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High  peak  to  average  power  ratio  of  the  transmit  signal  is  a  major  drawback  of  OFDM systems. 
After defining the PAPR and analyzing its statistical properties, some of the most representative PAPR-
reduction techniques available in the literature are reviewed in detail. Several methods have been 
proposed to reduce the peak power of OFDM signals. In this paper the effectiveness of some recently 
proposed methods has been evaluated. 
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INTRODUCTION  
 
One of the major obstacles to the practical 
implementation of a multicarrier system is represented by 
the relatively high peak-to-average power ratio (PAPR) of 
the transmitted waveform. Recalling that the OFDM 
signal is a superposition of N sinusoids modulated by 
possibly coded data symbols, the peak power can 
theoretically be up to N times larger than the average 
power level. This fact poses two different problems. The 
first one is related to the A/D and D/A converters, which 
must be equipped with a sufficient number of bits to cover 
a potentially broad dynamic range. The second difficulty 
is that the transmitted signal may suffer significant 
spectral spreading and in-band distortion as a 
consequence of intermodulation effects induced by a 
non-linear power amplifier (PA). One possible method to 
circumvent this problem is the use of a large power 
backoff which allows the amplifier to operate in its linear 
region. However, this results into considerable power 
efficiency penalty, which translates into expensive 
transmitter equipment and reduced battery lifetime at the 
user's terminal. It is thus of interest to look for some 
efficient schemes that can reduce the occurrence of large 
signal peaks at the input of the PA so as to minimize the 
detrimental effects of non-linear distortions without 
sacrificing the power efficiency.  
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OFDM signal and PAPR 
 
The continuous-time baseband representation of an 
OFDM signal with N subcarriers is given by, 
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where c(n) is the data symbol transmitted onto the nth 
subchannel, fcs denotes the subcarrier spacing and T = 1/ 
fcs is the data block duration (excluded the cyclic prefix). 
As indicated in Equation (1), s(t) is the superposition of N 
modulated complex sinusoidal waveforms, each 
corresponding to a given subcarrier. In the extreme 
situation where all sinusoids interfere constructively, their 
sum will result into a large signal peak that greatly 
exceeds the average power level. Furthermore, assuming 
that N is adequately large, we can reasonably 
approximate s(t) as a Gaussian random process by virtue 
of the central limit theorem (CLT). As shown later, this 
assumption plays an important role in the statistical 
characterization of the signal amplitude. After baseband 
processing, s(t) is up-converted to a higher carrier 
frequency fc. The resulting RF waveform is expressed by 
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which represents the actual input to the PA. Thus, strictly 
speaking the PAPR should be defined over sRF(t) rather 
than over s(t). However, since this approach would lead 
to some mathematical complications, it is a common 
practice to measure the PAR at baseband. This 
procedure provides accurate results as long as fc >> 1/T, 
a condition that is always met in all practical systems. 

With the above assumption, the continuous-time PAPR 
is defined as  
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and is sometimes referred to as the peak-to-mean 
envelope power (PMEPR) [Sharif et al., 2003; Tarokh 
and Jafarkhani, 2000]. Without loss of generality, one can 

normalize s(t) such that E{ s(t) 
2
}
 = 

1. In this case
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In principle, the maximum of s(t) 
2
 can be computed by 

setting  its derivative to zero. Unfortunately, this operation 
is not trivial since the derivative is a sinusoidal function 
and its roots cannot easily be found. To overcome this 
difficulty, it is expedient to replace the continuous-time 
waveform s(t) by its samples  {sk

(L)
} taken at some rate 

L/Ts, where Ts = T/N while L is a suitable integer which is 
commonly referred to as oversampling factor. This leads 
to the definition of the following discrete-time PAPR. 
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where sk

(L) 
is obtained after

 
setting t= kTs/L into Equation 

(1), that is, 
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Inspection of Equation (5) reveals that the discrete-time 
PAPR is computed through a numerical search over the 

set 1.....,,1,0;|| 2)(
NLkS

L

k
, thereby avoiding 

the need for solving highly non-linear equations. 
Moreover, comparing Equations (4) and (5) it is easily 

seen that d approaches c as L grows large. For this 

reason, d is normally employed as a practical metric for 
evaluating the performance of PAPR-reduction 
techniques.  

