academicJournals

Vol. 8(26), pp. 1382-1392, 16 July, 2013 DOI: 10.5897/IJPS2013.3967 ISSN 1992 - 1950 © 2013 Academic Journals http://www.academicjournals.org/IJPS

Full Length Research Paper

Quantum chemical calculations on molecular structures and solvents effect on 4-nitropicolinic and 4methoxypicolinic acid

Semire Banjo* and Adeoye Idowu Olatunbosun

Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Oyo State, Nigeria.

Accepted 08 July, 2013

The density functional theory (DFT) (B3LYP) was used to study the solvents effect on electronic properties of 4-methoxypicolinic acid (4MOPIC) and 4-nitropicolinic acid (4NPIC). The calculated vibration frequencies at DFT/6-311++G^{**} were compared to that of un-substituted picolinic acid to know the effect of donor/acceptor substituent on the molecules. Five solvents namely acetone, ethanol, diethyl ether, N, N-dimethylformamide (DMF) and tetrahydrofuran (THF) were used to study solvents effect. The methoxyl (OCH₃) group in 4MPIC pushed electrons into the picolinic acid ring thereby resulted in upfield resonance as compared to 4NPIC in which nitro (NO₂) group brought about downfield in ¹HNMR. The solvents increased the minimum energy required to remove an electron for 4MOPIC whereas it was lower in 4NPIC. The HOMO and LUMO energies calculated in the solvents revealed that both HOMOs and LUMOs experienced stabilization in 4NPIC but LUMOs were destabilized in 4MOPIC as compared to gas phase.

Key words: 4-methoxypicolinic acid, 4-nitropicolinic acid, solvents effect, density functional theory (DFT).

INTRODUCTION

Picolinic acid and its substituents are of interest to many researchers mainly because of their usefulness as ligands; the availability of some donor atoms on the compounds which can serve as binding sites to various metals in forming various monomeric and polymeric complexes (Yurovskaya et al., 1998). Picolinic acid is the body's prime natural chelator of vital trace elements such as chromium, zinc, manganese, copper, iron and molybdenum (Evan and Johnson, 1980). Picolinic acid is biosynthesized in the liver and kidneys from the amino acid tryptophan, and stored in the pancreas during digestion, secreted into the intestine(Fernandez-Poi et al., 2001).

The vibrational frequencies, UV-Visible, ¹H and ¹³C NMR spectra of piconilic acid with its metal complexes of Fe(III), Ni(II), Cu(II), Zn(II) and Ag(I) were recently

reported (Kalinowska et al., 2007; Goher and Abu-Youssef, 1996). The 3-methylpicolinic acid and 6methylpicolinic acid with their cobalt complexes were synthesized and characterized by spectroscopic techniques and thermal characterization in the solid state (Kukovec et al., 2009).

In the past the chemical behaviour of ambident ligands such as mercaptobenzothiazole and mercaptobenzimidazole ligands has been investigated using density functional theory (AlHokbany and AlJammaz, 2011). This is with a view of understanding the coordination chemistry of the metal complexes to be formed. Density functional theory has been employed over the years to obtain thermochemical data, molecular structure force fields frequencies assignment of nuclear magnetic resonance (NMR), photoelectron, erythrocyte

*Corresponding author. E-mail: bsemire@lautech.edu.ng.

Figure 1. Schematic structures of the studied molecules: 4nitropicolinic acid for $X = NO_2$ and 4methoxypicolinic acid for $X = OCH_3$.

sedimentation rate (ESR) and ultra violet (UV) spectra, activation barriers, dipole moments and other one electron properties (Koczon et al., 2003; Parajón-Costal et al., 2004; Ziegler, 1991).

The effect of protic and aprotic solvents on the reactivity of picolinic, nicotinic and isonicotinic acid as well as of some substituted nicotinic acids with diazodiphenylmethane has been investigated (Dimitrijević et al., 1974; Drmanic et al., 2012; Marinkovi, 2005). In one of our recent work, DFT/B3LYP with various basis sets (6-31G*, 6-31G**, 6-311G**, 6-311+G**, 6-311++G^{**}) was used to study solvents effect on geometry and electronic properties of picolinic acid. The results revealed that solvent-molecule interactions are more prominent around the heteroatoms in the case of the polar solvents. Therefore, this was a greater shielding/deshielding on carbon nuclei around nitrogen and oxygen atoms of picolinic acid in the case of the polar solvents (Adeove and Semire, 2013). The aim of this study is to employ density functional theory to study the effect of solvents on molecular structures and electronic properties of two 4-substituted picolinic acid namely 4nitropicolinic acid and 4-methoxypicolinic acid as shown in Figure 1. The solvents employed are acetone, Ethanol, Diethyl ether, N,N-Dimethylformamide (DMF) and Tetrahydrofuran (THF) (Figure 1).

