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A multimedia feature for unsteady magnetic hydrodynamic (MHD) flow of two-dimensional mixed 
convection flow of an incompressible viscoelastic fluid over a vertical stretching sheet with viscous 
dissipation was studied. Similar transformation and an implicit finite-difference method were used to 
analyze the present problem. The numerical solutions of the flow velocity distributions, temperature 

profiles, the wall unknown values of f''(0) and - '(0)θ for calculating the heat transfer of the similar 

boundary-layer flow were carried out as functions of the unsteadiness parameter (S), the Eckert number 
(Ec), the Prandtl number (Pr), the magnetic parameter (M), the buoyancy parameter (G), the viscoelastic 
parameter (α), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat 
source/sink. The effects of these parameters were also discussed. The results showed that greater heat 
transfer effect was produced with a larger S and α. On the other hand, parameters G, Pr, Ec, A and B 
reduced the heat transfer effect at some specific conditions. 
 
Key words: Mixed convection, viscous dissipation, MHD, multimedia feature, viscoelastic, heat transfer, unsteady 
flow, vertical stretching sheet.  

 
 
INTRODUCTION  
 
During the past few decades, the flows of non-Newtonian 
fluids have acquired special attention because of their 
numerous technological applications: including plastic 
manufacture, performance of lubricants, application of 
paints, processing of food and movement of biological 
fluids, etc. Specifically, the flow of an incompressible 
non-Newtonian fluid over a stretching sheet has important 
industrial applications, for example, in the extrusion of a 
polymer sheet from a die or in the drawing of plastic films. 
However, the non-Newtonian fluids cannot be described 
simply as of Newtonian fluids. Therefore, in view of their 
diversity, several models of non-Newtonian fluids have 
been proposed. Amongst these, the viscoelastic fluids 
have received special status from the researchers in this 
field. The flows may need viscoelastic fluids to produce a 
good effect to reduce the temperature from the sheet. 
Also, the fluids produced many types of effects (that is, 
magnetic force, buoyancy and mass diffusion) into the 
problem. It is a well-known fact in the studies of 
non-Newtonian fluid flows by Hartnett (1992). Cortell 

(2007) had studied the heat and mass transfer problems 
about the viscoelastic boundary layer flow over a 
stretching sheet with magnetic effect. Abel et al. (2007) 
presented the effects of non-uniform heat source on 
viscoelastic fluid flow and heat transfer over a stretching 
sheet. In all the previous mentioned studies, the flow and 
temperature fields had been considered to be at steady 
state.  

Ali et al. (2007) and Vajravelu et al. (2007) studied the 
problem for unsteady stretching surface condition by using 
a similarity method to transform governing time-dependent 
boundary layer equations into a set of nonlinear ordinary 
differential equations. Some methods have been used to 
analyize the related unsteady stretching sheet problems, 
such as, Sajid et al. (2008), Liu and Andersson (2008) that 
have used series solution method, homotopy analysis 
method, respectively. Recently, Ahmad et al. (2008) and 
Hayat et al (2008) used the second grade or viscoelastic 
fluids over an unsteady stretching sheet with heat transfer 
or other related effects by similar and non-similar analysis 
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Figure 1. A sketch of the physical model for multimedia 
feature on an unsteady viscoelastic fluid flow with MHD 
second grade and viscous dissipation mixed convection 
effects over a vertical stretching sheet. 

 
 
 
methods with numerical solution methods to solve such 
kinds of problems. Tsai et al. (2008) studied a quiescent 
fluid flow and heat transfer over an unsteady stretching 
surface with non-uniform heat source by using similarity 
method and solved numerically by Chebyshev finite 
difference method (ChFD), but did not consider the 
viscoelastic and viscous dissipation convection effect. 
Recently Hsiao (2011) studied unsteady mixed convection 
viscoelastic flow and heat transfer in a thin film flow over a 
porous stretching sheet with internal heat generation, but 
did not consider the complex viscous dissipation and 
magnetic phenomena. Most recently Hussan et al. (2012) 
studied Mass transfer analysis for unsteady thin film flow 
over stretched heated plate. Hayat et al. (2012a) studied 
three-dimensional flow of Maxwell fluid over a stretching 
surface with convective boundary conditions. Hayat et al. 
(2012b) studied Flow and heat transfer of Jeffery fluid over 
a continuously moving surface with a parallel free stream. 

