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Bianchi type I cosmological model for barotropic fluid distribution with magnetic field in Lyra geometry 
is investigated. To get the deterministic solution in terms of comic time t, we have assumed that 

1

1
σ

(eigenvalue of shear tensor 

j

i
σ

) is proportional to expansion (θθθθ). This leads to A = (BC)
n
, where A, B 

and C are metric potentials and n is a constant. We also assume that current is flowing along x-axis, 
therefore, the magnetic field is in yz-plane. The behaviour of the model in the presence and absence of 
the magnetic field is discussed. We find that the model starts with a big-bang and the expansion in the 
model decreases as time increases. The displacement vector decreases slowly with time. The model 
possesses point type and cigar type singularities under different conditions. It has been shown that 
particle horizon exists in the model. The present investigation is new and is different from other author’s 
solution. The physical and geometrical aspects of the model in the presence and absence of magnetic 
field are also discussed. 
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INTRODUCTION 
 
In the early stage of evolution of universe, the radiation 
was dominant over matter. But present day observations 
show that matter is dominant over radiation. Friedmann 
(1924) obtained the solution for dust distribution 
considering Friedmann-Robertson-Walker (FRW) space-
time in which there was no need to introduce cosmolo-
gical constant. But FRW model failed to describe early 
universe being unstable near singularity (Lifshitz and 
Khalatnikov, 1963). Therefore, spatially homogeneous 
and anisotropic Bianchi type I models are considered to 
understand the universe in its early stage of evolution. 

The present day magnitude of magnetic energy is very 
small as compared to estimated matter density. It might 
not have been negligible during early stage of evolution 
of universe. Therefore, it is interesting to study 
cosmological model in the presence of magnetic field. 
Asseo and Sol (1987) speculated a primordial magnetic 
field of cosmological origin. Bronnikov et al.  (2004)  have  
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pointed out that magnetic field vector specifies a 
preferred spatial direction, therefore, a cosmological 
model having global magnetic field is necessarily 
anisotropic. Thorne (1967) investigated locally rotationally 
symmetric (LRS) Bianchi type I cosmological model in the 
presence of magnetic field. Collins (1972) gave a 
qualitative analysis of Bianchi type I models with 
magnetic field. Cosmological models with magnetic field 
are also studied (Roy and Prakash, 1978; Bali, 1986; Bali 
and Tyagi, 1988; Bali and Jain, 1998). 

Einstein derived his field equations of general relativity 
by geometrizing gravitation. Inspired by geometrizing 
gravitation, Weyl (1918) developed a theory to 
geometrize both gravitation and   electromagnetism. But 
Weyl’s theory was discarded due to non-integrability of 
length of vector under parallel displacement. Lyra (1951) 
introduced a gauge function into the structureless 
manifold and modified Riemannian geometry. This step 
removed the main obstacle of Weyl’s theory and made 
length of vector integrable under parallel displacement. 
By introducing a new scalar tensor theory of gravitation, 
Sen (1957) investigated an analogue of Einstein’s field 
equation.   Halford   (1972)   has   shown    that   constant  
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displacement vector φµ, plays the role of cosmological 
constant in general relativity. In the frame work of Lyra 
geometry, a number of authors have investigated 
cosmological models (Singh and Singh, 1992; Singh et 
al., 2004; Rahman and Bera, 2001; Rahman et al., 2005; 
Pradhan et al., 2001, 2003; Bali and Chandnani, 2008; 
Ram et al., 2008). Bali et al. (2007) have investigated 
Bianchi type I dust filled universe in the presence of 
magnetic field in the frame work of Lyra geometry. 
Recently, cosmological models in the frame work of 
Lyra’s geometry in different contexts are investigated by 
(Pradhan and Kumhar, 2009; Pradhan and Mathur, 2009; 
Pradhan and Yadav, 2009; Pradhan, 2009; Pradhan et 
al., 2011; Agarwal et al., 2011; Pradhan and Singh, 
2011). 