 
 
 
 
Statistical properties of PAPR 
 
The statistical properties of the PAPR are normally given 
in terms of the corresponding CCDF. From the central 
limit theorem we know that the real and imaginary parts 

of the time-domain samples {
)( L

kS } can reasonably be 

approximated as statistically independent Gaussian 

random variables with zero mean and variance 
2
 = 1/2. 

Figure 1 shows the transmitter CCDF downlink and 
uplink. Figure 2 depicts the corresponding transmitter 
relative constellation error (RCE). 
 
 
Distribution of OFDM signal   
 
Figure 3 shows the individual time domain QPSK 
modulated subcarriers for N= 8 and their sum in terms of 
its continuous time version. The PAPR characteristics of 
the OFDM signal is obvious from Figure 3. In general we 
expect the PAPR to become significant as N increases. 
Figure 4 shows the distributions including the real and 
imaginary parts for N=16, which again illustrates the 
PAPR characteristics of OFDM signal. 

Downlink BER performance is evaluated in an AWGN 
channel as shown in Figure 5. Figure 6 depicts the uplink 
BER and PER on a fading channel. 
 
 
Amplitude clipping  
 
The simplest approach to limit the amplitude peaks in a 
multicarrier wave-form is to deliberately clip the signal 
before amplification [O'Neill and Lopes, 1995]. This 
operation is normally accomplished at baseband using a 
soft envelope limiter.  

The distortion caused by the clipping process is 
mathematically expressed as  
 
d(t) = y(t) –s(t)                           (7) 
 
and is viewed as an additional source of noise. Since the 
derivative of d(t) exhibits discontinuities at the clipping 
instants, its bandwidth is theoretically infinite. This means 
that in general amplitude clipping gives rise to in-band 
distortion as well as out-of-band emission. The former 
degrades the bit-error-rate (BER) performance while the 
latter reduces the spectral efficiency of the 
communication system. Filtering after clipping can reduce 
out-of-band radiation to a large extent, but may also 
produce some peak re-growth in the filtered signal [Li and 
Cimini, 1998]. 
 
 
Clipping and filtering of oversampled signals  
 
In practical applications clipping and filtering is performed 
digitally    (that    is    before    D/A    conversion)    on   an
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Figure 1. Transmitter CCDF downlink and uplink.   

 
 
 

 
 
Figure 2. Corresponding transmitter relative constellation error (RCE). 
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Figure 3. Individual time domain QPSK modulated subcarriers. 
 

 

 

 
 
Figure 4. Distributions including the real and imaginary parts for N=16. 

 
 
 

oversampled version of the OFDM signal [Han and Lee, 

2004]. Letting J  1 be the employed oversampling factor, 
we denote, 
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the sample of s(t) corresponding to a given block of data 
c = [c(0), c(1), ….,  c(N-1)]

T
.  Note  that  J  should  not  be 

confused with parameter L defined earlier . Indeed, the 
former is the oversampling factor that is actually used in 
OFDM transmitter to execute clipping and filtering 
operations, while the latter is just a parameter employed 
in computer simulations for PAPR measurements [Ochiai 
and Imai, 2000; Ochiai and Imai, 2002]. 

As illustrated in Figure 7, the oversampled data 
sequence, s = [s(0), s(1),…, s(JN-1)]

T
, can be efficiently 

generated as the  IDFT  of  the  Zero-padded  data  block
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Figure 5. Downlink BER performance evaluated in an AWGN channel. 
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Uplink BER and PER on Fading Channel
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Figure 6. Uplink BER & PER on a fading channel. 
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c

(ZP)
, which is obtained by extending c with   (J – 1) N  

Zeros. 
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Each sample s(k) is then clipped by a soft envelope 

limiter. Let pke 
j k

 be the representation of s(k) in polar 
coordinates, the output from the limiter is given by 
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It is a common practice to normalize the clipping level A 
to the root-mean-square (rms) value of the input signal. 
This results into the following clipping ratio (CR) 
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Where Pin = E{ s(k)
2
} is the average power of the 

unclipped samples.  
 