From the foregoing, it was observed that motivation was 
provided for the present analysis to study the flow and heat 
transfer multimedia feature in an incompressible 
viscoelastic fluid caused by magnetic hydrodynamic (MHD) 
mixed convection with a complex viscous dissipation effect 
on a stretching sheet. It is a different study for complex 
viscous dissipation term for other studies and it is a view 
point to examining the influence of flow and heat transfer 
characteristics for mixed convection effect phenomena. 
Similar derivation  technique  was  used  and  the  resulting  

 
 
 
 
non-linear similar equations were solved by using the 
finite-difference method. 
 
 
THEORY AND ANALYSIS 

 
Let us look toward the multimedia feature for unsteady, 
incompressible, two-dimensional viscoelastic fluid flow of a thin liquid 
film of uniform thickness over the vertical stretching sheet by mixed 
convection. Here the unsteady two-MHD laminar flow of an 
incompressible quiescent fluid over a thermal forming stretching 
sheet was considered. A constant magnetic field of strength B0 and g 
was applied perpendicular to the thermal forming stretching sheet 
and the fluid motion within the film was due to stretching of the elastic 
sheet. The geometry of the problem is shown in Figure 1. It is 
important to use the extrusion manufacturing process. The fluid flow 
was modeled as an unsteady, two dimensional, incompressible 
viscous laminar flow on a horizontal thin elastic sheet developing 
from a narrow slot at the origin and is continuously stretched with a 

velocity of 
s

u bx /(1 at)= −  (where a and b are positive constants, 

and t<1/a) in the positive x-direction. 
 An incompressible, homogeneous, non-Newtonian, second- 

grade fluid having a constitutive equation based on the postulate of 
gradually fading memory suggested by Rivlin and Ericksen (1955) 
was used for the present flow. The model equation is express as 
follows: 

 

T = -PI + µA
1

+ 1α A
2

+ 2α A
2

1
                                              (1) 

 
T is the stress tensor, P is the pressure, I is the unit tensor, µ is the 

dynamic viscosity, 
1

α and 
2

α  are first and second normal stress 

coefficients that relate to the material modulus and the present 
second-grade fluid. 

 

1 1 2
0, 0, 0µ ≥ α > α + α =                                      (2) 

 

The kinematic tensors 
1

A  and 
2

A are defined as 

 

T

1A V ( V)= ∇ + ∇                                                     (3) 

 

T1
2 1 1

dA
A A ( V) ( V) A

dt
= + ∇ + ∇                               (4) 

 
Where V is velocity and d/dt is the material time derivative, u and v 
are the velocity components in the x and y directions. It is important 
to discuss that the stress coefficients that characterize the 
second-grade fluid have to satisfy certain restrictions (Dunn and 
Rajagopal, 1995). The conducting fluid is permeated by an imposed 

uniform magnetic field 
0

B (0,B ,0)= which acts in the positive 

y-direction. The magnetic Reynold number is assumed small enough 
so that the induced magnetic field can be neglected. The magnetic 

force J×B under these assumptions becomes
2

0
( ) Bσ × × = −σV B B V . 

The well-known Boussinesq approximation is used to represent the 
buoyancy mixed term. The model equation of the unsteady 
boundary-layer equations for this flow is expressed as follows: 
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The correspondence boundary conditions are  
 

s wu u (x, t) bx, v 0, T T (x, t),= = = =  at y=0               (8) 

 

s

T
T T at y 0; 0 at y

y

∂
= = = → ∞

∂
                             (9) 

 