COMPUTATIONAL METHODS

The 4MOPIC and 4NPIC were optimized without symmetry constraint using density functional theory Beckes's three-parameter hybrid functional (Becke, 1988) employing the Lee, Yang and Parr correlation functional B3LYP (Lee et al., 1988) with 6-31G*, 6-31G** and 6-311G** basis sets. The vibration frequencies, electronic properties and NMR were calculated. In the calculation of vibration frequency, no imaginary frequency modes were obtained for the two molecules, therefore it was believed that true minimum on the potential energy surface were found for the molecules. The absorption transitions were calculated from the optimized geometry in the ground state S₀ using configuration interaction (CI) theory using density functional theory (DFT with 6-31G* in five different solvents namely acetone, ethanol, diethyl ether, N,N- Dimethylformamide (DMF) and tetrahydrofuran (THF). The convergence criteria for the energy calculations and geometry

optimizations used in the density functional methods were default parameters in the Spartan 06 program (Table 1).

RESULTS AND DISCUSSION

Chemical shifts and solvents effect

The molecular structure of the optimized 4MOPIC and 4NPIC using B3LYP method with 6-31G* basis set is used to calculate ¹³C and ¹H chemical shift calculations as shown in Table 1. It has been reported that ¹³C and ¹H NMR calculated using DFT are in good agreement with the experimental values (Teimouri et al., 2008; Karakurt et al., 2012; Cheeseman et al., 1996). Therefore, in the absence of experimental results the calculated ¹³C and ¹H NMR using DFT method can provide reasonable information that could assist in structural elucidation: thus the chemical shifts of the two isomers are compared. The results in Table 1 showed that ¹³C NMR chemical shifts for the two molecules are greater than 100 ppm which is the typical ¹³C NMR chemical shift for organic molecule (Kalinowski et al., 1988: Pihlaia and Kleinpeter, 1994). It has been reported that calculations based on the averaging of chemical shifts are in better agreement with the experimental values than plain calculations using optimized geometry (Stare et al., 2004). The chemical shifts of C2 and C4 are 109.373 and 115.541 ppm for 4MOPIC and 119.611 and 118.174 pmm for 4NPIC, therefore C2 and C4 experienced shielding effect because of its position in the molecules whereas other carbon atoms are de-shielded. C2 and C4 are more shielded in 4MOPIC because of higher electron density as a result of electron donating effect of CH₃ substituent. The chemical shifts of C3 are 165.388 and 155.204 ppm for 4MOPIC and 4NPIC respectively. The shielding/deshielding of the substituent has no effect on C1, C5 and C6 of 4MOPIC as compared to un-substituted picolinic acid (Adeoye and Semire, 2013), although C1 and C5 in 4NPIC are slightly de-shielded. This is in agreement that the presence of electronegative atom attracts all electron clouds of carbon atoms towards itself, which in turn leads to de-shielding of carbon atoms and results in increase in chemical shift values (Varsanyi and Sohar, 1972). This de-shielding effect is noticed in 4NPIC molecule because of the attachment of NO₂ group.

The aromatic proton signals are observed at 5 to 7 ppm (Kalinowski et al., 1988; Pihlaja and Kleinpeter, 1994) and it has been found that presence of electrons on aromatic ring, double bonded atoms, and triple bonded atoms has been found to de-shield attached hydrogen (Varsanyi and Sohar, 1972). Its chemical shifts would be more susceptible to intermolecular interactions as compared to that for other heavier atoms. The methoxyl (OCH₃) group in 4MPIC pushed electrons into the picolinic acid ring thereby results in upfield resonance as compared to 4NPIC in which nitro (NO₂) group brought about downfield (Table 1). For instance, chemical shifts

4-methoxylpicolinic acid					4-nitropicolinic acid			
Atom	6-31G*	6-31G**	6-311G**	Aveg.	6-31G*	6-31G**	6-311G**	Aveg.
C1	152.432	145.375	154.018	150.608	154.234	147.115	155.407	152.252
C2	110.751	105.608	111.760	109.373	120.212	115.441	123.179	119.611
C3	164.568	158.971	172.625	165.388	153.907	150.061	161.643	155.204
C4	116.013	110.919	119.691	115.541	118.620	114.036	121.866	118.174
C5	153.926	145.624	155.270	151.607	155.851	147.514	156.685	153.350
C6	164.063	154.569	165.406	161.346	162.813	153.348	164.105	160.089
H1	5.583	6.757	5.511	5.950	5.970	7.166	5.868	6.335
H2	7.274	8.616	7.404	7.765	8.701	10.015	8.826	9.181
H4	6.600	7.867	6.862	7.110	7.892	9.198	8.015	8.368
H5	8.573	9.733	8.747	9.018	9.089	10.261	9.247	9.532

