Full Length Research Paper

Some classification results on totally umbilical proper slant and hemi-slant submanifolds of a nearly Kenmotsu manifold

Siraj Uddin¹, Cenap Ozel^{2*}, M. A. Khan³ and Khushwant Singh⁴

¹Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. ²Department of Mathematics, Abant Izzet Baysal University, 14268 Bolu, Turkey. ³Department of Mathematics, University of Tabuk, 80015 Tabuk, Kingdom of Saudi Arabia. ⁴School of Mathematics and Computer Applications, Thapar University, 147004 Patiala, India.

Accepted 14 May, 2012

This paper is concerned with the study of slant and hemi-slant submanifolds of a nearly Kenmotsu manifold. We prove that every totally umbilical proper slant submanifold of a nearly Kenmotsu manifold is totally geodesic and derive the integrability conditions of involved distributions in the definition of a hemi-slant submanifold. Finally, we obtain a classification theorem on a totally umbilical hemi-slant submanifold of a nearly Kenmotsu manifold.

Key words: Slant submanifold, hemi-slant submanifold, totally umbilical, minimal submanifold, nearly Kenmotsu manifold.

INTRODUCTION

Kenmotsu (1972) introduced a class of almost contact Riemannian manifolds known as Kenmotsu manifolds. Mihai et al. (1976) generalized the notion of Kenmotsu manifold. In fact they introduced the structure of f – Kenmotsu manifold. Several authors studied the semi-invariant submanifold of Kenmotsu manifolds and f – Kenmotsu manifolds, a generalized version of Kenmotsu manifold. It is therefore worthwhile to study the slant and hemi-slant submanifolds of a nearly Kenmotsu manifold. Recently, we have studied the semi-invariant submanifolds of a nearly Kenmotsu manifold (Khan et al., 2007). A nearly Kenmotsu structure on an almost contact metric manifold is given by a slightly weaker condition

than that of a Kenmotsu manifold. Slant immersion in complex geometry were defined by Chen (1990) as a natural generalization of both holomorphic and totally real immersions. Many authors have studied such slant immersions in almost Hermitian manifolds. Lotta (1996) introduced the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold. Later on, slant submanifolds in Sasakian manifolds have been studied by Cabrerizo et al. (2000). Moreover, Papaghiuc (1994) introduced a class of submanifolds in an almost Hermitian manifold, called the semi-slant submanifolds, such that the class of proper CR-submanifolds and the class of slant submanifolds appear as particular cases in the class of semi-slant submanifolds. Recently, Carriazo (2002) defined and studied bi-slant immersion in almost Hermitian manifold and termed it as an anti-slant submanifold. However, the term anti-slant may suggest that the submanifold has no slant part. Hence, Sahin (2009) studied and define the notion of hemi-slant submanifolds. The purpose of the present paper is to study the slant and hemi-slant submanifolds of a nearly Kenmotsu manifold.

Subsequently, we review basic formulas and definitions for a nearly Kenmotsu manifold and their submanifolds, which we shall use later. Afterwards, we recall the definition and some basic properties of slant

^{*}Corresponding author. E-mail: cenap.ozel@gmail.com.

²⁰¹⁰ AMS mathematics subject classification: 53C40, 53C42, 53B25.

submanifolds. Also, we prove that a totally umbilical proper slant submanifold of a nearly Kenmotsu manifold is totally geodesic. This study then dealt with hemi-slant submanifolds of a nearly Kenmotsu manifold. Here, we obtain the integrability conditions of the distributions of a hemi-slant submanifold and classify all totally umbilical hemi-slant submanifolds of a nearly Kenmotsu manifold.

PRELIMINARIES

Let \overline{M} be (2m+1)-dimensional almost contact metric manifold together with a metric tensor g, a tensor field ϕ of type (1,1), a vector field ξ , a 1-form η on \overline{M} which satisfy (Blair, 1976).

$$\phi^2 = -I + \eta \otimes \xi, \phi\xi = 0, \eta(\phi) = 0, \eta(\xi) = 1, \eta(X) = g(X,\xi)$$
(2.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), g(\phi X, Y) = -g(X, \phi Y)$$
(2.2)

for any vector field X, Y on M. If in addition to above relations,

$$(\overline{\nabla}_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X$$
(2.3)

then it is called Kenmotsu manifold. We also have on a Kenmotsu manifold \overline{M}

$$\overline{\nabla}_X \xi = X - \eta(X) \xi.$$

If in the tensorial equation (2.3) the right hand side is zero then the manifolds have a *cosyplectic structure*, that is for a cosymplectic manifold we have $(\overline{\mathbf{v}}_X \phi)Y = \mathbf{0}$ and from this relation we get $\overline{\mathbf{v}}_X \xi = \mathbf{0}$.

