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Existing methods such as Niekerk (1987) and Fatunla (1982) are effective but could not handle problem 
whose initial value is zero. In this paper, we designed and implemented a class of free denominator 
rational integrators for the solution of initial value problems (IVPs) in ordinary differential equations 
(ODES), particularly for the case of Stiff and singular problems. The class of integration obtained was 
found to be consistent and convergent. Our study of the stability characteristics reveal that the 
integrators are A-stable when m = 0, 1, 2. Their Region of Absolute Stability (RAS) decreases with 
increasing value of m. Experiments carried out and analyzed with the computer shows encouraging 
computational results and also show that the rational integrator copes well with all kinds of problem.  
 
Key words: Fixed denominator, rational integrators, Jordan curves, A-stable Region of Absolute stability, 
consistency and convergence. 

 
 
INTRODUCTION 
 
The problem is to solve the initial value problem (IVP) 
 

y(1)  =  f(x,y),  y(a) = y0 
 

Where 
  
y, f  Cm (R), x  [a.b], a, b  R and f satisfies the 

lipschitz condition f(x,y2) - f(x,y1)   L/y2 - y1/, 
 

L is the Lpschitz constant. Fatunla (1982) proposed a 
method which approximates the theoretical solution by 
the rational form 
 

 
 

Where 
 

A and the polynomial coefficient ar are real variable 
parameters. This method of Fatunla (1982) is applicable 
only to the cases where the initial value y0 0. Rational 
integrators that emerge after Fatunla (1982) include 
Neikerk (1987), Veldhulzien (1987), Aashikpelokhai  and  
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Fatunla (1994), Ikhile (2001, 2002) and Aashikpelokhai 
and Momodu (2008). These later methods can handle 
problems whose initial values y0 = 0 as well as those with 
y0  0. 

Our focus is in Neikerk (1987)) where there has been a 
problem created and directly unresolved in the Niekerk 
(1987). This is what motivated this research. Niekerk 
(1987) attempted making an execution of his method: 
 

yn+1 = an+1  +    

 

to yn+1 = an+1    

 
and ran into problem with Cn+1. The identity  
 

yn+1 = an+1 + bn+1 [1 + Cn+1 xn+1 + dn+1   ]-1 

 
gave rise to a quadratic equation in Cn+1 whose 

determinants sign depends on the values of r = 0, 
1, 2, 3. The determinants could have negative sign under 
the root sign at some of the interpolation points. He aban-  
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doned the move. Bearing in mind that an+1,  bn+1, dn+1 and 
dues are read  variable parameters, we re-write 
 

yn+1 = an+1                   (1.1)                                                             

as  

yn+1=  , 

 

resulting in yn+1 =                   (1.2)                                                    

Where 
 
P0  =  an+1 + bn+1   

       (1.3)                          

Pr  =  an+1 qr,        r = 1, 2                                (1.4)                
q1  =  cn+1         (1.5)                   
q2  =  dn+1         (1.6)                  
 

are all real variable parameters. 
To overcome the problem, we allow the polynomial 

parameters P0, P1, P2, q1, q2 to be arbitrary real 
parameters to be determined. In this case, P1 and P2 do 
not necessarily need to satisfy (1.4). By this approach 
which we highlight in section 2 of this work, we would 
have the problem of determining values for the first 
parameters instead of the four in Niekerk [1987]. Since 
the parameter values depend on yn

(r), r = 0, 1, 2, if a 
problem exists such that P1 = an+1 q1 and P2 = an+1 q2, 
then such a resulting interpolant reduces to the Neikerk 
form without the attendant problem. This work therefore 
makes Neikerk’s of our work whenever m = 2 and Pr = 
an+1 qr, r = 1, 2 
 
 

DEVELOPMENT OF THE NEW INTEGRATOR 
 

Let U: R � R be the real rational interpolant defined by 
the identity 
  

                                     (2.1) 
 

Subject to the integration constants 
 

   y(xn+i),  i = 0 
U(xn+1) =        
                                                            (2.2) 
   yn+i,       i = 0, 1 
 

when m = 2 and (1.4) is satisfied, we obtain Neikerk 
(1987). The m+3 unknown parameter [P0, P1, P2, …. Pm] 
and [q1, q2] are to be determined by considering  xn = nh, 
(2.1) and (2.2) to yield  
 

            (2.3)      
Where n = 0, 1, 2, ……. 