Where 
s

u  and 
w

T  are the velocity and temperature of the stretching 

sheet at the surface y = 0, respectively. T is the temperature, 
s

T  is 

the stretching sheet temperature, A is the space-dependent 
parameter, B is temperature-dependent parameter, ν is the 

kinematic viscosity, η  is the dimensionless boundary layer 

thickness, 1
α

α = −
ρ

 is the viscoelastic parameter, µ  is the dynamic 

viscosity, T∞  is the temperature of the ambient fluid, ρ  is the 

density, 
p

c  is the specific heat at constant pressure, k is the 

conductivity, respectively. The flow is induced due to stretching at y = 
0 which moves in the x-direction with the velocity: 
 

s

bx
u

1 at
=

−
,                                                                              (10) 

 

a and b are positive constants with dimension 1(time)− . It can be 

noted from Equation 10 that the effective stretching rate b /(1 at)−  

increases with time since a > 0. The fluid motion within the liquid film 
is caused only by the viscous shear arising from the stretching of the 

elastic sheet. The stretching velocity su  is assumed to be of the 

same form with that considered by Wang (1990). The surface 

temperature 
w

T  of the sheet is: 

 

2
3 / 2

w 0 ref

bx
T T T (1 at) ,

2

− 
= − − 

ν 
                                         (11) 

 

where 
0

T  and 
ref

T are the temperature at the slit and reference 

temperature respectively. Equation 11 reflects that the sheet 

temperature decreases from 
0

T  at the slot in proportion to 
2

x  and 

temperature reduction increases with an increase in (1 at)− . But it 

should be noticed that Equations 10 and 11, which are responsible 

for the whole analysis are valid only for time t 1/ a< . The following  
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dimensionless parameters are introduced as follows: 
 

1 1

2 2
b

(1 at) y, b x(1 at) f ( )
− −

η = − ψ = ν − η
ν

, 
w

T T

T T

∞

∞

−
θ =

−
          (12) 

 

and the stream function (x, y)ψ  through 

 

b x
u f ( )

y 1 a t

∂ ψ
′= = η

∂ −
,                                                    (13) 

 

b
v f ( )

x 1 a t

∂ψ ν
= − = − η

∂ −
,                                         (14) 

 
The continuity of Equation 1 is identically satisfied and dimensionless 
problems of flow and temperature are as follow: 
 

2

2 2

1
f f ff S f f

2

1
2ff S 2f f f ff M f G 0

2

 
′′′ ′ ′′ ′ ′′− + − + η 

 

  
′′′ ′′′ ′′′′ ′′ ′′′′ ′+α + + η − − − + θ =  

  

          (15) 

 

( )' ' ''

r

1
P S 3 2f f Ae B Pr Ec(f )

2

−η 
′′ ′θ − θ + ηθ + θ − θ + + θ + 

 
 

' ''2 ''2 '' ''' '' '''3
Pr Ec [f f S(f f f ) ff f ] 0

2
+ α + + η − =                                 (16) 

 
And the associated with boundary conditions become 
 

f (0) 1, f (0) 0, (0) 1′ = = θ =                                                     (17) 

 

f ( ) 0, f ( ) 0, ( ) 0′ ′′∞ = ∞ = θ ∞ = .                                   (18) 

 

Here S a / b=  is the unsteadiness parameter, 
2 2

0
M B (1 at) / b= σ − ρ is the dimensionless quiescent and magnetic 

parameter, 
2

2

(1 at)
G g [ ]

b

−
= β  is the free convection parameter and 

1
b / (1 at)α = α µ − is the dimensionless second grade parameter. 

Sarpkaya and Rainey (1971) for a second-order viscoelastic fluid 
obtained the approximate solution valid for sufficiently small values 
of the elastic parameter by employing a perturbation procedure. The 

skin-friction coefficient 
f

C  and the Nusselt number Nu are defined 

as follow: 
 

1 / 2w
f x

2

s

C 2 R e f (0 )
1

u
2

−τ
′′= = −

ρ

,                                    (19) 

 

1 / 2 '

x
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where 
x

Re  is the local Reynold number. 
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Nu G (0)

k
= = − θ ,                                                       (20) 

 
 
