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In order to improve pose accuracy of a parallel robot in the application, a compensator is constructed to 
predict leg length errors using back propagation neural network. In this method, the back propagation 
neural network is used with conventional inverse kinematics computation module in parallel. A back 
propagation neural network is designed and implemented to learn kinematic model errors for parallel 
robots. The non-linear mapping from the operation variable space for the mobile platform to the joint 
variable space is accomplished solving the location and posture. The trained neural network can be 
used to performed on-line pose accuracy compensation in the task. Simulation and experimental results 
show that this method provides a good pose accuracy improvement and keeps good robustness and 
adaptability at the same time. 
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INTRODUCTION 
 
Many comprehensive studies and works have been made 
in the area of parallel robots (Daney, 2003). Parallel 
robots have the following advantages when compared 
with serial robots: great dynamic capabilities and rigidity, a 
high positioning repeatability, and a high positioning 
accuracy if the actual parameters are known (Masory et 
al., 1993). The desired poses of a robot are normally 
specified in Cartesian space, while these poses are 
achieved by controlling joint variables in the robot’s joint 
space. The transformation from Cartesian space to joint 
space is called inverse kinematics in robotics. The inverse 
kinematics is a computationally intensive procedure, the 
accurate solution of which depends on precise knowledge 
of the robot parameters. However, due to manufacturing 
tolerance, assembly errors, wear and tear, transmission 
errors, compliance, etc., the internal design model used in 
the robot controller will not describe the inverse 
kinematics accurately. Therefore, the actual poses 
achieved by controlling the joint values, obtained from the 
controller’s internal model, will deviate from the desired 
poses. The solution to compensate this loss of pose 
accuracy is known as kinematics calibration (David and 
Emiris, 2001; Abtahi et al., 2009; Pashkevich et al., 2009; 
Wang et al., 2011). 

Kinematics calibration involves the following procedures: 

(1) set up an appropriate kinematics model; (2) take 
measurements of the robot pose; (3) identify the actual 
kinematics parameters to minimize the errors between the 
poses predicted by the model and the actual measured 
ones; (4) implement the identified robot kinematics model. 
In general, accuracy is defined by repeatability and bias 
(ANSI, A15). Lack of repeatability is due to random error, 
and it is quantified by the variance of a number of 
measurements. Bias is a systematic error and it is 
determined by the mean value. While it is difficult to 
compensate for the random error, compensation for the 
systematic error could be done effectively by means of 
calibration. For parallel robots, many calibration methods 
have been proposed. Zhuang and Roth (1991) proposed 
a method to calibrate a 42 parameter model of a Stewart 
platform. Their idea was to acquire special measurement 
sets which allow the decomposition of linear sub-models 
based on Stewart platforms of the error model. Linear 
sub-models offer the advantage that identification of the 
kinematic parameters becomes straight forward, no initial 
guess is needed and the optimum is global. This method 
of holding one leg at constant legs was further improved 
by Khalil and Murareci (1997) who combined it with an 
idea of Daney et al. (2004) to keep the direction of the leg 
fixed during data acquisition. A method that  is  currently 
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widely accepted is the double ball bar system. With this 
system, three position data can be collected for each 
measurement and pose can be computed simultaneously 
using three-point method. Wampler et al. (1995) 
developed a slightly different type of calibration based on 
implicit loops. By applying five additional passive sensors 
on one leg, the forward kinematics can be computed so 
that closed form loop equations can be formed for the 
remaining five legs, and the calibration algorithm uses this 
additional data to solve for the kinematic parameters. This 
is not different from having an independent measure of 
the manipulator pose. A method to use redundant sensors 
on passive joints to calibrate parallel manipulators was 
proposed (Zhuang and Liu, 1996). Redundant sensor 
data is obtained from as few as three additional sensors. 
To solve the forward kinematics, the authors implement a 
numerical method that solves for all joint variables, both 
passive and active. This allows the formation of 
measurement residual for the passive measured joints, 
thus a costs function that is minimized. By imposing 
appropriate physical constraints on the passive joints, the 
kinematic parameters of parallel manipulators can be 
identified only with the measurement data obtained from 
the actuators. Khalil and Besnard (1999) reported that 
locking universal and/or spherical joints, with some 
locking mechanisms, could calibrate Stewart platform 
autonomously. The locking mechanisms must be very stiff 
in order to prevent the joint and the link from bending 
deformation. 

This paper presents pose accuracy compensation 
method based on an artificial neural network. In this 
method, an artificial neural network is used with 
conventional inverse kinematics computation module in 
parallel. The network can automatically learn the internal 
design model error. The neural network output is added to 
the inverse kinematics computation module output in a 
joint coordinate. The joint coordinate is used to drive the 
robot. To demonstrate the feasibility of the proposed 
approach, poses compensated by the trained network are 
compared with actual poses. It shows that the neural 
network can effectively improve parallel robot pose 
accuracy. 
 
