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In this paper, several new iterative methods for solving nonlinear algebraic equations are presented. 
The iterative formulas are based on the He's homotopy perturbation method (HPM). It is shown that the 
new methods lead to eight algorithms which are of fifth, seventh, tenth and fourteenth order 
convergence. These methods result in real or complex simple roots of certain nonlinear equations. The 
merit of the new algorithms is that, in case the nonlinear equation have complex roots, it can give 
complex solutions even when the initial approximation is chosen real. Several examples are presented 
and compared to other methods, showing the accuracy and fast convergence of the presented method.  
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INTRODUCTION 
 
Finding the roots of nonlinear algebraic equations are 
common yet an important problem in science and 
engineering. Analytical methods for solving such 
equations are difficult or almost non-existent. Therefore, it 
is only possible to obtain approximate solutions by 
numerical techniques based on iteration procedures. 

Recently, due to the development of various computer 
software and hardware many iterative methods have 
been developed to approximate a solution of nonlinear 
equation 
 

0.=)(xf
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We present some new modifications in the last nine years 
for Newton-Raphson method, also we derived some new 
methods with higher order convergence for solving 
nonlinear Equations (1) which are presented in this 
paper. 

Iterative methods are based on the idea  of  successive  
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approximations, that is, starting with one or more initial 
approximations to the root, we obtain a sequence of 

approximations or iterates 


0}{ kkx , which in the limit 

converges to the root. The methods give only one root at 
a time. 
 
 
Definition 1 

 

A sequence of iterates 


0}{ kkx  is said to converge to the 

root α,  if 0||lim 


k
k

x or .lim 


k
k

x
 
In practice, 

except in rare cases, it is not possible to find α which 
satisfies the given equation exactly. 
 
 
Definition 2 (Order of convergence) 

 

Assume that a sequence of iterates 


0}{ kkx  converges 

to α and  kk xe  for .0k  If two positive constants 

0M  and 0q  exist, and 
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Then the sequence is said to converge to α with order of 
convergence q. The number M is called asymptotic error 
constant. 

In recent years much attention has been given to 
develop several iterative type methods for solving non-
linear equations. Here we present the methods, but we 
focus on our new methods. 

The most popular and widely method for finding zeros 
of non-linear equations (1) is Newton’s method for simple 
root which is defined by 
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and Newton’s method for multiple roots is defined by 
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where  m  is the multiplicity of the root. These are 

important and basic methods, which converge 
quadratically. 

During the last decade, many methods have been 
developed for solving nonlinear equations. These 
methods are developed using Taylor series, Adomian 
decomposition method (Abbasbandy, 2003; Babolian and 
Biazar, 2002; Jafari and Gejji, 2006), homotopy 
perturbation method (Golbabai and Javidi, 2007; He, 
2003; Javidi, 2009) and other techniques (Basto et al., 
2006; Chun, 2006, 2005; Noor, 2007; Noor et al., 2006).  

The homotopy perturbation method (HPM), first 
proposed by He in 1998, was developed and improved by 
He (1999, 2000, 2003a, b). Very recently, the new 
interpretation and new development of the homotopy 
perturbation methods have been given and well 
addressed by He (2006a, b). The He's homotopy 
perturbation method is a novel and effective method, 
which can solve various nonlinear equations. 

In this study, a numerical method based on He's 
homotopy perturbation method is proposed for solving 
the nonlinear algebraic equations. For this purpose, we 
use HPM and Taylor’s expansion of order two for the 
equation. We also prove the convergence of the 
proposed method. Several numerical examples are given 
to illustrate the  performance of the new iterative 
methods. 
 
 

DERIVATION OF THE METHODS USING HPM 
 

Consider the nonlinear algebraic equation (Equation 1). 
We assume that   is a simple root of  Equation  (1)  and  

 
 
 
 

  an initial guess sufficiently close to it. We can rewrite 

Equation (1) using the Taylor's series as:  
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We construct a homotopy RRH [0,1]:  which satisfies 
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where p is an embedding parameter. Hence, it is obvious 
that  

 

0,)()(
2!

1
)()()(=,0)( 2   ''' fxfxfxH                  (4) 
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and the changing process of p from 0 to 1, refers to 

),( pxH  from ,0)(xH  to ,1)(xH . In topology, this is called 

deformation, ,0)(xH  and ,1)(xH  are call homotopic. 

Applying the perturbation technique (Nayfeh, 1985), due 
to the fact that 10  p  can be considered as a small 

parameter, we can assume that the solution of (3) can be 
expressed as a series in p 
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when 1p , (3) corresponds to (1) and (6) becomes the 

approximate solution of Equation (1), that is 
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The convergence of the series (7) has been proved by 
He in his famous paper (He, 1999). 