 
 
 
 
Writing 

    in power series, relation (2.3) 
becomes 
 

    (2.4) 
 
Since our unknown parameter to be determined are m+3, 
we may re-write (2.4) as 
 

    (2.5) 
 
Equating term by term, (2.5) then yield the following 
results:  
For the first terms, yn = P0 and a simple re-arrangement 
yields 
 
P0 = yn 
 
The second terms yield ]         (2.6) 
 
Substituting for P0 from (2.6) and re-arranging, we obtain 
 

P1  =   + yn q1                                              (2.7)

                                                                           
For the third terms, we have 
  

 = [ P2 – P1q1 – P0q2 + P0 xn+1 

 
Writing this result as a combination of the preceeding 
results in (2.6) and (2.7), we obtain 
 

P2  =                                 (2.8)                                       

 
The  fourth terms yield 
 

 = [ P3 – P2q1 – P1q2 + P1  2P0 q1 q2 - P0 

  
  

= [ P3 – (P1P0q1)q2 – {P2 –  P0  q2 – (P1 – P0 q1)q1}q1]  
 
Employing (2.6) – (2.8) and re-arranging we obtain 
 

P3  =                        (2.9)               

 
Continuing in this manner of writing the results on-hand in 
terms of the preceeding ones we get 



 
 
 
 

Pr  =        (2.10)                                                  

 
Where r = 2, 3, …., m. 
 
By recalling results (2.4) and not its subset (2.5) and then 
observing that  
 

 
 
Is a polynomial of degree arbitrary positive integer m 
meant that one could write 0 = Pr for every r = m+1, m+2, 
m+3, . . . . . . . . . . . . . . . . . 

These enable us to have the next two consecutive 
terms which are (m+1)th and (m+2)th terms yielding the 
simultaneous linear algebraic equation in q1 and q2. That 
is 

 

0  =                                     

                                                                                  (2.11) 
 

0  =                                           

                                                                                  (2.12) 
 
Solving the simultaneous linear algebraic equation (2.11) 
and (2.12), we obtain 
 

q1 =                                                     (2.13)                                                               

 

q2 =                                                    (2.14)                                                                       

 
Where 
  
DENOM (   

 

                          (2.15) 

 

NUM Q1                     

 

              (2.16) 

 
NUM Q2  

    

                 (2.17) 
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Consequently, 
 
q1xn+1 = h[NUMQ1 (M,yn) DENOM-1 (m,yn)]     (2.18) 
 
q2x

2
n+1 = h2[NUMQ2 (M,yn) DENOM-1 (m,yn)]            (2.19) 

 
P1xn+1 = h[yn

(1)  + yn NUMQ1(m,yn) DENOM-1 (m,yn)]                                
                                                                                  (2.20) 
  

Prxn+1
r =    h[NUMQ1 (M,yn)  

 

DENOM-1 (m,yn)] +  h2[NUMQ2 (M,yn) DENOM-

1 (m,yn)]                                                                     (2.21) 
 
Where r = 2, 3, ………, m    
 
we could at this stage have stopped and rightly state that 
our rational integrator is given by (2.3) where [qr , r = 
1(1)m] and  [Pr , r = 0(1)m] are given respectively by 
(2.15) – (2.19), (2.6), (2.20) and (2.21). However the 
need for reduced computational workload at 
implementation stages motivates us to substitute the 
work-out values of these parameters at this design stage 
into results (2.3). 

Employing (2.1) – (2.2), (2.6) and (2.18) – (2.21), our 
desired fixed denominator rational integrator becomes 
 

                             
                1+q1 xn+1 + q2 x

2
n+1 

 
 

       
                                                           =      

 
               1+q1 xn+1 + q2 x

2
n+1 

 
Where 
  

 
 

 
   

    (2.22) 
 
BOT (m,h,yn) = [DENOM (m,yn) + hNUM Q1(m,yn) + 
h2NUM Q2 (m,yn)]DENOM-1(m,yn)                   (2.23) 
 
 Our final expression for the integrator is given by      
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divided by 
 
[DENOM (M,yn) + hNUMQ1 (m,yn) + h2NUMQ2(m,yn)                                      
                                                                                  (2.24) 
 
 

Observation 
 
Users of integrators and who are not fully of sound 
familiarity with the use of sigma ( , in particular 
the applicability of their lower and upper limit, we state 
that m=0 is not applicable to  m = 1 is 
not applicable to  we demonstrate this usage below. 
 
Case m = 0 
      yn+1                    = 

  ynDENOM (0, yn)   

 DENOM (o, yn) + hNUMQ1(o, yn) + h2NumQ2(o,yn); yn  0   
 
with the available values of h, yn and its derivatives, we 
compute DENOM (o, yn), NUM Q1 (o,yn) and NUMQ2 (o, 
yn); the results for yn+1, n = 0, 1, 2, …. follows. 
 