 
POSE ACCURACY COMPENSATION 
 
Artificial neural networks and back propagation 
network 
 
The inspiration for neural network comes from researches 
in biological neural networks of the human brains. Artificial 
neural network is a one of those approaches to imitate the 
mechanisms of learning and problem solving functions of 
the human brain which is flexible, highly parallel, robust 
and fault tolerant. Artificial neural networks are widely 
accepted as a technology offering an alternative way to 
tackle complex and ill-defined problems. The structure of 

 
 
 
 
this information processing system is composed of highly 
interconnected processing elements, called neurons 
working in parallel to solve problems. A neural network 
helps when it is highly complex to formulate an algorithmic 
solution and also where there is a need to pick out the 
structure from the existing data. Neural networks learn by 
example and they cannot be programmed to perform a 
specific task. They are fault-tolerant, that is, they are able 
to handle noisy and incomplete data that are able to deal 
with non-linear problems and once trained can assist in 
prediction and generalization at high speed. 

In artificial neural networks implementation, knowledge 
is represented as numeric weights, which are used to 
gather the relationship within data that are difficult to 
relate analytically, and it iteratively adjusts the network 
parameters to minimize the sum of squared 
approximation errors using a gradient descent method. 
Neural networks can be used to model complex 
relationship without using simplifying assumptions, which 
are commonly used in linear approaches. In more 
practical terms, neural network is a non-linear statistical 
data modeling tool. The tasks for which artificial neural 
networks that are useful fall into various applications such 
as control, pattern recognition, forecasting, optimization, 
etc. In this study, artificial neural network is applied for the 
prediction of leg length errors from normal pose. 

One of its implementation is a back propagation network 
that is trained with supervision, using gradient-descent 
training technique that minimizes the squared error 
between the actual output of the network and the desired 
outputs. In the back propagation network, a network 
consists of many non-linear computational elements 
called nodes. Each node can take many inputs but has a 
single output, which can fan out to other nodes in the next 
level. Two nodes are interconnected via a link, which is a 
one-way connection. A link takes the output value of a 
node, transforms it and then submits the outcome as an 
input to another node. Each connection to a node is 
associated with a quantity called a connection strength or 
weight. The nodes are arranged in three different layers. 
The bottom layer is the input layer of nodes. The top layer 
is the output layer of nodes. The hidden layer can have 
more than one layer between the input and the output 
layer. Nodes in the input layer receive the values of the 
input variables and propagate upward to the network, 
layer by layer. The output nodes at the output layer form 
the output variables. Figure 1 shows a three-layer back 
propagation neural network. The iterative gradient 
algorithm is performed to minimize the mean square error 
between the desired output and the actual output of a 
feed-forward network. It requires continuous differentiable 
non-linearities (Fukuda, 1992). 
 
 
Controller configuration 
 
In this method, an artificial neural network is used in 
parallel   with  the  conventional  inverse  kinematics
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Figure 1. A three-layer back propagation neural network. 

 
 
 

 
 
Figure 2. Pose accuracy compensation based on ANN. 

 
 
 
computation module. Figure 2 shows the robot controller 
configuration. 
The conventional inverse kinematics computation 

module I(X) and the network �I(X) were provided with a 
desired pose X. Here, the pose is specified with position 
(Px, Py, Pz) and orientation (Ox, Oy, Oz). 

The network consists of an input layer, a hidden layer 
and an output layer, as shown in Figure 1. The input layer 
and the output layer are made up of six nodes and six 
nodes, respectively. Number of the hidden layer was 100. 
Output functions for the input layer and the hidden layer 
were sigmoid functions. That is, the output layer was a 
linear function. 

Node outputs in the network of each layer relate to a 
sum of weighted input level. Outputs in each layer are 
obtained by next equations. 
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)( xe−+��  [Input layer and hidden layer], � : [Output 
layer]. 

Six desired pose elements, position (Px, Py, Pz) and 
orientation (Ox, Oy, Oz), are used as the input value. Six 
nodes value of the output layer was used as correcting 
joint coordinate �l. 
 
 
Learning procedure 
 
The error back propagation model has been adopted as 
the network learning method. On the learning procedure, 
the difference between the desired pose X and the 
measured pose Y is used for the supervising signal as �X. 
Because, the network output should be described in the 
joint coordinate, the supervising signal in the joint 
coordinate is derived from �X by Equation 3. 
 