In this paper, we have investigated Bianchi type I 
barotropic fluid distribution cosmological model in the 
presence of magnetic field in the frame work of Lyra 
geometry. The physical and geometrical aspects of the 
model in the presence and absence of magnetic with 
singularities in the model are also discussed. We find that 
the model represents point type and cigar type 
singularities under different conditions (MacCallum, 
1971). The results obtained are new and are different 
from other author’s work. 
 
 
METRIC AND FIELD EQUATIONS 
  
We consider Bianchi type I metric in the form: 
 

22222222 dzCdyBdxAdtds +++−=
          (1) 

 
where A, B and C are functions of t-alone. 

Energy momentum tensor T
j

i  for perfect fluid 
distribution in the presence of magnetic field is given by: 
 

j

i

j

i

j

i

j

i
Eg pv vp)T +++ρ(=

           (2) 
 
Einstein’s modified field equation in normal gauge for 
Lyra’s manifold given by Sen (1957) as: 
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(in geometrized units where 8πG = 1 and c = 1)  
 
where  
 

,=(β,,,(=φ;−=;)−,,,(= 1v;t))0001vv1000v
4ii
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p is isotropic pressure, ρ is the matter density, vi is the 
fluid flow vector and  β is the gauge function. 

E
j

i  is the electromagnetic field tensor given by 
Lichnerowicz (1967) as: 
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µ  being magnetic permeability and hi the magnetic flux 
vector defined by: 
 

jk

ijki
vF
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h l

l
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            (5) 
 

where F
lk

 is the electro-magnetic field tensor and lijk
∈

 
is the Levi-Civita tensor density. We assume that current 
is flowing along x-axis, so magnetic field is in the yz-
plane. Thus, 

234321
F and h0h0h0h ====,≠

is the only 
non-vanishing component of Fij. This leads to F12 = 0 = 
F13 by virtue of Equation 5. We also find F14 = 0 = F24 = 
F34 due to the assumption of infinite electrical conductivity 
of the fluid (Maartens, 2000). A cosmological model, 
which contains a global magnetic field, is necessarily 
anisotropic since the magnetic vector specifies a 
preferred spatial direction (Bronnikov et al., 2004). The 

Maxwell’s equations of 
0FFF

jki;ijk;kij;
=++

and 

0Fij

j;
=

are satisfied by F23 = constant = H (say). 
Equation 5 leads to the following equation: 
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From Equation 4, we have: 
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The modified Einstein’s field Equation 3 for the metric of 
Equation 1 leads to the following equations: 
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The energy conservation equation T
0j

ji,
=

 leads to the 
equation that follows: 
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And conservation of left hand side of Equation 3 leads to 
the equation that follows: 
 

0g
4

3

2

3
g R

2

1
R

j

j

i

k

kj

j

i
j

j

i

j

i
=)φφ(−)φφ(+








−

;;
;        (13) 

 
This leads to this equation as follows: 
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Equation 14 is automatically satisfied for i = 1,2,3. For i = 
4, Equation 14 leads to: 
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which leads to: 
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SOLUTION OF FIELD EQUATIONS 
  
Multiplying Equation 11 by γ and adding into Equation 8, 
we have: 
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Applying the Barotropic fluid condition, that is, p = γρ, 
Equation  17 leads to: 
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For the complete determination of the model of the 

universe, we assume that eigenvalue (
1

1
σ

) of shear 

tensor (
j

i
σ

) is proportional to the expansion (θ). This 
leads to: 
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Using Equation 19, Equation 16 leads to: 
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From Equation 8 and 9, we have: 
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From Equation 9 and 10, we have: 
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which leads to 
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where L is a constant of integration. 