Case m = 1 
yn+1                   = 

  

 
By similar computation as in case m = 0, we obtain yn+1, n 
= 0, 1, 2, 3,…. For all the cases m  2, we do not need 
any demonstration here. 
 
 

CONSISTENCY AND CONVERGENCE 
 
Our remarks here are basically definitions. 
 
 

Definition 1. Lambert (1976)  
 
Every one-step numerical integration is convergent if and 
only if it is consistent. 
 
 

Definition 2. Lambert (1973, 1976, 2000). 
 
Every one step numerical integrator is consistent if the 
potential function which is the integrator expression 
representing (yn+1 – yn)/h tends to yn

(1) in the limit h tends 
to zero. 
 
Theorem 1 
 
From our introductory remarks here, all that is  needed  is 

 
 
 
 
to prove that the integration yield the result 
 

)  =           

 
By writing and direct simplification, the integrator (2.4) 
becomes 
 

 
 

 
 
[DENOM (m,yn) + hNumQ1(m,yn) + h2 NUMQ2 (m,yn)] 
 
Further simplification and re-arrangement lead us to 
 

 
 
divided by 
 

[DENOM (m,yn) + NumQ1(m,yn) + NUMQ2 (m,yn)] 
 

Hence 
 

         
 
We are done. Hence the integrators are consistent and 
convergent. 
 
 

STABILITY CONSIDERATION 
 
Theorem. The stability function of the class of rational 
integrators (2.24) are given by 
 

   

                                                                                    (5.1) 
 
Proof 
 
To obtain the stability function, we subject the integrator 
(2.24) to the usual meshsize-eigenvalue relationship  = 

h and the normal test equation  
 
Y(1) = y; these results in 
 

[DENOM (m,yn) becoming                        (5.2)                               



 
 
 
 
hNUMQ1 (m,yn) becoming             (5.3)                                                   

and 
 

h2 NUMQ2 (m,yn) becoming        (5.4) 

 
Therefore 
 

 
 
becomes 
 

 
 
While 
 
DENOM (m,yn) + hNumQ1(m,yn) +h2 NUMQ2 (m,yn)] 
becomes 
 

                           (5.6)                                                             

                                     
These results lead us to 
 

                             

                                                                                    (5.7) 
For one step methods, the stability functions are defined 
by the ratio  which we designate here by S (  

Conclusively the required stability is given by 
 

                                    

                                                                                    (5.8) 
Which is what we are required to establish. 
 
 
Demonstrations on the decreasing RAS 
 
We examine the region in which the stability function 
S(  satisfies /S(u, v)/  1, where  = u + iv, i =  
Our work here is restricted to the class where m = 0, 1, 2. 
In order to reduce our workload we state herein an 
elementary relationship we employed, and this is : 
 
 For all real a1, a2 ….., an 
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Case 1: m = 0 
 

 
 

Hence /S(u,v)/ 1 if and only if U4 + 2U2V2 + V2 – 4U3-

4UV2 + 8U2-8U 0 
 
That is 
 

S(u,v)/ 1 if and only if (U2+V2)2-4U(U2+V2) + 8U2 – 8U 

 0 
 
But then 
 

(U2 + V2)2 – 4U (U2 + V2) + 8U2 - 8U2 - 8U 0 

Whenever U  0 or U  2. Consequently, for m = 0, 
 

/S(u,v)/ 1 whenever U 0 or U  2 
 
Hence the RAS for the integrator 
 
�� �������� 	� 
���� 	� 			� �� ��� �� 	� 
���� 	�

			��������	�
����	�			���
 
for the entire left-half of the U-V complex plane.  
 
To make clearer the RAS, we employ polar co-ordinates 
(R, ) by setting u = RCos  and v = R Sin  The result 
is the Jordan curve. 
 

R3 – 4R2Cos  + 8Rcos2  - 8Cos  = 0 
 

Whose exterior 
 

{(R, ): R3 – 4R2Cos  + 8RCos2  - 8Cos  > 0} 
 
is the RAS of the integrator.  
 

The Extremities of the Jordan curve in the (R, ) plane 
are (0, 90o) and R(2,0o). These correspond to the origin 
(0,0) and the point (2,0) in the U-V complex plane. The 
region of instability (RIS) for this case where m = 0 is 
therefore given by 
 

{(R, ): R3 – 4R2Cos  + 8RCos2  - 8Cos  < 0} 
 

Case 2: m = 1 
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By similar analysis, we obtain 
 

(u2 + v2)2 - 8u(u2+ v2) + 24u2 – 72u 0 whenever 

U  0 or U  6.  
 