NUMERICAL TECHNIQUE 

 
In the present problem, the set of similar Equations from 15 to 18 are 
solved by a finite difference method. These ordinary differential 
equations are discretized by an accurate central difference method, 
and a computer program was developed to solve these equations. 
Vajravelu (1994), Hsiao and Hsu (2010a, b) and Hsiao (2012) also 
used analytical and numerical solutions to solve a related problems. 
Accordingly, some numerical technique methods will be applied to 
the same area in the future. In this study, the program was used to 
compute the finite difference approximations of derivatives for equal 
spaced discrete data. The code employ centered differences of 

O(∆
2

h ) for the interior points and forward and backward differences 
of O(∆h) for the first and last points, respectively (Chapra and 
Canale, 1990). To ensure the convergence of the numerical solution 
to the exact solution, the step sizes (∆η) were optimized and the 
results presented here are independent of the step sizes, at least, up 
to the fourth decimal place. The convergence criteria based on the 
relative difference between the current and previous iteration values 
of the velocity and temperature gradients at wall were employed. 

When the difference for the flow fields fall below 6
10

− , the solution is 

assumed to have converged and the iterative process is terminated. 
The sequence of the previous equations was expressed in different 
form using central difference scheme in η-direction. In each iteration 
step, the equations were then reduced to a system of linear algebraic 
equations. The corresponding finite-difference equations incorporate 
the boundary conditions as follows: 

 
(1) Forward finite-difference formulas for left boundary layer 
 

f = 0  

 

'f  = 1  
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f ''
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+ +− +
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h
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2
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h
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θ =  

 
(2) Backward finite-difference formulas for right boundary layer 

 
'

f =0  

 
 
 
 

f '' 0=  

 

i i 1 i 2 i 3
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i

(x )
'(x )

h

−θ − θ
θ =  

 

i 1 i 2
i 2

2 (x ) (x )
''(x )

h
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(3) Centered finite-difference formulas for internal points 
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(Previous equations are substitute into the following Equations) 
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' ''2 ''2 '' ''' '' '''3
Pr Ec [f f S(f f f ) ff f ] 0

2
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RESULTS AND DISCUSSION 
 
The multimedia world is include special feature to show 
one system meaning by different words, figures, marks, 
curves, etc. In present study, applied the different software 
to produce different purpose products, such as drawing
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Table 1. A comparison of -θ'(0) for an unsteady quiescent fluid flow (S =0, A=0, M=0, α=0, Ec=0, G=0). 
 

β Pr -θ'(0) (Vajravelu and Roper, 1999) Present Solution Errors 

-1 1 1.710937 1.710935 0.00002 

-2 2 2.486000 2.485991 0.00009 

-3 3 3.082179 3.082152 0.00027 

-4 4 3.585194 3.585137 0.00057 

-5 5 4.028535 4.028511 0.00024 

 
 
 

Table 2. Mixed convection for an unsteady quiescent viscoelastic fluid flow field (A=1, B=-1, M=0.1, η=7). 

 

α Pr S Ec G -f''(0) -θ'(0) 

0.1 1 0.1 0.1 0.01 31.212 4.2388 

0.2 2 0.2 0.2 0.02 9.1772 5.2095 

0.3 3 0.3 0.3 0.03 5.0086 6.3107 

0.4 4 0.4 0.4 0.04 3.4820 6.9902 

0.5 5 0.5 0.5 0.05 2.7294 7.2915 
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Ec=−0.1; S=0.1; A=0.1; B=0.1;Pr=1; G=0.1; α=0.1;
 (M= 0.00) +
 (M= 0.01) *
 (M= 0.02) o
 (M= 0.03) x
 (M= 0.04) −

 
 
Figure 2. Dimensionless temperature profiles θ versus η as Ec=-0.1, 
Pr=1, S=0.1, B=0.1, α=0.5, G=0.1, A=0.1 and M=0-0.04. 