Figure 2. Solvents effect on ¹³C NMR and ¹H NMR in ppm calculated at DFT/6-31G* level.

for H2 and H4 are 7.765 and 9.018 pmm for 4MOPIC and 9.181 and 9.9532 ppm for 4NPIC respectively. The hydroxyl oxygen atom shows electronegative property hereby contributed to hydroxyl hydrogen atom (H) downfield resonance as reflected in the two molecules. The calculated chemical shifts of hydroxyl hydrogen atom are 5.950 and 6.355 pmm for 4MOPIC and 4NPIC respectively which shows that NO₂ substituent increased downfield resonance experienced by hydroxyl hydrogen atom of 4NPIC (Table 1).

Theoretically, the solvent effect is estimated by comparing calculated chemical shifts for solution and gas phase at a particular level of calculation. In this work, the ¹³CNMR and ¹HNMR calculated at DFT/6-31G* are used to estimate effect of solvents on chemical shifts as shown in Figure 2. The effects of solvents on ¹³C NMR chemical shifts for 4MOPIC are pronounced on C1, C2, C3 and C6. For instance, the differences calculated on C6 for4MOPIC as compared to gas phase are 6.086, 9.301, 4.503, 6.379 and 5.256 ppm for acetone, ethanol, diethyl

4-methoxylpicolinic acid			4-nitropicolinic acid		
Cal.	Int.	Assign.	Cal.	Int.	Assign.
3773	96.50	vOH	3773	115.25	vOH
3242			3246		
3204		vCH	3229		vCH
3160			3171		
1821	353.81	vC=O	1828	346.81	vC=O
1623	244.52		1651	40.40	
1606	21.09		1051	40.40	VC=C +VC=N
1516		vC=C +vC=N	1604	28.18	vC=C +vC=N
1427	5.27	C=C +πCH	1595	251.34	vC=C +vC=N
1355	110.82	C-O + πOH	1495		vC=N +πCH
1334	96.35	vC=N +C-OCH ₃	1415		vC=C +πCH
1317	30.00	vC-C + C-N	1375	199.19	vNO ₂
1285	71.94	vC-OCH₃ + πOH	1360	79.29	C-O + πOH
1177	182.74	πCH + πOH	1311		С-N + пОН+ пСН
1134	138.25	πCH + C-O	1301	30.91	vC=C-C=N+ πOH
1083	99.00	πCH + C-O	1206	87.52	$vC-O + \pi OH + vC-NO_2$
1058	7.26	vC-OCH ₃	1139	203.08	vC-O+πCH
1008	58.98	δRing	1087	71.93	vC-O+πCH
998, 890, 860		σCH	1012		ωRing
805		π(C=C-C)	1001, 948, 880		σCH
613		σΟΗ	734		π(C=C-C)
572		ωRing	660		φ (COOH)
262		γ CH₃	608		σΟΗ
207		γCH_3	276		ωRing
186		ωRing	345		δRing
102		γ O-CH₃	146		γRing
36		ү СООН	37		γ (NO ₂ + COOH)

Table 2. Selected vibrational frequencies calculated at B3LYP/6-311++G**.

v, stretching; π , in-plane bending; σ , out-of-plane bending; τ , torsion, δ , breathing; ω , wagging; γ , rocking; ϕ , scissor.

ether, DMF and THF respectively. The effect of ethanol is felt more on C6 and C1 for 4MOPIC molecule (Figure 2). In case of 4NPIC, the solvent effects are pronounced on C3, C5 and C6. For C6, the differences calculated are 3.713, 6.562, 2.681, 3.961 and 3.169 ppm for acetone, ethanol, diethyl ether, DMF and THF respectively as compared to results from gas phase calculations.

The effects of solvents on ¹HNMR chemical shifts for 4MOPIC are felt by all hydrogen atoms although more on H1, H2 and H4. For 4NPIC, the only solvent that has much effect on the molecule is THF as it is reflected in ¹HNMR on H2 and H4. The differences in chemical as compared to gas phase calculation could be explained in terms of changes in free energy hypersurface of the nuclei (Jernej et al., 2004).

