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Magic squares are one of the most wonderful math discussions which make a lot of scientific questions 
and problems in math and other sciences, very difficult to solve. With such a great world and with such 
history and long antiquity, their usages in physics are not so much. This work studies magic squares 
together with some physical concepts and in fact it analyzes the electrostatic potential at the center of 
natural and associative magic squares and derives interesting relations and results. 
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INTRODUCTION 
 
Authoritative writers on the history of mathematics still 
frequently assert that magic squares are of great 
antiquity, and that they have been known from very 
ancient times in China and India (Cammann, 1960). 

Generally a natural magic square is a  ( ) 

matrix of the non-repetitive integers from 1 to  such 

that the sum of each row, column, and main diagonals is 
equal to:  
 

                    (1)                                                                                  

 

In which  is the order of the square and  is the magic 

constant (Mathworld, 2011).  
In a natural magic square, if all pairs of elements which 

are antipodal to each other have the same pair sum: 
 

      (2)                                                 

 
the square will be named associative as shown in Figure 
1. 

For odd n, the center element, which  can  be  seen  as 
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pairing with itself, must be half of this constant (Loly et 
al., 2009). 

As we know, integers  can be located in 

 different ways in a  square but only some of 

these ways can create a magic square. Generally, 
without considering the magic squares resulting from 
reflection or rotation, number of these squares for 

 is exactly calculated, but it is good to know 

that for squares with higher order, scientists could only 
estimate the number of them with the Monte Carlo 

method. For example number of 8 8 associative magic 

squares is about (2.5228 0.0014) 10
27

 (Pinn and 

Wieczerkowski, 1998; Trump, 2001; Gaspalou, 2005). 
Note that there are no singly-even associative magic 
squares (Benson and Jacoby, 1976). 

Here, some examples are given as a pre-requisite for 
magic squares applications before going further. 
Suppose, point masses, electric charges and etc are 
mentioned instead of numbers. We review a summary of 
some papers about center of mass, moment of inertia 
and electric dipole moment.  

When a rigid body has vibration or rotational motion in 
addition to translational motion, there is a point named 
center of mass which its motion is like one element 
motion that is affected by external forces. In fact, center 
of mass is a point that represents the whole body or parts 
of a  system  motion.  If  point  masses  are  put  in  every 



 
 
 
 
square instead of numbers, the coordinates of the center 
of mass of all these discrete masses in relation to the 
center of the square will be point (0,0) and in its 
geometrical center. This is apparently obvious. Asker Ali 
Abiyev with defining a new kind of magic square, proved 
that center of mass of all natural magic squares of any 
order is their geometrical center. In fact, a novel method 
for the determination of mass center of Abiyev’s natural 
magic squares is presented (Abiyeva et al., 2004; 
Abiyeva, 2011). 

There is a tendency that a rigid body likes to have, in 
relation to a certain axis and to its first rotational situation. 
We simplify this expression by defining the quantity as 

the moment of inertia  (Halliday et al., 2004): 

 

             (3)                                                                                      

 
Peter Loly shows that moment of inertia of natural magic 
squares of order n about an axis perpendicular to its 
centre only depends on the order of square and the row 
and column properties, and not on the diagonals of magic 
squares, so that it actually applies to the larger class of 
semi-magic squares which lack one or both diagonal 
magic sums of magic squares. He uses the feature of 
equality of columns and rows and also the perpendicular 
axis theorem, and he shows that the moment of inertia of 
a natural magic square of order n is equal to (Loly, 2004): 
 

               (4)                                                                                  

 
Also in the other paper, by deriving inertial tensor for 
magic cubes, shows that moment of inertia of order n of 
them are equal to (Rogers and Loly, 2004): 
 

            (5)                                                                     

 
Electric dipole moment is a molecules feature and is used 
in physics and chemistry in the subject of polarity of 
molecules. It is determined by the geometry (size, shape, 
and density) of the charge distribution. Thus, the dipole 
moment of a collection of point charges is:  

 

                (6)                                                                                  

 

in which the  gives the displacement of charge  from 

the origin  (Griffiths and College, 1999; Yadav et al., 
2010). 

If we put point electric charges instead of numbers in 
natural magic squares, like the proof of mass center 
problem, we can show that dipole moment of each 
square with any order in relation to center of the square is 

zero: ; and if each magic square changes 

to its bone (Subtracting the average of the numbers in the  
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Figure 1. A schematic of associative magic squares. 