For the application of homotopy perturbation method to 

Equation (1) we can write (3) by expanding )(xf  into a 

Taylor series around 0x  as follows: 
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Substitution of (6) into (8) yields:  
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By equating the terms with identical powers of p, we 
have:  
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By solving Equation (10), we obtain  
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where 1=  . So, from Equation (11) and (12) we have: 
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By substituting (13), (14) and (15) into (7), we can obtain 
the zero of Equation (1) as follows: 
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Now by substituting 1= , these formulations allow us to 

suggest the following iterative methods for solving the 
nonlinear algebric Equation (1). 

 
 
Algorithm 1  

 

For a given 0x , calculate the approximation solution 1nx  

by the iterative scheme: 
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Algorithm 2  
 

For a given 0x , calculate the approximation solution 1nx  

by the iterative scheme:  
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Algorithm 3 
 

For a given 0x , calculate the approximation solution 1nx  

by the iterative scheme: 
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Algorithm 4 
 

For a given 0x , calculate the approximation solution 1nx  

by the iterative scheme: 
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It is clear that formulations to obtain higher order 
convergence can be continued  in the  same  manner  but  
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the formulas get more and more complicated. Obviously, 
if the second derivative is not known exactly, it may be 
replaced by its numerical approximations. In this case 
more initial points are required. Indeed this would effect 
the order of convergence, as in the case of secant 
method compared with the Newton-Raphson method. 
The criteria assumed for the initial guess is once again 
same as the case of Newton-Raphson method.   
 
 

CONVERGENCE ANALYSIS 
 

In this section, the convergence of Algorithms 1 - 4 is 
considered. The approach is similar to that of (Javidi, 
2009). 
 
 

Definition 1 
 

Let nn xe =  be the truncation error in the nth iterate. 

If there exists a number 1k  and a constant 0  

such that  
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Then k  is called the order of convergence of the method 

(Gautschi, 1997).  
 
 

Theorem 2 
 

Consider the nonlinear equation 0=)(xf . Suppose f is 

sufficiently differentiable. Then for the iterative method 
defined by Equation (17), the convergence is at least of 
order five.  
 
 
Proof 
 

Let   be a simple zero of )(xf . Since, )(xf  is 

sufficiently differentiable, by expanding )(),( n

'

n xfxf  

and )( n

'' xf  around  , we get 
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Also from (17), (22) and (23) we have 
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Expanding )( nyf  about   and using (24), we get 
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 From (23) and (25) we obtain 
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 So, from (17), (24) and (26) we obtain 
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 which shows that Algorithm 1 is at least a fifth-order 
convergent method; the required result.  
 

 

Theorem 3 
 

Consider the nonlinear equation 0=)(xf . Suppose f is 

sufficiently differentiable. Then for the iterative method 
defined by Equation (18), the convergence is at least of 
order seven.  
 
 
Proof 
 

Expanding )( nyf   about   and using (24), we get 
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 From (26) we have 
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Also from (22) and (23) we get 
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So, form (18), (23), (24),  (28),  (29)  and  (30)  we  obtain  
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which shows that Algorithm 2 is at least of a seventh-
order convergent method, the required result.  
 
 

Theorem 4 
 

Consider the nonlinear equation 0=)(xf . Suppose f is 
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sufficiently differentiable. Then for the iterative method 
defined by Equation (19), the convergence is at least of 
order ten. 
 
 
Proof 
 
From (19), (24) and (26) we obtain 
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By expanding )( nzf  and )( nzf   about   and using 

(32), we get 
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So, from (19), (32), (33) and (34) we obtain 
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which shows that Algorithm 3 is at least a tenth-order 
convergent method; the required result.  
 
 
Theorem 5 
 

Consider the nonlinear equation 0=)(xf . Suppose f is 

sufficiently differentiable. Then for the iterative method 
defined by Equation (20), the convergence is at least of 
order fourteen.  
 
 
Proof 
 
From (20), (23), (24), (28), (29) and (30) we get 
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By expanding )( nwf  and )( nwf   about   and using 

(36), we get 
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So, from (20), (36), (37) and (38) we obtain  
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which shows that Algorithm 4 is at least a fourteenth-
order convergent method; once again the required result.  
 
 

Remark 1 
 
In case 1=   is chosen, similar Algorithms to 1 - 4 are 

obtained, but for the sake of clarity are denoted by 
Algoritms 5 - 8 in this paper.  
 
 

Remark 2 
 
We consider the definition of efficiency index (Gautschi, 

1997) as wpI
1

=  , where p  is the order of the method 

and w  is the number of function evaluations per iteration 

required by the method. If we assume that all the 
evaluations have the same cost as function one, then the 
methods (17), (18), (19) and (20) have the efficiency 

indices 1.4955= 4 I , 1.4767= 5 I , 1.46810= 6 I  and 

1.45814= 7 I , respectively, which are just better than 

1.4142= 2 I  of Newton's method.  
 