Vibration frequencies

The vibration frequencies calculated at B3LYP/6-

311++G** are shown in Table 2. The ring carbon hydrogen stretching vibrations calculated at B3LYP/6-311++G** are in the region 3242-3160 cm⁻¹ for 4MOPIC and 3246-3171 cm⁻¹ for 4NPIC. The C=O stretching vibration for 4MOPIC and 4NPIC are calculated to be 1821 and 1826 cm⁻¹ with 353.81 and 346.81 intensities respectively. However, C=O stretching vibration for unsubstituted picolinic acid was calculated to be 1820 cm⁻¹ (Adeove and Semire, 2013) and experimentally observed at 1717 cm⁻¹ (Varsanyi and Sohar, 1972) and 1719 cm⁻¹ (Gfeller et al., 1976). The OH stretching vibration is calculated for both molecules at 3773 cm⁻¹ with $\approx 20\%$ higher intensity in 4NPIC. This has been calculated at 3770 cm⁻¹ and experimentally observed at 3437 and 3464 cm⁻¹ for un-substituted picolinic acid (Varsanyi and Sohar, 1972; Gfeller et al., 1976). The C=C stretching coupled with C=N are calculated at 1623, 1606 and 1516 cm⁻¹ for 4MOPIC and 1651, 1604 and 1595 cm⁻¹ for 4NPIC. The C=C stretching coupled with C-H in plane deformation (π CH) are calculated to be 1427 and 1415 cm⁻¹ for

4MOPIC and 4NPIC respectively, this has been calculated at 1462 cm⁻¹ and observed at 1439 cm⁻¹ (Varsanyi and Sohar, 1972) and 1443 and 1719 cm⁻¹ (Gfeller et al., 1976) for the un-substituted picolinic acid. The C-O stretching coupled with OH in plane deformation (π OH) is calculated at 1355 and 1360 cm⁻¹ for 4MOPIC and 4NPIC respectively. Also, this has been calculated at 1358 cm⁻¹ and observed experimentally at 1370 and 1347 cm⁻¹ (Adeoye and Semire, 2013; Varsanyi and Sohar, 1972; Gfeller et al., 1976) un-substituted picolinic acid. The in-plane bending of C=C-C is calculated at 805 cm⁻¹ for 4MOPIC and 734 cm⁻¹ for 4NPIC.

The C-H out-of-plane deformation (σ CH) for 4MOPIC is calculated at 998, 890 and 860 cm⁻¹ whereas this is calculated at 1001, 948 and 880 cm⁻¹ for 4NPIC. The OH out-of-plane deformation (σ OH) is calculated to be 613 and 608 cm⁻¹ for 4MOPIC and 4NPIC respectively. The COOH rocking vibration was at 36 cm⁻¹ for 4MOPIC and 37 cm⁻¹ for 4NPIC which is coupled with γ NO₂.

Global electrophilicity and Electronic properties

The electronic properties of the 4MOPIC and 4NPIC are calculated from the total energies and the Koopmans' theorem. The ionization potential (IP) is determined from the energy difference between the energy of the compound derived from electron transfer which is approximated; IP \approx -E_{HOMO} while the electron affinity (EA) is given as; EA \approx -E_{LUMO}, respectively. The chemical potential (μ), chemical hardness (η), electrophilicity index (ω) and softness (1/ η) of a molecule are deduced form IP and EA values (Takusagawwa and Shimada, 1976; Zhou and Navangul, 1990; Chamizo et al., 1993; Koopmans, 1734; Parr et al., 1999) as shown in the following Equations 1, 2 and 3.

$$\mu = \left(\frac{\partial E}{\partial N}\right) v(r) \approx -\left[\frac{IP + EA}{2}\right] \approx -\left[\frac{E_{HOMO + E_{LUMO}}}{2}\right]$$
(1)

$$\eta = \left(\frac{\partial^2 E}{\partial N^2}\right) v(r) \approx \left[\frac{IP - EA}{2}\right] \approx \left[E_{HOMO} - E_{LUMO}\right]$$
(2)

$$\omega = \frac{\mu^2}{2\eta} \tag{3}$$

It is well known that when IP is small and EA is large and positive the molecule should be soft, therefore soft molecules are often more chemically reactive than hard molecules. Also, the electrophilicity index has being a useful structural depictor of the analysis of the chemical reactivity of molecules (Pearson, 1993; Bird, 1997; Chattaraj et al., 2003; Semire and Odunola, 2013; Semire, 2013). According to the definition, electrophilicity index measures the propensity of a species to accept electrons. As Domingo et al (Domingo et al., 2002) proposed the high nucleophility and electrophility of heterocycles corresponds to opposite extremes of the scale of global reactivity indexes. A good, more reactive, nucleophile is characterized by a lower value of μ , ω and in opposite a good electrophile is characterized by a high value of μ , ω . The electronegativity and hardness are of course used extensively to make predictions about chemical behavior and these are used to explain aromaticity in organic compounds (De Proft and Geerlings, 2001). A hard molecule has a large HOMO–LUMO gap and a soft molecule has a small HOMO–LUMO. The LUMO represents electron(s) accepting ability and HOMO as electron donating ability of a molecule.