The almost contact metric manifold M is called a nearly Kenmotsu manifold if it satisfy the following condition

$$(i) (\overline{\nabla}_{X}\phi)X = -\eta(X)\phi X,$$

$$(ii) (\overline{\nabla}_{X}\phi)Y + (\overline{\nabla}_{Y}\phi)X = -\eta(X)\phi Y - \eta(Y)\phi X$$
for all $X, Y \in T\overline{M}$.
$$(2.4)$$

If the tensorial relation (2.4) is identically vanish then the manifold is called *nearly cosymplectic*. Hence, the nearly cosymplectic structure equations are:

(i)
$$(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X = 0$$
 or equivalently
 $(\overline{\nabla}_X \phi)X = 0$ and
(ii) $\overline{\nabla}_X \xi = 0$, for any $X, Y \in T\overline{M}$.

Now, let M be a submanifold immersed in \overline{M} . The Riemannian metric induced on M is denoted by the same symbol g. Let TM and $T^{\perp}M$ be the Lie algebra of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connections on M, then the Gauss and Weingarten formulas are given by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \tag{2.5}$$

$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V \tag{2.6}$$

For any $X, Y \in TM$ and $V \in T^{\perp}M$, where ∇^{\perp} is the connection on the normal bundle $T^{\perp}M$, **h** is the second fundamental form and A_V is the Weingarten map associated with V as

$$g(A_V X, Y) = g(h(X, Y), V)$$
(2.7)

For $X \in TM$, we write

$$\phi X = TX + NX, \tag{2.8}$$

where $TX \in TM$ and $NX \in T^{\perp}M$. Similarly, for $V \in T^{\perp}M$, we have

$$\phi V = tV + nV, \tag{2.9}$$

where tV (resp. nV) is the tangential component (resp. normal component) of ϕV .

Now, for any $X, Y \in TM$, let us denote the tangential and normal parts of $(\overline{\nabla}_X \phi)Y$ by $P_X Y$ and $Q_X Y$, respectively. Then we decompose

$$(\overline{\nabla}_X \phi)Y = P_X Y + Q_X Y \tag{2.10}$$

Thus, by an easy computation, we obtain the following formulae

$$P_X Y = (\overline{\nabla}_X T) Y - A_{NY} X - th(X, Y)$$
(2.11)

$$Q_X Y = (\overline{\nabla}_X N)Y + h(X, TY) - nh(X, Y)$$
(2.12)

Similarly, for any $V \in T^{\perp}M$, denoting tangential and normal parts of $(\overline{\nabla}_X \phi)V$ by $P_X V$ and $Q_X V$

respectively, we obtain

$$P_X V = (\overline{\nabla}_X t) V + T A_V X - A_{nV} X$$
(2.13)

$$Q_X V = (\overline{\nabla}_X n)V + h(tV, X) + NA_V X$$
(2.14)

The covariant derivative of the morphisms T, N, t and n are defined respectively as

$$(\overline{\nabla}_X T)Y = \nabla_X TY - T\nabla_X Y \tag{2.15}$$

$$(\overline{\nabla}_X N)Y = \nabla_X^{\perp} NY - N\nabla_X Y$$
(2.16)

$$(\overline{\nabla}_X t)V = \nabla_X tV - t\nabla_X^{\perp} V \tag{2.17}$$

$$(\overline{\nabla}_X n)V = \nabla_X^{\perp} nV - n\nabla_X^{\perp} V$$
(2.18)

for all $X, Y \in TM$ and $V \in T^{\perp}M$.

A submanifold M of an almost contact metric manifold \overline{M} is said to be totally umbilical if

$$h(X,Y) = g(X,Y)H,$$
(2.19)

where H is the mean curvature vector. If h(X,Y) = 0 for any $X,Y \in TM$, then M is said to be *totally* geodesic and minimal if H = 0.

SLANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD

Throughout the section we consider M as a proper slant submanifold of a nearly Kenmotsu manifold. For any $x \in M$ and $X \in T_x M$ if the vectors X and ξ are linearly independent, the angle $\theta(X) \in [0, \frac{\pi}{2}]$ between $\phi(X)$ and $T_x M$ is well defined. If $\theta(X)$ does not depend on the choice of $x \in M$ and $X \in T_x M$, we say that Mis slant in \overline{M} . The constant angle θ is then called the slant angle of M in \overline{M} . The anti-invariant submanifold of an almost contact metric manifold is slant submanifold is slant submanifold with slant angle $\theta = \mathbf{0}$. If the slant angle θ neither zero nor $\overline{2}$, then the slant submanifold is called a proper slant submanifold. If M is a slant submanifold of an almost contact manifold then the tangent bundle TM of M is decomposed as

$$TM = D_{\theta} \bigoplus <\xi > \tag{3.0}$$

where $<\xi>$ denotes the distribution spanned by the structure vector field ξ and D_{θ} is the complementary distribution of $<\xi>$ in TM, known as the *slant distribution* on M. For a proper slant submanifold M of an almost contact manifold \overline{M} with a slant angle θ , Lotta (1996) proved that

$$T^{2}X = -\cos^{2}\theta[X - \eta(X)\xi]$$
(3.1)

for any $X \in TM$. Recently, Cabrerizo et al. (2000) extended the above result into a characterization for a slant submanifold in a contact metric manifold. In fact, they obtained the following crucial theorem.

For a slant submanifold M of an almost contact metric manifold \overline{M} , the normal bundle $T^{\perp}M$ of M is decomposed as

$$T^{\perp}M = N(TM) \oplus \mu$$

where μ is the invariant normal subbundle with respect to ϕ orthogonal to N(TM).

Theorem 3.1.

Let \mathbf{M} be a submanifold of an almost contact metric manifold $\overline{\mathbf{M}}$ such that $\xi \in \mathbf{TM}$ (Cabrerizo et al., 2000). Then, \mathbf{M} is slant if and only if there exists a constant $\lambda \in [0,1]$ such that

$$T^{2} = \lambda(-I + \eta \otimes \xi)$$
(3.2)

Furthermore, if θ is the slant angle of **M**, then it verifies that $\lambda = -\cos^2 \theta$.

The following relations are the consequences of the above theorem

$$g(TX,TX) = \cos^2\theta[g(X,Y) - \eta(X)\eta(Y)]$$
(3.3)

$$g(NX, NY) = \sin^2 \theta [g(X, Y) - \eta(X)\eta(Y)]$$
(3.4)

for any $X, Y \in TM$

In the following two theorems, we assume M as a totally umbilical proper slant submanifold of a nearly Kenmotsu manifold \overline{M} .

Theorem 3.2.

Let M be a totally umbilical proper slant submanifold of a nearly Kenmotsu manifold \overline{M} , then $H \in \mu$ if and only if M has a nearly cosymplectic sturucture.

Proof

For any $U \in TM$, we have

h(U,TU) = g(U,TU)H = 0.

From equation (2.4)(i), (2.5), (2.6) and (2.8), the above equation reduced to

$$-\eta(U)\phi U = \phi(\nabla_U U + h(U, U)) + A_{NU}U - \nabla_U^{\perp}NU - \nabla_U TU$$

Which on making use of (2.8) and comparing tangential components simplifies as

$$-\eta(U)TU = T\nabla_U U - \nabla_U TU + th(U, U) + A_{NU}U.$$

Using (2.15) and (2.19), we obtain

$$\eta(U)TU = (\overline{\nabla}_U T)U - g(U, U)tH - A_{NU}U.$$

Taking the inner product with ξ , we get

$$g((\overline{\nabla}_{U}T)U,\xi) = g(g(H,NU)U,\xi)$$

or, $(\overline{\nabla}_{U}T)U = g(H,NU)U.$ (3.5)

Thus, the result follows from (3.5).

Theorem 3.3

A totally umbilical proper slant submanifold M of a nearly Kenmotsu manifold \overline{M} is totally geodesic if **H and \nabla_U^{\perp} H lie \mu_{\dots}** for all $U \in TM$.