XJl δδ ⋅=                                       (3) 
 
Here, 
 

XYX −=δ                                      (4)
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Figure 3. Parallel robots. 

 
 
 
J is the Jacobian matrix for the robot at desired pose X 
and was efficiently derived by Ropponen’ method 
(Ropponen and Arai, 1995). 

In order to learn the kinematics model error in the 
network, the weight elements �−��

���  are modified using 

Equation 5. 
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Once the robot model error is learned on link weight 
elements through the learning procedure, the network 
generates compensation joint lengths, even if the desired 
pose is not included in the learning data set. 
 
 
MODELING AND KINEMATICS OF PARALLEL 
ROBOTS 
 
Here, we describe the parallel robot and its kinematics 
model. The robot consists of two rigid bodies, the base 
and the mobile platform, connected by 6 legs. The leg 
linear actuator provides 6° of freedom for the platform 
pose relative to the base, corresponding to position P and 
rotation matrix R. A pose X=[P, R] is associated to 6 
length variations li measured by internal leg sensors, 

i=1, …, 6. 
Each leg is attached to the base by a hook joint and to 

the platform by a hook joint; 23 parameters are required to 
model each leg. But as shown in Masory et al. (1997), the 
principal source of error in positioning is due to limited 
knowledge of the joint centers and to the fact that the part 
of the length is not given by the sensors. We thus, use a 
simpler model with attachment point’s ai in the mobile 
frame, bi in the reference frame and offset lengths li. This 
gives 7 parameters per leg, therefore 42 overall, denoted 
by �. 
 
 
Inverse kinematics 
 
The inverse kinematics problem of the parallel robot, 
deals with calculating the leg lengths when the pose is 
given and the kinematics parameters are known. In effect, 
it is a mapping from global pose to local leg transducer 
readings. The inverse kinematics of a parallel robot is 
uncomplicated, yielding a non-linear closed form solution. 
The vector chain in Figure 3 can be expressed as: 
 

��� �	
�� −+=                                     (6) 
 
The length of leg i can then  be determined by taking the
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Table 1. Normal parameters of the parallel robot (mm). 
 

Joint number aix aiy aiz bix biy biz l0,i 
1 544.7 130 -200 784.21 908.3 100 1830 
2 -159.77 536.73 -200 394.5 1133.3 100 1830 
3 -384.93 406.73 -200 -1178.7 225 100 1830 
4 -384.93 -406.73 -200 -1178.7 -225 100 1830 
5 -159.77 -536.73 -200 394.5 -1133.3 100 1830 
6 544.7 -130 -200 784.21 -908.3 100 1830 

 
 
 
magnitude of Equation 6. 
 

iiii bPRal −+==λ                               (7) 
 
And the leg sensor reading can be obtained by; 
 

iii ls ,�−= λ                                        (8) 
 
 
Forward kinematics 
 
For the parallel robots, the forward kinematics is difficult to 
compute since it consists in solving Equation 6 for P and 
R given li and �. 

Defining the vector function to describe the difference 
between the estimated sensor reading ( � ) and the actual 
sensor reading ( �� ). 
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The Newton-Raphson algorithm can be stated as: 
 
1. Measure � and select an initial guess for the pose X 
2. Compute based on X0 
3. Form f 
4. If XTX<tolerance1, exit with X as the solution 
5. Compute the partial derivative matrix XfJ ∂∂=  such 
that jiji XfJ ∂∂=,  
6. Solve for the update �X from J�X=-f 
7. If �XT

�X<tolerance2, exit with X as the solution 
8. Update X by X=X+�X and go to step 2 
 
In steps one, an initial pose vector X must be guessed. 
This is usually taken as the last pose of the mobile 
platform. In step two, the estimated length can be 
computed with the inverse kinematics. Step three and four 
are straightforward, with f formed through Equation 9 and 
tolerance1 being the allowed error in the pose calculation. 
The partial derivatives required in step five can be 
computed. Step six involves a 6 by 6 matrix inversion  to 

calculate �X, and then in step seven, the norm of �X is 
tested to see if the update is significant. If the update is 
considered significant, then the algorithm repeats from 
step two with the update pose vector. 
 
 
SIMULATIONS AND EXPERIMENTAL RESULTS 
 
Simulations using the kinematics model have been 
performed according to the steps as follows: 
 
1. Preparation of data for neural network training 
a. Calculate joint length set l from a set of poses X, using 
the inverse kinematics (Equation 7). 
b. Determine actual poses Y from l, using the forward 
kinematics (Equation 9), which includes model error. 
2. Training and testing of neural network 
a. Building a network 
b. Training a network (carry out the error back propagation 
learning with X, l, Y) 
c. Testing a network 
d. Save a network 
3. Evaluation of neural network 
a. Various poses X’, are given to the network and the 
inverse kinematics module. The sum of l and �l is sent to 
the forward kinematics. 
b. The compensated poses, Y’, are derived by Equation 9, 
which includes model error. 
 