The HOMO, LUMO, energy band gap, dipole moment, energy of solvation, chemical potential, softness, electrophilicity/nucleophilicity index and UV-Vis adsorption maximum calculated are displaced in Table 3. The values of chemical hardness, chemical potential, softness, and electrophilicity index in gas phase for 4MOPIC are 5.46, -2.73, 0.183 and 0.6825 eV respectively and that of 4NPIC are 4.79, -2.40, 0.209 and 0.6013 eV respectively. Therefore, 4NPIC should be a better molecule to be involved in the interactions with electrophiles than for 4MOPIC. The dipole moment in a molecule is one of the important electronic properties when considering the interactions of molecules in solvents. The higher the value of dipole moment the stronger the intermolecular interactions would be expected, however the orientation of the dipole moment vector is also an important parameter. The calculated dipole moment values for 4MOPIC and 4NPIC in cas phase are 4.75 and 0.41Debye respectively.

The HOMO and LUMO energies calculated in solvents revealed that both HOMOs and LUMOs experienced stabilization in 4NPIC but LUMOs are destabilized in 4MOPIC as compared to gas phase. In line with our recent report (Adeoye and Semire, 2013), the magnitude of solvation energies reflect the degree of polarity of the solvents used in these calculations (that is, Ethanol > acetone \approx DMF > THF \approx Diethyl ether). The absorption maxima calculated in solvents are shifted to longer wavelengths as compared to gas phase (Table 3). The absorption maxima calculated at DFT (B3LYP) level with 6-31G*, 6-31G**, 6-311G**, 6-311+G** and 6-311++G** basis sets are shown in Table 4. The absorption maxima are 218.79, 218.82, 219.81, 225.53 and 225.57 nm for 4MOPIC and 276.06, 276.01, 274.52, 281.45 and 281.47 nm for 4NPIC at 6-31G*, 6-31G**, 6-311G** and 6-311+G** basis sets respectively. Another indicator of electrophilic attraction apart of the electrostatic potential is provided by the local ionization potential energy surface which is an overlaying of the energy of electron removal (ionization) onto the electron density. The regions with red color represent regions in the molecular surface where electron removal goes (with minimal energy) most easily, therefore easy of electron removal. The local ionization potential energy for 4MOPIC and

			4MOPIC			
	G. phase	Acetone	Ethanol	Diethyl ether	DMF	THF
HOMO (eV)	-6.96	-6.79	-6.88	-6.83	-6.78	-6.81
LUMO (eV)	-1.50	-1.52	-1.61	-1.51	-1.53	-1.51
Δ(H-L)	5.46	5.27	5.27	5.32	5.25	5.30
Sol. E (kJ/mol)	-43.47	-51.68	-55.54	-43.32	-51.69	-46.18
D.M	4.73	6.18	6.47	5.78	6.16	5.97
UV	218.79	219.43	219.50	219.34	219.70	217.98
Н	5.46	5.27	5.27	5.32	5.25	5.30
Μ	-2.73	-2.69	-2.64	-2.66	-2.63	-2.65
(1/2 η)	0.183	0.190	0.190	0.188	0.190	0.189
Ω	0.6825	0.6865	0.6613	0.6650	0.6588	0.6625
4NPIC						
HOMO (eV)	-7.96	-7.70	-7.75	-7.76	-7.69	-7.73
LUMO (eV)	-3.17	-2.99	-3.11	-3.03	-2.98	-3.00
Δ(H-L)	4.79	4.71	4.64	4.73	4.71	4.73
Sol. E (kJ/mol)	-32.36	-50.38	-53.94	-43.41	-50.53	-45.93
D.M	0.41	0.55	0.39	0.49	0.64	0.55
UV	276.06	288.72	295.19	285.31	288.65	286.82
Н	4.79	4.71	4.64	4.73	4.71	4.73
Μ	-2.40	-2.36	-2.32	-2.37	-2.36	-2.37
(1/η)	0.209	0.212	0.216	0.211	0.212	0.212
Ω	0.6013	0.5913	0.5800	0.5938	0.5913	0.5938

Table 3. HOMO, LUMO, energy band gap, dipole moment, solvation energy, global electrophilicity index and UV-Vis adsorption maximum calculated in gas phase and in solvents at DFT/6-31G* level.

Table 4. λmax (in nm) calculated for 4-methoxyl and 4-nitropicolinic acid at DFT with various basis sets.