 
NUMERICAL EXAMPLES 
 

In this section, Algorithms 1 to 4 (AL 1-AL 4) and 
Algorithms 5 to 8 (AL 5-AL 8) are employed to solve 
some nonlinear algebraic equations and are compared 
with Newton's method (NM) 
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Table 1. Numerical results for .104=)( 23

1  xxxf  

 

Method 0x
 

IT nx
 

|)(| nxf  COC 

NM 1 6 1.36523001341409 3.98e43 2.0000000 

NR2 1 4 1.36523001341409 2.36e60 3.0000001 

CM 1 4 1.36523001341409 7.42e96 3.9999999 

AL 1 1 3 1.36523001341409 6.59e115 4.9999997 

AL 2 1 2 1.36523001341409 1.22e41 6.9971385 

AL 3 1 2 1.36523001341409 9.50e90 9.9999584 

AL 4 1 2 1.36523001341409 1.55e167 13.9973331 

AL 5 1 5 2.68261500670704+0.35825935992404i 6.43e65 4.9999891 

AL 6 1 4 2.68261500670704+0.35825935992404i 1.28e25 6.9180714 

AL 7 1 3 2.68261500670704+0.35825935992404i 1.26e33 10.1389082 

AL 8 1 3 2.68261500670704+0.35825935992404i 3.50e63 14.1021150 

 
 
 
Noor's method (Noor et al., 2006) (NR2)  
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and Chun's method (Chun, 2006) (CM) 
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 All computations are done by Maple 13  with 1500  digits 

precision. We used 
2510=  . The following stopping 

criteria were used in computer programs: 
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Throughout this section we have used the following test 
functions (Abbasbandy, 2003; Babolian, and Biazar, 
2002; Bi et al., 2009a, b; Chun, 2006; Golbabai and 
Javidi, 2007, 2009; Jisheng et al., 2007a, b; Noor et al., 
2006):  
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The number of iterations to approximate the zero (IT), the 

absolute values of the function |))((| nxf  and the 

computational order of convergence (COC) are also 
shown in Tables 1 to 6. Here, COC is defined by 
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The test results in Tables 1 to 6 show that for most of the 
functions we tested, the algorithms introduced in the 
present presentation for numerical tests have equal or 
better performance compared to the other methods; 
besides these algorithms have the ability to calculate the 
complex and real zeroes of nonlinear algebraic equations 
with real initial approximations. 

In Table 1, the methods NM, NR2, CM and the 
algorithms 1 to 4 all produce the real root with the same 
initial approximation; however, the algorithms 5 to 8 result 
in the complex root with the same initial approximation. 

In Table 2, the methods NM, NR2 and CM with the 
same real starting approximation are divergent, but 
Algorithms 1 to 4 give one complex root while Algorithms 
5 to 8 produce the other complex  roots of the equation. 

In Table 3, Algorithms 1 to 4 give a different root from 
Algorithms 5  to  8 with  the  same  initial  approximation. 

In Table 4, Algorithms 1 to 4 give a different root from 
Algorithms 5 to 8 with the same initial approximation. In 
Table 5, Algorithms 1 to 4 give a different root from 
Algorithms 5 to 8 with the same initial approximation.  

Table 6 shows that the methods NM, NR2 and CM fail 
in the first iteration, while the new algorithms produce two
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Table 2. Numerical results for .1=)( 24

2  xxxf  

 

Method 0x
 

IT nx
 |)(| nxf  COC 

NM -1 4 Divergent --- --- 

NR2 -1 4 Divergent --- --- 

CM -1 4 Divergent --- --- 

AL 1 -1 4 0.500000000000000+0.86602540378443i 4.62e-58 5.0002958 

AL 2 -1 4 0.500000000000000+0.86602540378443i 5.77e170 6.9999858 

AL 3 -1 3 0.500000000000000+0.86602540378443i 8.66e74 9.9816452 

AL 4 -1 3 0.500000000000000+0.86602540378443i 3.30e166 13.9992665 

AL 5 -1 6 +0.500000000000000+0.86602540378443i 1.62e42 4.9990634 

AL 6 -1 5 +0.500000000000000+0.86602540378443i 1.21e25 6.9414508 

AL 7 -1 4 +0.5000000000000000.86602540378443i 7.52e28 9.6534574 

AL 8 -1 4 +0.5000000000000000.86602540378443i 9.03e38 13.3464835 

 
 
 

Table 3. Numerical results for .3=)( 2

3 xexf x   

 