 
 
 
figures by using Visio software, obtain the curves by using 
the Matlab software, and change the figures to different 
type image files. The objective of the present research 
analysis is to study the heat transfer with complex viscous 
dissipation effect of a viscoelastic fluid cooled or heated by 
a high or low Prandtl-number, fluid with various 
parameters. The model for quiescent viscoelastic fluid was 
used in the momentum equations. Studying the effects of 
dimensionless parameters, such as the unsteadiness 
parameter (S), the magnetic parameter (M), the buoyancy 
parameter (G), the Eckert number (Ec), the Prandtl 
number (Pr), the viscoelastic parameter (α), the space- 
dependent parameter (A) and temperature-dependent 
parameter (B) on heat source/sink was the main interest of 
this study. Flow and temperature fields of the quiescent 
viscoelastic fluid flow were analyzed by utilizing the 
boundary layer concept to obtain a set of coupled 
momentum equations and energy equations. Similarity 

transformation was used to convert the nonlinear, coupled 
partial differential equations to a set of nonlinear, coupled 
ordinary differential equations.  

A generalized derivation use to analyze an unsteady 
flow was studied. A second-order accurate finite difference 
method was used to obtain solutions of these equations. 

The results (- ' (0)θ ) obtained in this study are in line with 

those obtained by Vajravelu and Roper (1999) for an 
unsteady viscoelastic fluid flow (S =0, A=0, M=0), and 
these values are listed in Table 1. Table 2 shows a mixed 
convection and unsteady quiescent viscoelastic fluid flow 
field results (A=1, B=-1, η=7) for different values of α, Pr, S 
and Ec. 

Figure 2 shows the dimensionless temperature profiles 
of θ versus η as Ec=-0.1, Pr=1, S=0.1, B=0.1, α=0.5, 
G=0.1, A=0.1 and M=0-0.04. The dimensionless 
temperature profiles are the parabolic type curve that 
satisfied the boundary conditions. The parameter M is 
smaller, when the dimensionless temperature is lower. On 
the contrary, the parameter M is larger, when the 
dimensionless temperature is larger. Thus, the heat 
transfer effect is not good for a higher parameter M.  

To discuss the results for Figures 3, 4, 5, 6 and 7, some 
numerical calculations were carried out for dimensionless 
temperature profiles for different values of Pr, S, A, B and 
Ec. Figure 3 shows the dimensionless temperature profiles 
of θ versus η as Ec=-0.1, S=0.1, A=0.1, B=0.1, α=0.5, 
M=0.1, G=0.1 and Pr=0.01-0.12. The dimensionless 
temperature profiles are the parabolic type curve that 
satisfied the boundary conditions. The Prandtl number 
was higher, when the dimensionless temperature profile 
was lower. Thus, the Prandtl number can remove the heat 
from the fluid and its effect is good for a higher Prandtl 
number.  

Figure 4 shows the dimensionless temperature profiles
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 (Pr= 0.08) o
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Figure 3. Dimensionless temperature profiles θ versus η as Ec=-0.1, S=0.1, A=0.1, 

B=0.1, α=0.5, M=0.1, G=0.1 and Pr=0.01-0.12. 
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Figure 4. Dimensionless temperature profiles θ versus η as Ec=-0.1, Pr=1, A=0.1, 

B=0.1, α=0.5, M=0.1, G=0.1 and S=0.01-0.20. 
 
 
 

of θ versus η as Ec=-0.1, Pr=1, A=0.1, B=0.1, α=0.5, 
M=0.1, G=0.1 and S=0.01-0.20. The dimensionless 
temperature profiles are the parabolic type curve that 
satisfied the boundary conditions. The unsteadiness 
parameter was higher, when the dimensionless temperature 

profile was lower. Thus, the unsteadiness force can 
remove the heat from the fluid and its effect is good for a 
higher unsteadiness parameter.  

Figure 5 shows the dimensionless temperature profiles 
of θ versus η as Ec=-0.1, Pr=1, S=0.1, B=0.1, α=0.5,  
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Figure 5. Dimensionless temperature profiles θ versus η as Ec=-0.1, Pr=1, S=0.1, B=0.1,α=0.5, 
G=0.1, M=0.1 and A=5-25. 

 
 
 

G=0.1, M=0.1 and A=5-25. The dimensionless 
temperature profiles are the parabolic type curve that 
satisfied the boundary conditions. Parameter A was 
smaller, when the dimensionless temperature was lower. 
On the contrary, parameter A had a higher value, when the 
dimensionless temperature was higher. Thus, the heat 
transfer effect was not good for a higher parameter A.  