As is intuitively clear, the clipping process leads to a 
certain reduction of the output power. If the OFDM signal 
can be modeled as a zero-mean circularly symmetric 
complex Gaussian process, the amplitude pk is Rayleigh 
distributed and the average power of the clipped samples 
turns out to be 
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Note that the difference between Pout and Pin reduces 

as  grows large and becomes zero when  = , which 
corresponds to an ideal system without clipping. 

As mentioned earlier, in general the power spectral 
density (PSD) of the non-linear distortion introduced by 
the amplitude limiter has a theoretically infinite 
bandwidth. Hence, aliasing will occur if clipping is carried 
out on the samples {s(k)} rather than on the continuous-
time signal s(t). In particular, when clipping is done at the 
Nyquist rate (J = 1), the spectrum of the resulting 
distortion is folded back into the signal bandwidth. This 
gives rise to considerable in-band distortion, with ensuing 
limitations of the error-rate performance. Furthermore, 
extensive simulations indicate that the PAPR reduction 
capability of Nyquist-rate clipping is not so significant due 
to considerable peak re-growth after D/A conversion 
[Ochiai and Imai, 2000; Ochiai and Imai, 2002]. As a 
result, clipping is normally performed on an oversampled 
version of the OFDM signal (J > 1).  The oversampled 
approach   has   the   advantage    of    reducing   in-band 

 
 
 
 
distortion and peak re-growth to some extent, but 
inevitably generates out-of-band radiation that must be 
removed in some way. Clipping at Nyquist rate 
considerably reduces the PAPR of the transmitted signal 
as compared to a system without clipping. However, 
much better results are obtained if clipping is executed on 
the oversampled waveform. In particular, a PAPR 
reduction of approximately 2 dB is achieved when J is 
increased from 1 to 4. Clearly, this advantage comes at 
the expense of a higher computational complexity due to 
the larger dimension of the IDFT unit in Figure 3 and the 
need for filtering the signal after clipping. Theoretical 
analysis [Sharif and Khalaj, 2001] and computer 
simulations [Li and Cimini, 1998] indicate that in many 
cases a good trade-off between performance and 
complexity is obtained with an oversampling factor of 4. 
Repeated clipping and filtering operations can also be 
used to further reduce the overall peak re-growth after 
D/A conversion [Armstrong, 2002]. 
 
 
Selected mapping (SLM) technique  
 
One possible approach of PAPR control in multicarrier 
systems is based on the idea of mapping the data block c 
= [c(0), c(1),…,c(N – 1)T into a set of adequately different 
signals and then choosing the most favorable one for 
transmission. This technique is called selected mapping 
(SLM) and its main concept is shown in Figure 8. 

As is seen, the transmitter generates a number Q of 
candidate data blocks Cq = [cq(0), cq(1),…cq(N – 1)]

T
 (q = 

1, 2, …, Q) using some suitable algorithm. Each block 
has length N and conveys the same information as the 
original data sequence c. The latter is normally included 
into the set of candidate block by letting c1 = c. After 
transforming all blocks cq in the time-domain, the 
exhibiting the lowest PAPR is selected for transmission. 

Since the PAPR of the continuous-time waveform 
cannot precisely be computed from its Nyquist-rate 
samples, each candidate block is padded with (L – 1) N 
zeros and fed to a LN – point IDFT unit. This provides Q 

oversampled sequences 
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and characterized by the following discrete time PAPRs.  
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Figure 7. Clipping and filtering operations on the oversampled OFDM signal.  

 
 
 

 
 

Figure 8. Block diagram of the SLM technique. 
 

 
 

As mentioned before, setting L = 4 is sufficient to capture 
the peaks of the continuous time waveform. 

The selector in Figure 7 computes the quantities q and 
chooses the sequence S

L

q

)(  such that,  
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The selected sequence is then passed to the D/A 
converter and the corresponding waveform is finally 
launched over the channel after up-conversion and power 
amplification.  