Consequently, for m = 1, 
 

/ ( / whenever u<0 
 

Hence the RAS for the integrator = {u+iv:  u  0 or u  

6, i =  } for the entire left-half of the U-V complex 
plane. 

The corresponding Jordan curve is given by: 
 

R3 – 8R2Cos  + 24Rcos2  - 72Cos  = 0 
 
has its exterior (RAS), the region 
 

{(R, ): R3 – 8R2Cos  + 24RCos2  - 72Cos  > 0} 
 
and its interior (RIS), the region 
 

{(R, ): R3 – 8R2Cos  + 24RCos2  - 72Cos  < 0}. 
 
The extremities of the Jordan curve are (0, 90o) and (6,0). 
These correspond to the origin (0,0) and the point (6,0) in 
the U-V complex plane. 
 
 
Relationship 
 
Observe that for m = 0, 1 
 
{(R, ): R3 – 4R2Cos  + 8RCos2  - 8Cos  < 0}. 

{R, ): R3 – 8R2Cos  + 24Cos2  - 72Cos  < 
0} respectively. 
 

Hence {(R, ): R3 – 8R2Cos  + 24Cos2  - 72Cos  > 0} 

{(R, ): R3 – 4R2Cos  + 8Cos2  - 8Cos  > 0} 
 
Hence the RAS of the integrator with m = 1 is a proper 
subregion of the RAS of the integration with m = 0; a 
decrease in size as we move from the case m = 0 to the 
case m = 1. 
 
 
Case 3: m = 2 
 

 

  
This lead us to having /S(u,v)/  1 if and  only if u3+uv2 

+12u  0, that is, u(u2+v2+12) 0 whenever u  0. 

Conclusively /S(u,v)/ 1 whenever  u  0,  In  this  case, 

 
 
 
 
the RAS is simply the region 
  
{u+iv: u 0, i =  } which is the entire left half of the U-
V complex plane 
 
 
RESULTS AND IMPLEMENTATION 
 
A numerical implementation of this problem is demon-
strated by the problem below. 
 
 
Problem 1 
 
Y(1) 1+y2,    y(0) = 1.0     0≤x≤1 

Theoretical solution in y0 = tan(x+ ), h = -.05 

 
Table 1 shows the performance of the new integrator 
over Niekerk and also the performance against the 
theoretical solution. 
 
 
Problem 2  
 
Y(1) =  1+y-(2), y(0) = 0, y = tan x 
In this case, m = 0 cannot handle this kind of problem as 
can be seen in the Table 2. 
 
 
Problem 3  
 
Y1 = -100(y-Sin x), y(0) = 0.0, 0≤ x ≤ 3 
TSOL  
 Y(x) = Sin x – 0.01 Cos x + 0.01 exp(-100x) 
    1.0001 
 
In this case, the new integrator with m = 1, 2 copes 
favourably well compared to Runge-Kutta of order 4 
(Table 3). 
 
 
Conclusion 
 
The integrators are A-stable for the cases m = 0, 1, 2 and 
hence has the required L-stability properties. 
 
From the analysis in the paper, we have 
 
RAS for m = 2 RAS for m =1 RAS for m = 0. 
 
i. But the denominator of the integrator is fixed, hence we 
expect that as m increases, then the RAS of the 
integrator decreases. 
 
ii. The integrators considered has the required A-stability 
properties and they cover the left half of the complex 
plane and hence highly recommended for users  who  are 
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Table 1. Theoretical solution in y0 = tan(x+ ), h = -.05. 

 
Errors in [0, 1] New integration 

m = 2 (p = 3) 
Niekerk I Niekerk II 

Min(e) = 7.897(-6) 0.0 1E-4 2E-6 
Max(e) = -6.256(-2) 5E-6 5E-1 2E-2 

 
 
 

Table 2.�Integrator at m = 0 
 

������������������� �������������� ��� �� ���

! �����"� �#�� �#��

!�����"� �#�� �#���$%�
 
 
 

Table 3.  Integrator at m = 1 and 2 
 

Error in 0 ( x ( 3 The Integrator Rk(4) 
M = 1, h = 0.003 M = 2, h = 0.003  

Min e = 1.897(6)   
1E-6 

 
2E-6 

 
  

  6.7 E-11 
Max e = 6.356(-2) 5E-2 6E-2 1.9 E-3     

 
 
 
working in this area of research. 
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