	4-methoxylp	picolinic acid	4-nitropicolinic acid		
DFT/	UV	Intensity	UV	Intensity	
6-31G*	218.79	0.16	276.06	0.035	
6-31G**	218.82	0.16	276.01	0.035	
6-311G**	219.81	0.16	274.52	0.038	
6-311+G**	225.53	0.17	281.45	0.039	
6-311++G**	225.57	0.17	281.47	0.039	

4NPIC are calculated in different solvents as displayed in Figure 3. The local ionization potential energy shows that solvents affect ionization potential of the molecules. The solvents increased the minimum energy required to remove an electron for 4MOPIC whereas the minimum energy required was lower in 4NPIC as compared to gas phase. Therefore, the minimum energy required to remove an electron in different solvents could be arranged as ethanol > acetone \approx DMF > THF > Diethyl ether > gas phase for 4MOPIC and gas phase > ethanol > diethyl ether > THF > acetone > DMF for 4NPIC. It could be suggested that increasing in electron density by electron donor substituent lowers the minimum energy required to remove an electron while decreasing in

electron density as a result of electron abstractor substituent raises the minimum energy required to remove an electron (Figure 3 and Table 5).

Thermodynamic properties

The standard enthalpy (H^o), standard entropy (S^o) and standard heat capacity at constant pressure (C^o_p) are 378.00, 372.77 and 138.63.94 J/mol for 4MOPIC; and 299.25, 373.34 and 136.75 J/mol for 4NPIC respectively. The thermodynamic functions such as heat capacity (C_{p,m}^o), entropy (S_m^o) and enthalpy (H_m^o) for 4MOPIC and 4NPIC are obtained from the theoretical harmonic frequencies as listed in Table 5. All the C_{p,m}^o, S_m^o and H_m^o

Figure 3. Local ionization energy surfaces on the molecular surfaces of 4MOPIC and 4NPIC with B3LYP/6-31G*. Color ranges, in kJ/mol.

 Table 5. The thermodynamic properties obtained at different temperature for the 4-methoxyl- and 4-nitropicolinic acid at B3LYP/6-31++G** level.

Tomm (K)	4MPIC			4NPIC		
Temp (K)	H⁰m (kcal/mol)	S⁰m (cal/mol)	Cp (cal/mol)	H⁰m (kcal/mol)	S⁰m (cal/mol)	Cp (cal/mol)
100	85.95	68.61	15.39	67.13	70.02	15.46
273	90.34	89.09	33.13	71.52	89.23	32.68
373	93.48	98.59	43.28	74.66	98.49	42.32
473	97.87	107.19	52.13	79.05	107.23	50.38
573	102.89	115.50	59.38	83.44	115.22	56.78
673	107.91	122.95	65.24	88.46	122.23	61.81
773	113.56	129.61	70.01	94.11	128.40	65.79
873	119.83	135.53	73.95	99.76	133.95	68.99
973	126.11	140.89	77.24	105.40	138.92	71.60

increases with the increase in temperature from 100 to 973K; this is due to the enhancement of molecular vibrations while temperature increases at constant pressure (1 atm). The correlations between these

thermodynamic parameters and temperature (T) are plotted and fitted by quadratic equations as shown in Figures 4, 5 and 6. The fitting factor (R^2) for these parameters for 4MOPIC and 4NPIC is found to be 0.999

Figure 4. Correlation graph of enthalpy and temperature for 4-methoxylpicolinic and 4-nitropicolinic.

Figure 5. Correlation graph of entropy and temperature for 4-methoxylpicolinic and 4-nitropicolinic.

Figure 6. Correlation graph of heat capacity and temperature for 4-methoxylpicolinic and 4-nitropicolinic.

4MOPIC	4NPIC
$C_{p,m^0} = 4.729 + 0.121T - 5.00T^2 \times 10^{-5}$; (R ² = 0.999)	$C_{p,m}^{0} = 4.98 + 0.119T - 5.00T^{2} \times 10^{-5}$; (R ² = 0.999)
$H_m^{0} = 84.32 + 0.015T + 3.00T^2 \times 10^{-5} (R^2 = 0.999)$	$H_m^{o} = 65.44 + 0.016T + 3.00T^2 \times 10^{-5} (R^2 = 0.999)$
$\mathbf{S}_{m^{0}} = 56.88 + 0.126T - 4.00 \times 10^{-5}T^{2} (R^{2} = 0.999)$	$\mathbf{S}_{m^{0}} = 58.37 + 0.123T - 4.00 \times 10^{-5}T^{2} (R^{2} = 0.999)$

for heat capacity, enthalpy and entropy as shown in Table 6.

All the thermodynamic calculations are performed in the gas phase; therefore scale factors have been recommended for better accurate prediction (Zhang et al., 2010). All these thermodynamic data would be helpful in providing information for further study of the two isomers which can be useful to determine the directions of chemical reactions according to the second law of thermodynamics (Yazıcı et al., 2011; Nataraj et al., 2013; Govindarajanaet al., 2012).