To better illustrate the PAPR reduction capability of the 

SLM technique, we denote Fq( ) = Pr { q ≥ } the CCDF of 

q and observe that  
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Since q is the minimum of the set { q}. If the candidate 

sequence S
L

q

)(  is sufficiently “different”, the random 

variables q may be considered as nearly independent 
and Equation (17) reduces to  
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Figure 9 illustrates function F q̂ ( ) for N = 256 and some 

values of Q. The results are derived analytically under the 

simplifying assumption that each factor Fq( ) in Equation 
(18) can be expressed as indicated in Equation (6). In 
this case we have  

 

QNγ
e

q
F ])1(1[)(
ˆ

                               (19) 

 
with  = 2.8. As expected, the amount of PAPR reduction 
depends on the number Q of candidate sequences. We 
see that significant gains are achieved in passing from Q 
= 1 to Q = 4, while only marginal improvements are 
observed with higher values of Q. 
 
 
Coding 
 
It is a well recognized fact that the frequency 
diversityoffered by the multipath channel cannot be fully 
exploited in OFDM systems, without employing some 
form of channel coding. A natural question is whether the 
redundancy introduced by channel coding can be 
exploited not only for error correction purposes, but also 
as a means for minimizing the PAPR of the transmitted 
waveform. The possibility of using block coding for PAPR 
reduction was originally proposed in Jones  et  al.  (1994],
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Figure 9. Function F q̂ ( ) for different values of Q. 

 
 

 

Table 1 . PAPR d of BPSK modulated codewords with N = 4. 
 

Code words  BPSK symbols  PAPR (dB) 

b(0) b(1) b(2) b(3)  c(0) c(1) c(2) c(3)  d 

0 0 0 0  1 1 1 1  6.02 

1 0 0 0  -1 1 1 1  2.32 

0 1 0 0  1 -1 1 1  2.32 

1 1 0 0  -1 -1 1 1  3.72 

0 0 1 0  1 1 -1 1  2.32 

1 0 1 0  -1 1 -1 1  6.02 

0 1 1 0  1 -1 -1 1  3.72 

1 1 1 0  -1 -1 -1 1  2.32 

0 0 0 1  1 1 1 -1  2.32 

1 0 0 1  -1 1 1 -1  3.72 

0 1 0 1  1 -1 1 -1  6.02 

1 1 0 1  -1 -1 1 -1  2.32 

0 0 1 1  1 1 -1 -1  3.72 

1 0 1 1  -1 1 -1 -1  2.32 

0 1 1 1  1 -1 -1 -1  2.32 

1 1 1 1  -1 -1 -1 -1  6.02 
 
 
 

where only code words exhibiting the lowest PAPR are 
selected for transmission while discarding all the others. 
Table 1 illustrates the highly-cited example given in 
Jones et al. (1994], where the discrete-time PAPR is 
listed for all possible data blocks in a BPSK-
OFDMsystem with N = 4 subcarriers and oversampling 
factor L = 4. 

We see that four data blocks are characterized by a 
maximum PAPR of 6:02 dB and another set of four 
blocks results into a PAPR of 3:72 dB. Clearly, using a 
suitable coding scheme that avoids transmitting these 
sequences helps to reduce the PAPR of the transmitted 
signal. In the particular example  shown  in  Table  1,  this 

goal is achieved with an odd parity check code of rate 3/4 
where the first three elements b(0); b(1); b(2) in each 
codeword represents the information bits while the fourth 

element is computed as b(3) = b(0)  b(1)  b(2)  1, 

with  denoting the arithmetic addition in the binary 
Galois field. In this way the PAPR becomes 2.32 dB for 
all codewords, thereby leading to a reduction of 3.70 dB 
with respect to the uncoded system. It is shown in Jones 
et al. [1994] that higher gains of 4.58 and 6.02 dB are 
possible in case of N = 8 subcarriers using coding 
schemes with rates 7=8 and 3=4, respectively. Clearly, 
these benefits are achieved at the price of some penalty 
in   terms   of   spectral   efficiency   due   to  the  inherent
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Figure 10. Coding and phase rotation for simultaneous error control and PAPR reduction. 

 
 

 

redundancy introduced in the transmitted signal. Note 
that the latter is only exploited for PAPR reduction 
purposes rather than to protect information against 
channel impairments. In addition the method in Jones et 
al. [1994] becomes impractical for large values of N since 
the best codes can only be found through an exhaustive 
search and prohibitively large look-up tables are required 
for the encoding and decoding operations. 