Figure 6 show the dimensionless temperature profiles θ 
versus η as Ec=-0.1, Pr=1, M=0.1, G=0.1, S=0.1, A=0.1, 
α=0.5 and B=-0.8 to -0.6. The dimensionless temperature 
profiles are the parabolic type curve that satisfied the 
boundary conditions. Parameter B was larger, when the 
dimensionless temperature profile was higher. Thus, 
parameter B cannot remove the heat from the fluid and its 
effect was not good for a higher parameter B. Figure 7 
shows the dimensionless temperature profiles θ versus η 
as Pr=1, S=0.1, A=0.1, B=0.1, M=0.1, G=0.1, α=0.5 and 
Ec=0.005 to 0.030. The dimensionless temperature 
profiles are the parabolic type curve that satisfied the 
boundary conditions. The Eckert number was larger, when 
the dimensionless temperature profile was larger too. 
Thus, the viscous dissipation force cannot remove the 
heat from the fluid and its effect was not good for a higher 
Eckert number Ec.  

Figure 8 shows the dimensionless temperature profiles 
θ versus η as Pr=1, S=0.1, A=0.1, B=0.1, Ec=-0.1, M=0.1, 
G=0.1 and α=0.9-1.0. The dimensionless temperature 
profiles are the parabolic type curve that satisfied the 

boundary conditions. The viscoelastic parameter α was 
higher, when the dimensionless temperature profile was 
lower. Thus, the viscoelastic force can remove the heat 
from the fluid and its effect was good for a higher 
viscoelastic parameter α. 

Figure 9 shows the dimensionless temperature profiles 
θ versus η as Pr=1, S=0.1, A=0.1, B=0.1, M=0.1, Ec=-0.1, 
α=0.5 and G=0.23-0.24. The dimensionless temperature 
profiles are the parabolic type curve that satisfied the 
boundary conditions. The free convection number G was 
higher, when the dimensionless temperature profile was 
larger too. Thus, the buoyancy force cannot remove the 
heat from the fluid and its effect was not good for a higher 
Eckert number G. The main contribution of this study 
considers the most complex viscous dissipation effect in a 
mixed MHD convection for a non-Newtonian fluid flow 
observed on a vertical stretching sheet hybrid heat transfer 
system. From the figures, more physical insights are 
provided as follows: 
 
(1) Figures 2, 3, 5, 6, 7 and 9 reveal that an increase of M, 
Pr, A, B, Ec and G results to an increase of the 
dimensionless temperature distribution. This is because 
there would be an increase of the thermal boundary layer 
thickness with an increase in the values of Ec, A and B, but 
the heat transfer phenomenon is not good at these 
physical conditions. 
(2)  On   the  contrary,  Figures  4   and   8   reveal   that   the
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 (B = −0.65 ) x
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Figure 6. Dimensionless temperature profiles θ versus η as Ec=-0.1, Pr=1, M=0.1, G=0.1, 
S=0.1, A=0.1,α=0.5 and B=-0.8 to -0.6. 
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Figure 7. Dimensionless temperature profiles θ versus η as Pr=1, S=0.1, A=0.1, B=0.1, M=0.1, 
G=0.1,α=0.5 and Ec=-0.005 to -0.030. 
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Figure 8. Dimensionless temperature profiles θ versus η as Pr=1, S=0.1, A=0.1, B=0.1, 
Ec=-0.1, M=0.1, G=0.1 and α=0.9-1.0. 
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Figure 9. Dimensionless temperature profiles θ versus η as Pr=1, S=0.1, A=0.1, B=0.1, M=0.1, 
Ec=-0.1, α=0.5 and G=0.23-0.24. 
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increase in α and S result in the decrease of the 

temperature gradient on the wall and a decrease in ' (0)θ  

value. This is because there would be a decrease of the 
thermal boundary layer thickness with an increase in the 
values of α and S. Thus, the heat transfer phenomenon is 
good at these physical conditions. 
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