 
 
 

square, , from each number, yields a skeleton 

square of normalized numbers, "the bones", consisting of 
positive and negative numbers, and, for odd order 
squares, 0. This is a convenient way of seeing symmetry 
in the square), then dipole moment in relation to each 
arbitrary origin will be equal to zero (White, 2011). And in 
the other paper, with the electric multipoles expansion for 
magic cubes, shows that all of the components of the 
quadrupole moment vanish and in addition quadrupole of 
magic squares is non-zero (Rogers and Loly, 2005).  

In this work, at first we show some symmetry in contour 

plots of electrostatic potential of 3 3 and 4 4 natural 

magic squares with Mathematica software, then discuss 

about electrostatic potential at the center of 4 4 and 

other order of natural magic squares. After that, we 
analyze the electrostatic potential at the center of 
associative magic squares and demonstrate that value of 

total electrostatic potential  at the center of associative 

magic squares is exactly equal to a constant amount 
which depends only on the order of the square and size 
of the distance between a cell and center of the square 
which is interesting because of the number of these 
magic squares for any order. At last, we will show that the 
electrostatic potential of associative magic squares is a 
mean state of the electrostatic potential at the center of 

n×n normal  squares.  We  suppose  that  a  n n  normal 
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square is a matrix of the non-repetitive integers from 1 to 

 with random substitution of numbers which is not 

magic. On the other hand, by considering some special 
conditions, we study that the electric dipole potential at 
these squares center is constant.  
  
 

Contour plots of 3 3 and 4 4 natural magic 

squares 
 

Electrostatic is a branch of physics which studies the 
static electric charges. We know that the curl of a radial 

vector  is zero, and that is expressible as the 

gradient of a scalar, and hence it is a conservative vector, 
so we can show that any electrostatic electric field can be 
written as a gradient of a scalar function, since 
 

                                  (7) 

 
and then 
 

                                          (8) 

 

Therefore  is representable as the gradient of a scalar 

function , as follows:  

 

                                     (9) 

 

in which the function  is called the electrostatic potential 

of the charge  and the SI unit of it, is joules per 

coulomb, which is defined as a volt (V) (Halliday et al., 
2004; Nayfeh and Brussel, 1985; Arabshahi, 2011; Jaleh 
et al., 2011). 

We drew the contour plot of electrostatic potential of 
single natural magic square of order 3 and all contour 

plots of order 4 (  shapes). In general, we got different 

plots and only in some cases, saw symmetry in them as 
shown in Figure 2. There might be a relation in the sense 
of a study begun by Craig Knecht who found ponds and 
lakes by treating magic squares as an array of pillars. 
Also, thoughts are to see if there is any connection with 
the sets of singular values in the magic square spectra 
paper from Peter Loly (Knecht, 2007; Loly et al., 2009). 
 

 

Electrostatic potential at the center of 4 4 natural 

magic squares 
 

As we know, there is just one natural magic square of 
order 3 which the value of electrostatic potential at the 

center   of   it   is   about:   .  We  calculated  the  total  

 
 
 
 
electrostatic potential at the center of 10 different 
samples of natural magic squares. It was interesting that 
all of the values were completely the same and equal to a 
constant amount. This feature is because of these 
squares special treatment and in fact regular and 
symmetrical sums at them. Now we easily demonstrate 
for all of the natural magic squares of order 4 that value 
of total electric potential in their center is fixed. Consider 
the following squares: 
 

,

  

(10) 

 
In 1910 Bergholt found a parameterization for the fourth 
order natural magic square as shown in right square of 
Equation (10), which it shows (Bergholt, 1910; Loly et al., 
2009): 
 
   

  (11)              

    
So: 
 

 
 
By studying and checking the higher order of natural 
magic squares, we found out that we cannot give an 
overall formula about certain series of natural magic 
squares. Values of potential at the center of squares with 
odd order (without considering any charges on square 

center),  and other  orders were different. 

 
 
Electrostatic potential at the center of associative 
magic squares 
 
Here, we will show the more interesting symmetry in 
associative magic squares. By using the features of these 
kind of magic squares and after a few calculation, 
reasoning and proving a series, we demonstrate that 

value of total electrostatic potential  at the center of 

associative magic squares is exactly equal to a constant 
amount which depends only on the order of the square 
and size of the distance between a cell and center of that 

square.  It  is  so  interesting  to  be  able  to  arrange   
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Figure 2. Contour plot of electrostatic potential of order 3 and some regular contour plots of order 4 include a, b, c, d, e, f 

and g. 
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different electric charges that are in period of 1 to  in 

many ways as to have a fixed value for total potential at 
the center of the square which is only related to square 

order and the r  in that certain order. In attention to 

Equation (2), we should prove that the amount of the 
following series for any value of n is constant. 