A more sophisticated approach proposed by Jones and 
Wilkinson in [1996] relies on the design of combined 
coding schemes for simultaneous error control and PAPR 
reduction. This solution employs conventional linear block 
codes to achieve the desired level of error protection and 
the code redundancy is subsequently exploited to 
minimize the PAPR. The basic idea behind this method is 

sketched in Figure 10. Let  be the number of points in 

the employed constellation and assume that a (N , k) 
binary block code has been chosen for its correction 
property. As is seen, a block a of k information bits is first 

transformed into a vector b of N  coded bits. The latter is 

next divided into N adjacent segments of length , where 
each segment is independently mapped onto a 
modulation symbol c(n). This produces a codeword c = 
{c(0), c(1),…c(N – 1)} of length N for each block of k 
information bits. We denote C = {cm; m = 1, 2, 3, …, 2

k
}  

the set of all possible codewords. Then, in an attempt of 
reducing the PAPR, the codewords are element-wide 
multiplied by a same rotating vector  
 

TNjjj eeew ],...,,,{ )1()1()0( ,  

 

where the phase shifts { )(n } vary in the compact set 

[0, 2 ] x [0, 2 ] x …. X [0, 2 ]. The rotated version of Cm 

is denoted c m(w) and reads  
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Since distances among codewords remain unchanged 

after rotation, the new code C (w) = {c m (w); m = 1, 2, 3, 
…, 2

k
}  has the same error correction capability as the 

original code C. However, it may exhibit a lower PAPR if 
the phase shifts are suitably chosen. Hence, for a given 
code C, the problem is to find an optimal vector   
 

TNj
e

j
e

j
ew ],

)1(
...,,

)1(
,

)0(
[ˆ  such that  

 

 )]}{PAPR[C (̀w
w

min argŵ                      (21) 

where PAPR[C (w)] is defined as  
 

)`()(`
max)]`([

wCwmc
wCPAPR {PAPR[c m(w)]}    (22) 

 

with PAPR[c m(w)] denoting the PAPR of the waveform 

associated to the mth rotated codeword c m(w). 
 

It is worth nothing that in this way PAPR reduction comes 
for free since, as mentioned previously, both C and C’(w) 
are perfectly equivalent in terms of error rate 
performance and decoding complexity. At the receive 

side, the phase shifts introduced by ŵ  can easily be 

compensated for by appropriate counter-rotation of the 

DFT output. For this purpose, ŵ  must be known to the 

receiver.  
The main drawback of the described approach is the 

heavy computational load that is required to solve the 
optimization problem Equation (21). An algorithm for 
finding the optimum rotation vector is discussed in Jones 
and Wilkinson [1996] under the assumption that the 

phase shifts belong to a finite set  = {2 l/W; l = 0, 1, 
….., W - 1}. Unfortunately, this method is only applicable 
to relatively short codes because of the huge complexity 
involved in computing the PAR of all phase-shifted 
codewords. A computationally efficient solution to this 
problem is outlined in [Tarokh and Jafarkhani, 2000], 
where a simplified method is proposed to identify 
codewords characterized by the highest PAPR and a 
gradient-based iterative minimization technique is next 
used to search for the optimum rotation vector. 

A third approach for the design of low-PAPR coding 
schemes was motivated by the observation that the 
PAPR of an OFDM signal is at most 3 dB if the modula 
tion sequence is constrained to be a member of a Golay 
complementary pair [Golay, 1961; Popovic, 1991]. For a 
long time these sequences were not recognized to 
possess sufficient structure to form a practical coding 
scheme until a theoretical connection has been 
established between them and the first and second-order 
Reed-Muller codes [Davis and Jedwab, 1997]. This 
connection offers the opportunity to combine the error 
correcting capability of classical Reed-Muller codes with 
the attractive PAPR control property of Golay 
complementary sequences. Further improvements to this 
approach are found in Davis and Jedwab [1999], where a 
range of flexible coding schemes using binary, quaternary 

and   higher   order   modulations   has   been   designed  to



2602          Int. J. Phys. Sci. 
 
 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 800 85

-6

-4

-2

0

2

4

6

-8

8

time, usec

re
a

l(
V

fu
n

d
_

o
u

t)

Real part of  Modulated RF Carrier v ersus Time

Eqn Spectrum_out=dBm(fs(Vfund_out,,,,,"Kaiser"))