Conclusion

In this work, we have performed the quantum chemical calculations on geometry, vibrational frequency and electronic properties of 4MOPIC and 4NPIC using B3LYP with various basis sets. Solvents effect on the molecules are studied by using five solvents namely ethanol, acetone, diethyl ether, DMF and THF. The results show that the HOMO and LUMO energies experienced stabilization in the solvents for 4NPIC but LUMO is destabilized in 4MOPIC as compared to gas phase. The HOMO, LUMO, electrophilicity index and softness revealed that 4NPIC would be a better molecule to be involved in the interactions with electrophiles than for 4MOPIC. The absorption maxima calculated using B3LYP/6-31G*/CIS are shifted to longer wavelengths in solvents as compared to gas phase. The minimum energy required to remove an electron in different solvents could be arranged as ethanol > acetone ≈ DMF > THF > Diethyl ether > gas phase for 4MOPIC and gas phase > ethanol > diethyl ether > THF > acetone > DMF for 4NPIC.

REFERENCES

- Adeoye IO, Semire B, (2013). Solvents effect geometries and electronic properties of picolinic acid: A theoretical study. Int. J. Eng. Sci.13:101-107.
- AlHokbany N, AlJammaz I (2011). Spectrocopic investigation and density functional theory calculations of mercaptobenzothiazole and mercaptobenzimidazole ligands and their rhenium complexes. Open J. Inorg. Chem. 1:23-32.
- Becke AD (1988). Density-functional exchange-energy approximation with correct asymptotic behavior". Phys. Rev. A 38:3098–3100.
- Bird CW (1997). Heteroaromaticity. 10. The Direct Calculation of Resonance Energies of Azines and Azoles from Molecular Dimensions. Tetrahedron. 53:2497-2501.

Chamizo JA, Morgado J, Sosa O (1993). Organometallic Aromaticity, Organometalliks 12:5005-5007.

- Chattaraj PK, Maiti B, Sarkar U (2003). Philicity: A unified treatment of chemical reactivity and selectivity. J. Phys. Chem. A 107:4973–4975.
- Cheeseman JR, Trucks GW, Keith TA, Frisch MJ, (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors", J. Chem. Phys. 104:5497-5509.
- De Proft F, Geerlings P (2001). Conceptual and computational DFT in the study of aromaticity. Chem. Rev. 101:1451-1464.
 Dimitrijević DM, Tadić ŽD, Mišić-Vuković MM, Muškatriović M (1974).
- Dimitrijević DM, Tadić ŽD, Mišić-Vuković MM, Muškatriović M (1974). Investigation of electronic effects in the reaction of diazodiphenylmethane with pyridine and pyridine N-oxide carboxylic acids, J. Chem. Soc. Perkin Trans. 2:1051-1055.
- Domingo LR, Aurell M, Contreras M, Perez P (2002). Quantitative Characterization of the Local Electrophilicity of Organic Molecules. Understanding the Regioselectivity on Diels-Alder Reactions. J. Phys. Chem. A. 106:6871-6876.
- Drmanic SZ, Nikolic JB, Marinkovic AD, Jovanovic BZ (2012). A comparative study of the linear salvation energy relationship for the reactivity of pyridine carboxylic acids with diazodiphenylmethane in protic and aprotic solvents. J. Serb. Chem. Soc. 77:1311-1338.
- Evan GW, Johnson PE (1980). Characterization and quatititation of a zinc binding ligand in human milk. Peiatr. Res. 14:876-880.
- Fernandez-Poi JA, Hamilton PD, Klos DJ (2001). Essential viral and cellular zinc and iron containing mettalloproteins as targets for prevention and therapy of viral diseases and cancer. Anticancer Res. 21:931-56.
- Gfeller M, Furrer G, Schullin R (1976). Use of completely mixed flowthrough systems: hydrolysis of phenyl picolinate. Environ. Sci. Technol. 31:3692-3701.
- Goher MAS, Abu-Youssef MAM (1996). Synthesis, Spectral and Structural Characterization of a Monomeric Chloro Complex of Zinc(II) with Picolinic Acid; [Zn(C₅H₄NCO₂H)(C₅H₄NCO₂)CI]. Polyhedron 15:453-457.
- Govindarajana M, Karabacak M, Periandy S, Tanuja D (2012). Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO–LUMO, NBO analysis of organic 2,4,5-trichloroaniline. Spectrochim Acta. A. 97:321-245.
- Kalinowska M, Borawska M, Swislocka R, Piekut J, Lewandowski W (2007). Spectroscopic (IR, Raman, UV, ¹H and ¹³C NMR) and microbiological studies of Fe(III), Ni(II), Cu(II), Zn(II) and Ag(I) picolinates. J. Mol. Struct. 834-836:419-415.
- Kalinowski HO, Berger S, Braun S (1988). Carbon-13 NMR spectroscopy, John Wiley and Sons, Chichester.
- Karakurt T, Dincer M, Çukurovalı A, Yılmaz I (2012). Ab initio and semiempirical computational studies on 5-hydroxy-5,6-di-pyridin-2-yl-4,5dihidro-2H-[1,2,4]triazine-3-thione J. Mol. Struct. 1024:176–188.
- Koczon P, Dobrowolskic J.Cz, Lewandowsk W, Mazurek AP (2003). Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids. J. Mol. Struct. 655:89-95.
- Koopmans T (1734). Ordering of wave functions and eigenvalues to the individual electrons of an atom, Physica. 1:104-113.
- Kukovec BM, Popovic Z, Komorsky-Lovric Š, Vojkovic V, Vinkovic M (2009). Synthesis, structural, spectroscopic and thermal characterization of cobalt complexes with 3- and 6-methylpicolinic acid. Voltammetricand spectrophotometric study in solution Inorganica Chimica Acta 362:2704–2714.
- Lee CT, Yang WT, Parr RG (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Parr, Phys. Rev. B 37:785-589.

