

                 (15) 

 
By using Equations 1 and 6, the following transformed 

initial conditions at ,00 x can be obtained:   

 

                                                                     (16) 
 
Substituting Equation 16 into Equation 15, we have 
 

  

       (17)  

 
Finally, the differential inverse transform of Y(k) gives 
 

y(x) =   
 

Where  x0 = 0, We obtain the following analytical solution 
 

(18)  

 

Which is formally the same as Maclaurin series of . In 

fact, the functions  is the exact solution of the Example 

1 
 
 
The first solution by ADM method 
 
From Equation 14 and Theorem 7, it gives  
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Increasing the approximation order up to 13N  the 

absolute differences between the exact and numerical 

solutions are calculated for ,8.0,6.0,4.0,2.0x and .0.1
 

Comparisons have been made with known results as 
reported in Table 1. It is clear from Table 1 that the two 
methods not only give rapidly convergent series but also 
accurately compute the solutions. 



 

 
 
 
 

Table 2. Solution values y(x) using DTM and ADM (N = 8). 
 

X Exact ADM DTM 

0.0 0.0 0.0 0.0 

0.2 0.04 0.04 0.04 

0.4 0.16 0.16 0.16 

0.6 0.036 0.36 0.036 

0.8 0.64 0.64 0.64 

1.0 1.00 1.00 1.00 

 
 
 
Example 2  
 
Consider the LDDE of the second order:  

 

         (20) 

 
With initial condition  
 

                                              (21) 

 
Whose exact solution is   

 
 
The first solution by DTM method 
 
Using Theorems 1, 2, 3 and 4, Equation 20 transforms to 
 

          (22)            

 
Using the initial condition of Equation 21, we have 
 

,0)0( Y     ,0)1( Y                                                  (23) 

 
Substituting Equation 23 into Equation 22, we obtain the 
following Y(k) values successively 
 

  

   
                                                                                     (24) 
                   (24) 
Substituting these values into Equation 3 where x0 = 0, 
we obtain the following analytical solution 
 

                 (25) 

 

 
The second solution by ADM method  

 

,
2

1
)( 42

0 xxxy   and 
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This gives, 
 

,0833333.0)( 42

0 xxxy    

,0833333.00833333.0)( 64

0 xxxy                              (27)    

 
Taking eight terms of the series then we get the 
differences between the exact and numerical solutions at 

,8.0,6.0,4.0,2.0x and .0.1  as reported in Table 2. 

 
 
NONLINEAR DELAY DIFFERENTIAL EQUATIONS 
 
Example 3 (Evans and Raslan, 2004) 
 
Consider the NDDE of the first order  
 

                   (28) 

 
With initial condition 
 

,0)0( y                                                                      (29) 

 
 
The first solution by DTM method 
 
Using Theorems 1, 3 and 6, Equation 29 transforms to 
 

    (30) 

 
Using the initial condition of Equation 30, we have the 
transformed initial condition  
 

,1)0( Y                                                                      (31) 

 
Substituting Equation 32 into Equation 31, we obtain the 
following Y(k) values successively. We find  
 

,0)( kY  .....,4,2,0k  

 

 
 

                                                                                     (32)  
 

Then, the inverse transformation of the set of values 

 gives n term approximation solution as: 

 

    (33) 

                               
Which  is  formally the same as Maclaurin series of sin(x).  
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Table 3. Solution values y(x) using ADM and DTM (N = 3). 
 

X Exact ADM DTM 

0.0 0.0 0.0 0.0 

0.2 0.19866933079506122 0.19866933079506122 0.198669 

0.4 0.3894183423086505 0.3894183423086505 0.389418 

0.6 0.56464224733950355 0.56464224733950355 0.564642 

0.8 0.7173560908995227 0.7173560908995228 0.717356 

1.0 0.84147109848078966 0.84147109848078965 0.841471 

 
 
 
In fact, the functions sin(x) is the exact solution of the 
Example 3. 
 
 
The second solution by ADM method  
 
We get   

   
 

,1)(0 xy and ,0, 2)(
0

1   ndxAxy

x
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           (34)        

 

Where 0, nAn  are the domain polynomials that 

represent the nonlinear terms. We list the set of Adomian 
polynomials as follows: 
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The solution in a series form is given by 
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And using Taylor series the exact solution y = sin x is 
readily obtained. Taking up to three terms only of the 
series solution the numerical values due to ADM and the 
exact solution due to DTM are tabulated and compared 
with the exact solution for the selected values of x in 
Table 3. 
 
 
Example 4  
 
Consider the NDDE of the third order  
 

            (37) 

 
With initial condition 

                      (38) 

 

The exact solution  

 
 
Solving by DTM method  
 
Using Theorems 1, 3 and 6, Equation 37 transforms to 
 

          

                                                                                     (39) 
 
Using the initial condition of Equation 39, we have the 
transformed initial condition  
 

1)0( Y , 1)1( Y , 1)2( Y                                       (40) 

 

Substituting Equation 41 into Equation 40, we obtain the 
following Y(k) values successively. We find  
 

0)( kY , ,....4,2,0k  

 
          (41) 

 
Then, the inverse transformation of the set of values 

 gives n terms approximation solution as 

 

 (42) 

 
For N → ∞, the closed form of above solution is y(x) = sin 
x, which is exactly the same as the exact solution. The 
result from DTM are tabulated against those from ADM in 
Table 4 at N = 4. 
 
 
Conclusion 
 
A new technique, using DTM and the ADM, to 
numerically solve the DDEs is presented. All the 
numerical results obtained by using DTM and the ADM 
described   earlier  show  very  good  agreement  with the  
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Table 4. Solution values Y(x) using ADM and DTM (N = 4). 
 

X Exact 
ADM[8] DTM 

N = 4 N = 4 

0.0 0.0 0.0 0.0 

0.2 0.19866933079506122 0.19866933079506122 0.198669 

0.4 0.3894183423086505 0.3894183423086505 0.389418 

0.6 0.56464224733950355 0.56464224733950355 0.564642 

0.8 0.7173560908995227 0.7173560908995228 0.717356 

1.0 0.84147109848078966 0.84147109848078965 0.841471 

 
 
 
exact solutions for only a few terms. Comparing the DTM 
and the decomposition method with several other 
methods that have been advanced for solving DDEs, 
shows that the new technique is reliable, powerful and 
promising. We believe that the efficiency of the 
decomposition method gives it much wider applicability 
which needs to be explored further. 
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