Proof

For any $U \in TM$, we have

 $\overline{\nabla}_U \phi U = (\overline{\nabla}_U \phi) U + \phi \overline{\nabla}_U U.$

Using (2.4)(i), (2.5), (2.6) and (2.8), the above equation takes the form

$$\nabla_U T U + g(U, T U) H - A_{NU} U + \nabla_U^{\perp} N U = -\eta(U) \phi U + T \nabla_U U + N \nabla_U U + g(U, U) \phi H.$$

Taking the product with ϕ^H and using (2.2), we obtain

$$g(\nabla_U^{\perp}NU,\phi H) = -\eta(U)g(\phi U,\phi H) + g(N\nabla_U U,\phi H) + g(U,U)g(H,H).$$

Using the fact that $H \in \mu$, we derive

$$g(\nabla_U^{\perp} NU, \phi H) = g(U, U) \parallel H \parallel^2.$$

Then from equation (2.6), we get

$$g(\nabla_U N U, \phi H) = g(U, U) \parallel H \parallel^2.$$
(3.6)

Now for any $U \in TM$, we have

$$\overline{\nabla}_U \phi H = (\overline{\nabla}_U \phi) H + \phi \overline{\nabla}_U H$$

Using (2.6), (2.8) and (2.10), we obtain

$$-A_{\phi H}U + \nabla_{U}^{\perp}\phi H = P_{U}H + Q_{U}H - TA_{H}U - NA_{H}U + t\nabla_{U}^{\perp}H + n\nabla_{U}^{\perp}H$$

Taking the product with NU and in view of fact $n \nabla_U^{\perp} H \in \mu$ the above equation becomes

$$g(\nabla_{U}^{\perp}\phi H, NU) = -g(NA_{H}U, NU) + g(Q_{U}H, NU).$$

In view of (3.4) and (3.7), we get

$$g(\nabla_U^{\perp}\phi H, NU) = -\sin^2\theta \{g(U, U)g(H, H) - \eta(A_H U)\eta(U)\} + g(Q_U H, NU)$$
(3.7)

Since $\overline{\mathbf{v}}$ is a metric connection and NU and ϕH are orthogonal, thus on using (2.6), we derive

$$g(\overline{\nabla}_U NU, \phi H) = \sin^2 \theta g(U, U) \parallel H \parallel^2 - g(Q_U H, NU)$$
(3.8)

Then from (3.6) and (3.8), we obtain

$$0 = \cos^2 \theta g(U, U) \parallel H \parallel^2 + g(Q_U H, NU).$$
(3.9)

Now from (2.14), we have

$$g(Q_UH, NU) = g((\overline{\nabla}_U n)H, NU) + g(NA_HU, NU).$$

Using (3.4), we obtain

$$g(Q_UH, NU) = g((\overline{\nabla}_U n)H, NU) + \sin^2\theta g(U, U) \parallel H \parallel^2$$
(3.10)

Thus from (3.9), (3.10) and (2.18) and the fact that

 $H \in \mu$, we obtain

$$g(U, U) \parallel H \parallel^2 = 0.$$
 (3.11)

Since M is proper slant then it follows from (3.11) that $H = \mathbf{0}$, that is, M is totally geodesic in \overline{M} . Hence, the theorem is proved.

HEMI-SLANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD

In this section we will obtain the integrability conditions of the distributions of hemi-slant submanifold of a nearly Kenmotsu manifold. Also, we obtain a classification result on a totally umbilical hemi-slant submanifold in a nearly Kenmotsu manifold.

Definition 4.1

Let \overline{M} be an almost contact Riemannian manifold and M a real submanifold of \overline{M} . Then M is said to be hemislant submanifold of \overline{M} if there exist two orthogonal distributions D_{θ} and D_{\perp} on M such that

1. **TM** admits the orthogonal direct decomposition $TM = D_{\perp} \bigoplus D_{\theta} \bigoplus \langle \xi \rangle_{\perp}$

- 2. D_{\perp} is anti-invariant distribution **i.e.**, $\phi D_{\perp} \subseteq T^{\perp}M$.
- 3. $\mathbf{D}_{\mathbf{\theta}}$ is a non-zero slant distribution with slant angle $\theta \neq \frac{\pi}{2}$.