- Marinkovi AD (2005). Investigations of the reactivity of pyridine carboxylic acids with diazodiphenylmethane in protic and aprotic solvents. Part I. Pyridine mono-carboxylic acids. J. Serb. Chem. Soc. 70:557–567.
- Nataraj A, Balachandran V, Karthick T (2013). Molecular orbital studies (hardness, chemical potential, electrophilicity, and first electron excitation), vibrational investigation and theoretical NBOanalysis of 2hydroxy-5-bromobenzaldehyde by density functional method. J. Mol. Struct. 2031:221-233.
- Parajón-Costa BS, Wagner CC, Baran EJ (2004). Vibrational spectra and electrochemical behavior of Bispicolinate copper(II). J. Argentine Chem. Soc. 92:109-117.
- Parr RG, Szentpaly L, Liu S (1999). Electrophilicity Index, J. Am. Chem. Soc. 121:1922-1924.
- Pearson RG (1993). The principle of maximum hardness, Acc. Chem. Res. 26:250-255.
- Pihlaja K, Kleinpeter E (1994). Carbon-13 Chemical Shifts in Structural and Stero Chemical Analysis, VCH Publishers, Deerfield Beach.
- Semire B (2013). Density Functional Theory studies on electronic properties of thiophene S-oxides as aromatic dienophiles for reactivity prediction in Diels-Alder reactions. Pakistan J. Sci. Ind. Res. A 56:14-18.
- Semire B, Odunola OA (2013). Theoretical Study on nucleophilic behaviour of 3,4-Dioxa-7-thia-cylopenta[a]pentalene and 3,7-Dioxa-4thia-cyclopenta[a]pentalene using ab intio and DFT based reactivity descriptors. Int. J. Chem. Mod. 4:87-96.
- Stare J, Jezierska A, Ambrožič G, Košir IJ, Kidrič J, Koll A, Mavri J, Hadž D (2004). Density Functional Calculation of the 2D Potential Surface and Deuterium Isotope Effect on ¹³C Chemical Shifts in Picolinic Acid N-Oxide. Comparison with Experiment. J. Am. Chem. Soc. 126:4437.
- Takusagawwa F, Shimada A (1976). Isonicotinic Acid. Acta Cryst B 32:1925-1927.

- Teimouri A, Chermahini AN, Emami M (2008). Synthesis, characterization, and DFT studies of a novel azo dye derived from racemic or optically active binaphthol. Tetrahedron 64:11776–11782.
- Varsanyi G, Sohar P (1972). Infrared spectra of 1,2,3,5-tetrasubstituted benzene derivativesActa Chim. Acad. Sci. Hung. 74:315-333.
- Yazıcı S, Albayrak C, Gümrükçüoglu I, Senel I, Büyükgüngör O (2011). Experimental and density functional theory (DFT) studies on (E)-2-Acetyl-4-(4-nitrophenyldiazenyl) phenol. J. Mol. Struct. 985:292-298.
- Yurovskaya MA, Mitkin OD, Zaitsera FV (1998). Functionalization of pyridines 2. Synthesis of Acylpyridines, pyridinecarboxylic acids and their derivatives. Review Chemistry of Heterocylic compounds 34:871-879.
- Zhang R, Dub B, Sun G, Sun Y (2010). Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines. Spectrochim Acta, 75A:1115-1124.
- Zhou Z, Navangul HV (1990). Absolute hardness and aromatisity: MNDO study of benzenoid hydrocarbons, J. Phys. Org. Chem. 3:784-788.
- Ziegler T (1991) Approximate density functional theory as apractical tool in molecular energetic and dynamics. Chem. Rev. 91:651-667.