Method 0x
 IT nx

 
|)(| nxf  COC 

NM 0.5 6 0.91000757248871 3.91e29 2.0000000 

NR2 0.5 4 0.91000757248871 6.12e26 3.0016218 

CM 0.5 4 0.91000757248871 1.67e29 3.9936715 

AL 1 0.5 3 0.45896226753695 7.61e66 5.0004537 

AL 2 0.5 3 0.45896226753695 4.16e163 6.9999450 

AL 3 0.5 2 0.45896226753695 1.12e46 10.2982094 

AL 4 0.5 2 0.45896226753695 5.82e86 14.2875589 

AL 5 0.5 3 0.91000757248871 1.98e95 4.9999858 

AL 6 0.5 2 0.91000757248871 7.14e35 6.8776326 

AL 7 0.5 2 0.91000757248871 1.91e75 9.9013972 

AL 8 0.5 2 0.91000757248871 3.52e139 13.8856974 

 
 
 

Table 4. Numerical results for . 1)(sin=)( 22
4  xxxf  

 

Method 0x
 

IT nx  |)(| nxf  COC 

NM 2 6 1.40449164821534 2.26e32 2.0000000 

NR2 2 4 1.40449164821534 8.64e63 3.0000003 

CM 2 4 1.40449164821534 1.45e91 3.9999998 

AL 1 2 4 1.40449164821534 1.77e32 5.0598509 

AL 2 2 4 1.40449164821534 1.71e165 6.9997716 

AL 3 2 4 1.40449164821534 3.11e234 9.9963148 

AL 4 2 3 1.40449164821534 5.80e159 13.8973368 

AL 5 2 3 1.40449164821534 4.45e73 4.9990932 

AL 6 2 2 1.40449164821534 9.18e26 7.1089119 

AL 7 2 2 1.40449164821534 4.38e55 10.1005348 

AL 8 2 2 1.40449164821534 1.85e99 14.1019285 
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Table 5. Numerical results for .)(cos=)(5 xexf x   

 

Method 
0x

 
IT 

nx
 

|)(| nxf  COC 

NM 2.5 6 1.74613953040801 1.59e47 2.0000000 

NR2 2.5 4 1.74613953040801 3.94e30 3.0000104 

CM 2.5 4 1.74613953040801 7.75e90 3.9999988 

AL 1 2.5 3 4.70332375945224 3.20e53 4.9999823 

AL 2 2.5 3 4.70332375945224 4.85e135 6.9999998 

AL 3 2.5 2 4.70332375945224 1.85e65 9.1684262 

AL 4 2.5 2 4.70332375945224 1.40e105 13.0055833 

AL 5 2.5 3 1.74613953040801 1.93e68 4.9999904 

AL 6 2.5 3 1.74613953040801 8.32e170 6.9999983 

AL 7 2.5 2 1.74613953040801 5.26e60 9.8635147 

AL 8 2.5 2 1.74613953040801 3.23e105 13.8324853 

 
 
 

Table 6. Numerical results for .1=)( 22

6  xxexf  

 

Method 0x
 

IT nx
 

|)(| nxf  COC 

NM 0.5 1 Fail --- --- 

NR2 0.5 1 Fail --- --- 

CM 0.5 1 Fail --- --- 

AL 1 0.5 4 1.00000000000000 5.09e117 4.9999990 

AL 2 0.5 3 1.00000000000000 1.51e34 6.6457287 

AL 3 0.5 3 1.00000000000000 4.54e103 9.9740136 

AL 4 0.5 3 1.00000000000000 3.21e219 13.9862945 

AL 5 0.5 4 2.00000000000000 5.09e117 4.9999990 

AL 6 0.5 3 2.00000000000000 1.51e34 6.6457287 

AL 7 0.5 3 2.00000000000000 4.54e103 9.9740136 

AL 8 0.5 3 2.00000000000000 3.21e219 13.9862945 

 
 
 
different roots of the equation. 
 
 
Conclusions 
 
The present paper suggests several new algorithms for 
solving nonlinear algebraic equations which have the 
fifth, seventh, tenth and fourteenth order convergence. 
Examples given in this study do not only demonstrate the 
comparison of our results with those of Newton's method 
(NM), Noor's method (NR2) and Chun's method (CM) but 
also show the merits of the new algorithms. These new 
algorithms did not fail or became divergent in any of the 
examples while resulted in different roots (real or 
complex) with the same real initial approximations. 
Obviously, these algorithms are more complicated than 
most of the existing methods, but instead they can 
produce different simple roots; even complex roots of 
nonlinear algebraic equations with the same real initial 

approximations. The only disadvantage of these 
algorithms lies in the complexity of the formulas and also 
in case the second derivative is not known exactly. 
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