In this case, angle θ is a slant angle of \mathbf{M} . The antiinvariant distribution $\mathbf{D}_{\mathbf{I}}$ of a hemi-slant submanifold is a slant distribution with angle $\theta = \frac{\pi}{2}$. It is clear that hemislant submanifolds are particular cases of bi-slant submanifolds. Moreover, it is also clear that if $\theta = \mathbf{0}$, then a hemi-slant submanifold is a CR-submanifold.

Lemma 4.1.

Let \mathbf{M} be a hemi-slant submanifold of a nearly Kenmotsu manifold $\overline{\mathbf{M}}$, then the following holds

$$\phi[Z,W] = 3(A_{\phi W}Z - A_{\phi Z}W)$$

for all $Z, W \in D_{\perp}$.

Proof

For any $Z, W \in D_{\perp}$ and $U \in TM$, using (2.2), (2.5) and (2.7), we obtain

$$2g(A_{\phi W}Z,U) = -g(\phi \overline{\nabla}_Z U,W) - g(\phi \overline{\nabla}_U Z,W)$$

The above equation together with (2.4) (ii), implies

$$2g(A_{\phi W}Z,U) = -g(\overline{\nabla}_{Z}\phi U,W) - g(\overline{\nabla}_{U}\phi Z,W)$$
$$+\eta(Z)g(\phi U,W) + \eta(U)g(\phi Z,W)$$
$$= -g(\overline{\nabla}_{Z}\phi U,W) - g(\overline{\nabla}_{U}\phi Z,W).$$

Using (2.2) and (2.6), we get

$$2g(A_{\phi W}Z,U) = -g(\phi \overline{\nabla}_Z W,U) + g(A_{\phi Z} W,U).$$

Transvecting U both sides, we get

$$2A_{\phi W}Z = A_{\phi Z}W - \phi \overline{\nabla}_Z W. \tag{41}$$

Similarly,

$$2A_{\phi Z}W = A_{\phi W}Z - \phi \overline{\nabla}_W Z. \tag{4.2}$$

Thus, the result follows from (4.1) and (4.2) on their subtraction. In view of $Ker(T) = D_{\perp}$, this Lemma leads to the following proposition.

Proposition 4.1

Let \mathbf{M} be a hemi-slant submanifold of a nearly Kenmotsu manifold $\overline{\mathbf{M}}$, then the anti-invariant distribution \mathbf{D}_{\perp} is integrable if and only if

$$A_{\phi W}Z = A_{\phi Z}W$$
, for any **Z**, **W** \in **D**₁

Proof

The proof follows from the Lemma 4.1. Now, for the integrability of slant distribution D_{θ} , we have the following proposition.

Proposition 4.2

Let M be a hemi-slant submanifold of a nearly

Kenmotsu manifold $\overline{M},$ then the slant distribution D_{θ} is integrable if and only if

$$2(\overline{\nabla}_{Y}\phi)X + h(X,TY) - h(Y,TX) - \nabla_{Y}^{\perp}NX + \nabla_{X}^{\perp}NY \in ND_{\theta}$$

for any $X, Y \in D_{\theta}$.

Proof

For any $X, Y \in D_{\theta}$, we have

$$\phi[X,Y] = \overline{\nabla}_X \phi Y - (\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X - \overline{\nabla}_Y \phi X$$

From equation (2.4) (ii) and (2.8), we obtain

$$\phi[X,Y] = 2(\overline{\nabla}_{Y}\phi)X + \overline{\nabla}_{X}TY + \overline{\nabla}_{X}NY$$
$$-\overline{\nabla}_{Y}TX - \overline{\nabla}_{Y}NX + \eta(X)\phiY + \eta(Y)\phiX.$$

Using (2.5) and (2.6), we get

$$\phi[X,Y] = 2(\overline{\nabla}_{Y}\phi)X + \nabla_{X}TY + h(X,TY) - A_{NY}X + \nabla_{X}^{\perp}NY$$
$$-\nabla_{Y}TX - h(Y,TX) + A_{NX}Y - \nabla_{Y}^{\perp}NX.$$
(4.3)

Taking inner product with FW, for any $W \in D_{\perp}$, we get

$$g(\phi[X,Y],FW) = g(2(\overline{\nabla}_Y \phi)X,FW)$$

+ $g(h(X,TY) - h(Y,TX) - \nabla_Y^{\perp}NX + \nabla_X^{\perp}NY,FW).$

Thus on using (2.2), we obtain

$$g([X,Y],W) = g(2(\nabla_Y \phi)X, \phi W) + \eta([X,Y])\eta(W)$$

+ $g(h(X,TY) - h(Y,TX) - \nabla_Y^{\perp}NX + \nabla_X^{\perp}NY, \phi W).$ (4.4)

Hence we get our assertion from (4.4).