 

      (12)        

 

For square with odd order ( ), we have:  

 

 

         (13) 

 
Pair numbers that defined in associative magic squares 
are equal to each other so we factor from one of them, 
then make common denominator from all terms. For each 

square with certain order, the  are fixed, so adding or 

multiplying them is also a constant value and sum of our 

both magic numbers will be the fixed value of . In 

fact, the antipodal pair charges factor out of the potential 
factors leave a purely geometrical sum of inverse 
distances as: 

 

                     (14)                                                    

 
For squares with even orders, only the indexes of last 
phrases will be changed but the result will always be the 
same. 

 

                                                                        (15)                     

 
As a simple analysis, we can say that if associative magic 
square changes to its bone, the sum of the potentials of 
two antipodal pair charges will be always zero and thus 
the total potential at the center of these squares will be 
zero. 

 value is equal to sum of inverses of all distances 

( ) which their number for odd orders is   and 

for even orders is , but some of these distances are 

repetitive values.  

Some examples for :  

 

n = 3     3.4142 

n = 4     6.3010 

n = 5      6.9101 

n = 7      10.4226 

n = 8      13.3235 

 

Note that, as it showed on page 6, the electric potential 

for n=4 was about (107.117) which is consistent with 

the aforementioned example: 
 

  

 

Now we want to prove that the electrostatic potential at 
the center of associative magic square of order n is equal 
to average of maximum and minimum electrostatic 

potential at the center of a  normal square. 

 

            (16)                                  

 

CAMS: center of associative magic square; CNS: Center 

of normal square . Maximum potential will be achieved 

when the summation of large electric charges is divided 
on minimum distances and the summation of small 
electric charges is divided on maximum distances. Also 
the minimum potential will be achieved when the 
summation of small electric charges is divided on 
minimum distances and the summation of large electric 
charges is divided on maximum distances. 
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Example: 
 

 

 
 

         (17) 

 
In fact, if the normal square changes to its bone, you will 
get as much negative as positive potentials at the center 
and thus zero will be the average of the potentials. 

Function of electric potential is proportional to . 

We have demonstrated that value of  

 at the center of associative magic squares is 

constant. The associative condition, 

, makes we able to replace 

any arbitrary function of distance  instead of , 

such as . It means that value of  at the 

center of associative magic squares is constant. 
 

                                 (18) 

 

A (physical) electric dipole ( ) consists of two equal and 

opposite charges ( ) separated by a distance , where 

the approximate dipole potential at large distances will be 
as follows (Griffiths and College, 1999):  
 

                    (19)                                                   

 
If we put the electric dipoles instead of numbers in 

squares, the  be unit ( ) and the orientation of 

electric dipoles in a lattice be radial, consequently the 

equation (19) will be changed to: ; which 

is one of the subsets of equation (18), so the electric 
dipole potential of our associative magic squares is 
constant at the center with these special conditions. 
 
 
Conclusion 
 
Science is a kind of attention to objects. Physicists are 
often looking for regularity and symmetry and their 
descriptions and the magic squares are one of the 
interesting sources in mathematics for them. By plotting 
the contours of electrostatic potential of natural magic 
squares, we can bring regular and symmetrical contours 

which are the essence of an interesting and new idea, but 
analyzing "how such regular contours can be derived 
directly and why some contour plots are not regular", 
needs to be studied in detail in the future. As we said, 
there might be a connection with topographical model of 
Craig Knecht or sets of singular values of magic squares. 
Between natural magic square of different orders, 
electrostatic potential just at the center of order 4 is a 
constant value which depends on the order of the square 
and size of the distance of charges from square center 
and then this beautiful connection is completely correct 
for any arbitrary order of associative magic squares 
which is because of existence of Equation (2) in addition 
to Equation (1) for these squares.  

Electrostatic potential at the center of associative magic 
squares is equal to average of minimum and maximum 
potential at the center of normal squares. It seems that 
we are fun to play with numbers and in fact potential of 
our squares are a special case and completely balanced 
of non-magic squares. 

Total value of the Equation (18) at the center of natural 
magic squares of order 3 and 4 and associative magic 

squares of an arbitrary order  is constant and depends 

on  and ,  which one of the sub results of it in 

physics is electric dipoles potential with radial orientation 
in our squares. 
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