The normal kinematics parameters used for 
compensation are listed in Table 1. The actual kinematics 
parameters are simulated, with the parameter deviations 
obtained from uniform distribution with variance of 2 mm 
and listed (Table 2). 

A precision coordinate measuring machine (CMM) is to 
measure poses of the parallel robot. As the work is 
concerned here with robot pose accuracy in the 
workspace, where most fine operations are executed, an 
area of 200 by 300 by 300 mm in Cartesian space and 10° 
by 10° by 10° in the orientation space (Euler angles) has 
been chosen as compensation area. 200 data points, 
uniformly distributed in the compensation area, have been 
collected for training, testing and evaluation. 

The power of neural networks is due to their large 
generalization ability. 100  data  points  are  randomly
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Table 2. Actual parameters of the parallel robot (mm). 
 

Joint number aix aiy aiz bix biy biz l0,i 
1 543.42 130.28 -200.13 785.23 906.91 100.86 1831.6 
2 -160.2 534.84 -200.63 395.87 1134.4 101.99 1830.7 
3 -383.03 407.03 -198.92 -1178.4 224.44 99.496 1828.5 
4 -384.43 -405.79 -201.4 -1176.8 -223.45 98.743 1829.9 
5 -160.11 -538.45 -198.46 393.48 -1134.3 98.695 1831.9 
6 546.03 -130.74 -198.41 783.55 -908.67 100.5 1830.1 

 
 
 

Table 3. Compensation results for the parallel robot (position in mm and orientation in degrees). 
 

Statistical 
measures 

Before compensation  Kinematics calibration  Neural network compensation 
Position Orientation  Position Orientation  Position Orientation 

Average 0.9550 0.4405  0.4298 0.1910  0.2317 0.0982 
SD 0.0857 0.0309  0.0403 0.0206  0.0219 0.0017 
Max 1.1508 0.5475  0.5754 0.3452  0.4218 0.2837 

 
 
 

Table 4. Experimental evaluation of compensation results (position in mm and orientation in degrees). 
 

Statistical 
measures 

Position error in length 
Before compensation Kinematics calibration Neural network compensation 

Average 1.0502 0.8712 0.7524 
SD 0.1081 0.0721 0.0709 
Max 1.478 1.0493 0.9418 

 
 
 
chosen from the collected data set of 200 points for neural 
network training. The trained network can generalize well 
in the compensated area. Three statistical measures 
(average error, standard deviation and maximum 
deviation) are used to evaluate the robot pose accuracy 
compensation results. Using kinematics calibration and 
neural network, compensation are listed as shown in 
Table 3, based on 100 randomly chosen test data points 
from the whole data set. The compensated positions and 
orientations are calculated using the compensated 
kinematics model, and were then compared with the data 
collected. 

As shown in Table 3, it can be seen that the neural 
network accuracy compensation can achieve accuracy 
improve factor of about 5. The compensation based on 
neural network has more satisfactory results in terms of 
accuracy when compared with kinematics calibration. 

Table 4 lists the experimental evaluation results of joints 
compensations based on 20 test points across the 
compensation area. The positioning errors (expressed in 
x, y and z components) before compensation are obtained 
by measuring the positions that the robot achieved by 
controlling the joints lengths as recommended by the 
robot controller. The positioning errors after compensation 
are obtained by measuring the positions achieved by 
controlling the  joints  lengths,  updated  by  different 

compensation approached. The average position error (in 
length) decreased from 4.20 mm before compensation, to 
1.52 mm after kinematics calibration, to 1.57 mm after the 
neural network compensation. The improvements in 
accuracy indicated by the experimental results are less 
significant when compared with the improvement shown 
by the simulation results. This can partially be explained 
by the fact that the measurements for compensation and 
the measurements for evaluation were made at different 
times, system error may therefore have occurred in the 
coordinate measuring machine. Of course, robot 
repeatability contributed to the final residual error. 
However, experimental results show that the neural 
network compensation approach can improve parallel 
robot pose accuracy. 
 
 
Conclusions 
 
The simulation and experiment results show the 
effectiveness of the proposed method. This simple 
computation scheme improves the parallel robot pose 
accuracy. Also, a simple back propagation network can 
learn highly non-linear function, and has been applied 
successfully to approximate the complex mapping 
between robot poses and robot joints length-compensations. 



 
 
 
 
A neural network compensation approach eliminates the 
identification procedure, and compensation can be 
implemented on-line. 
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