-2
.4

-2
.2

-2
.0

-1
.8

-1
.6

-1
.4

-1
.2

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

2
.4

-2
.6

2
.6

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

-100

20

freq, MHz
S

p
e
c
tr

u
m

_
o
u
t

S
p
e
c
tr

u
m

_
in

S
p
e
c
tr

u
m

_
s
o
u
rc

e

Spectrum of Generated Signal

Eqn mainlimits={-1.2288MHz/2, 1.2288 MHz/2}

Eqn UpChlimits={885 KHz,915 KHz}

Eqn LoChlimits={-915 KHz, -885 KHz}

Eqn TransACPR=acpr_vr(Vfund_out,50,mainlimits,LoChlimits,UpChlimits,"Kaiser")

Adjacent-channel power calculations

Eqn Spectrum_in=dBm(fs(Vfund_in,,,,,"Kaiser"))

Cartesian Feedback off  IS95 Rev

Eqn Peak_to_Ave=PeakPower/mean(Pout)
Eqn Pout=mag(Vfund_out)**2/100

Eqn PeakPower=max(Pout) Eqn Pout_dBm=10*log(mean(Pout))+30

Peak-to-Ave (linear)

1.476Pout_dBm

26.69  

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 800 85

0.2

0.4

0.6

0.0

0.8

time, usec

P
o
u
t

Env elope Power (Watts) Versus Time

Mean power, peak power, and peak-to-average
power calculations

Peak-to-Ave (dB)

1.692

Low er Channel ACPR

-33.18  

Upper Channel ACPR

-33.34  

Eqn Spectrum_source=dBm(fs(Vfund_source,,,,,"Kaiser"))

 
 

Figure 11. Open loop. 

 
 
 

achieve desired tradeoffs in terms of PAPR control, 
spectral efficiency and error-correcting capability. 
Computationally efficient decoding algorithms have also 
been developed based on the fast Hadamard transform 
(FHT). A unified theory linking Golay complementary sets 
of polyphase sequences and Reed-Muller codes has 
been presented by Paterson in [Paterson, 2000] and 
exploited to design a broad range of coding option 
employing high-order modulations. Unfortunately, the 
usefulness of all these techniques is somewhat limited by 
the fact that they can only be applied to multicarrier 
systems with a small number of subcarriers in order to 
keep the computational complexity to a tolerable level. 
One possible advantage is that no side information is 
required at the receiver to recover the transmitted data 
symbols.  
 
 

Cartesian Feedback 
 
The basic concept of closed loop feedback control is  well 

known as it has been widely applied in a variety of 
applications that use different FB configurations. In the 
basic Cartesian loop feedback (CLFB) scheme, the signal 
is separated into in-phase and quadrature components 
which allow the correction of amplitude gain into in-phase 
shift simultaneously. The HPA output is sampled and 
then the low pass feed-back components perform an 
additive pre-distortion of the I-Q components at each 
input adder, subtracting from the original input the 
orthogonal error signals introduced by the nonlinearity. A 
remarkable advantage of this kind of linearizer is that 
both the signal modulation and amplification processes 
are jointly considered in the linearization procedure. This 
means that non-linear distortions originating in sources 
external to the HPA (at the mixers, for instance) are also 
compensated. The results are depicted in Figures 11- 14. 
 
 
Conclusion 
 

Various   techniques   for  reducing  the  PAPR  in  OFDM
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Figure 12. Closed loop. 

 
 
 
systems were reviewed. OFDM  is  a  very  attractive  
technique    for    wireless    communication    due   to   its  

spectrum efficiency and channel robustness. One of the 
serious drawbacks in OFDM systems is that  the  transmit
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Figure 13. 16 QAM loop. 

 
 
 
signal can exhibit a very high PAPR. In this paper, we 
have described several techniques  to  reduce  PAPR  in 
OFDM  systems   all   of  which   have   the   potential   to 

provide  substantial  reduction in PAPR at  the cost of  
loss  in data  rate, signal power  increase ,BER 
performance    degradation,   computational     complexity
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Figure 14. 16 QAM Closed loop. 

 
 

 

increase,  and  so  on. Therefore, the  PAPR  reduction 
technique should be carefully chosen according to 
various system requirements. 
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