Theorem 4.1.

Let M be a totally umbilical hemi-slant submanifold of a nearly Kenmotsu manifold $\overline{\mathbf{M}}$, then atleast one of the following statements is true

 $\begin{array}{l} 1 \quad dim D_{\perp} = \mathbf{1} \\ 2 \quad H \in \mu \end{array}$

3. M is proper slant that is, $D_{\perp} = \{0\}$.

Proof

As we know that for a nearly Kenmotsu manifold

$$(\overline{\mathbf{v}}_U \phi) U = -\eta (U) \phi U$$
, using this fact we obtain

$$(\overline{\nabla}_Z \phi) Z = 0. \tag{4.5}$$

For any $Z \in D_{\perp}$. The tangential and normal components of (4.5) are $P_Z Z = \mathbf{0}$ and $Q_Z Z = \mathbf{0}$, respectively. From (2.10) and tangential component of (4.5), we obtain

$$(\overline{\nabla}_Z T)Z = A_{NZ}Z + th(Z,Z)$$

or,

$$T\nabla_Z Z = -Zg(H, NZ) - \|Z\|^2 tH$$

Taking the inner product with $W \in D_{\perp}$, we obtain

 $g(H, NZ)g(Z, W) + ||Z||^2 g(tH, W) = 0.$

Thus, the equation (4.6) has a solution if either $dimD_{\perp} = 1$ or $H \in \mu$ or $D_{\perp} = \{0\}$. This completes the proof.

Now, we are in position to prove our main theorem.

Theorem 4.2

Let M be a totally umbilical hemi-slant submanifold of a nearly Kenmotsu manifold \overline{M} , then atleast one of the following statements is true:

- 1. M is totally real,
- 2. M has a nearly cosymplectic structure
- 3. *M* is totally geodesic in \overline{M} , if $\nabla_U^{\perp} H \in \mu$, for all $U \in TM$, 4. $dimD_{\perp} = 1$.

Proof

Suppose $H \neq 0$ then by equation (3.11), we obtain $D_{\theta} = \{0\}$, thus from definition M is totally real which is case (i). If $D_{\theta} \neq \{0\}$ and $H \in \mu$, then by Theorem 3.2, M has a nearly cosymplectic structure. Moreover, if $\nabla_{U}^{1}H \in \mu$, for any $U \in TM$ and M has nearly cosymplectic structure, then by Theorem 3.3, M is totally geodesic in \overline{M} . Finally, if $H \Subset \mu$, then equation (4.6) has a solution if either $dimD_{\perp} = 1$ which is the case (iv). Thus, the theorem is proved completely.

ACKNOWLEDGEMENTS

The authors are grateful to the editor and the referees for their valuable suggestions.

REFERENCES

Blair DE (1976). Contact manifolds in Riemannian geometry Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 509.

Cabrerizo JL, Carriazo A, Fernandez LM, Fernandez M (2000). Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 42:125-138.

Carriazo A (2002). New developments in slant submanifolds theory. Narosa Publishing House, New Delhi, India.

Chen BY (1990). Slant immersions. Bull. Austral. Math. Soc. 41:135-147.

Kenmotsu K (1972). A class of almost contact Riemannian manifolds. Tohoku Math. J. 24:93-103.

Khan VA, Khan MA, Uddin S (2007). Totally umbilical semi-invariant submanifolds of a nearly Kenmotsu manifold. Soochow J. Math. 33:563-568.

- Lotta A (1996). Slant submanifolds in Contact Geometry. Bull. Math. Soc. Romania 39:183-198.
- Mihai I, Rosca R, Verstraelen L (1976). Some aspects of the differential geometry of vector fields. Padge Bruxelles.
- Papaghiuc N (1994). Semi-slant submanifolds of Kahlerian manifold. Ann. St. Univ. Iasi 9:55-61.

Sahin B (2009). Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 95:207-226.