Now we assume that: 
 

BC = µ                         (24) 
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Thus 
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1n

4 L
+µ

=
ν

ν

                       (28) 
 
Using Equation 19 and 20, Equation 18 leads to: 
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Now using Equations 24 to 27, Equation 29 leads to: 
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Again using Equation 28, Equation 30 leads to: 
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which leads to: 
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Now we assume: 
 

)µ=µ (f
4             (33) 

 
 
 
 
Therefore, 
 

'

44
f f=µ

                        (34) 
 
Where 
 

 µ
=

d

df
f '

 
 
Using Equations 33 and 34 in Equation 32, we have: 
 

µ

)+γ(
+

µ
=

µ
α+)(

µ +

K1bf
f

d

d
12n

2
2

                     (35) 
 
Where 

µ
=

2H
 K 

                         (36) 
 








 +γ
+γ=α

4

1
n2

                       (37) 
 

)+(






 −γ
= 22

3NL
2

1
  b

                      (38) 
 
Now Equation 35 leads to: 
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where M is a constant of integration. 

To find the solution in terms of cosmic time t, we have 
assume M = 0 and n = 1, then Equation 39 becomes: 
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Equation 40 leads to: 
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which again leads to: 
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where η is the constant of integration. 

Now the metric potential are given by: 
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Thus the metric (Equation 1) leads to: 
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Let 
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Using Equation 51, Equation 43 leads to: 
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where the metric potentials are given by: 
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SOME PHYSICAL AND GEOMETRICAL PROPERTIES 
  
Using Equations 24 and 43, Equation 20 gives the 
displacement vector: 
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The expansion θ is given by: 
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which leads to: 
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Using barotropic fluid condition, that is, p = γρ and BC = 

µ, 
K

H
 , BC A 

2

=
µ

=
 in Equation 12, we have: 
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which leads to: 
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where Q is the constant of integration. 

Using Equation 43, Equation 62 leads to: 
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which again leads to: 
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The shear (σ) is given by: 
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Since 
,≠

θ

σ
0

 hence, anisotropy is maintained 
throughout. 

The spatial volume (R3) is given by: 
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which leads to: 
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The deceleration parameter (q) is given by: 
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which leads to: 
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THE MODEL IN ABSENCE OF MAGNETIC FIELD 
  
To find the solution in absence of magnetic field, we put 
K → 0, from Equation 52: 
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From Equation 53, we have: 
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The metric (54) leads to: 
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which leads to: 
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when K → 0 
 
where the metric potentials are given by: 
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From Equation 59, the displacement vector: 
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From Equation 61, the expansion θ is given by: 
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From Equation 64: 
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Again from Equation 65: 
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which leads to: 
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The shear (σ) in absence of magnetic field is given by: 
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The spatial volume (R3) and deceleration parameter (q) in 
absence of magnetic field are given by: 
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                       (81) 
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DISCUSSION AND CONCLUSION 
  
The model (Equation 54) in the presence of magnetic 
field starts with a big-bang at τ = 0 and the expansion in 
the model decreases as τ increases where τ is defined in 
terms of cosmic t by Equation 51. The matter density ρ → 
∞ when τ → 0 and ρ → 0 when τ → ∞. The spatial 
volume (R3) increases as τ increases. The displacement 
vector (β) is initially large but decreases due to lapse of 

time. Since 
0≠

θ

σ

, hence anisotropy is maintained 
throughout. Also q > 0, therefore, the model (Equation 
54) represents decelerating model in the presence of 
magnetic field. The model (Equation 54) has point type 
singularity at τ = 0 in the presence of magnetic field. 

The model (Equation 72) in the absence of magnetic 
field, also starts with a big-bang at τ = 0 and the 
expansion in the model decreases as τ increases. The 
matter density (ρ) → ∞ when τ → 0 and ρ → 0 when τ → 
∞. The displacement vector (β) is initially large, but 

decreases due to lapse of time. Since 
0≠

θ

σ

, hence 
anisotropy is maintained throughout. The spatial volume 
increases as τ increases. The deceleration parameter q = 
2 > 0, hence model (Equation 72) represents decelerating 
model. The Hubble parameter (H) is initially large, but 
decreases due to lapse of time. The model (Equation 72) 
has point type singularity at τ = 0 when 0 < d < 1 and 
cigar type singularity at τ = 0 when 1 < d. (MacCallum, 
1971). The deceleration parameter q > 0 in the presence 
and absence of magnetic field, because it gives the 
significance to study the early universe. 
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