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The increase in power demand and limited power sources has caused the system to operate at its 
maximum capacity. Therefore, the ability to determine voltage stability before voltage collapse has 
received a great attention due to the complexity of power system. In this paper there is a prediction of 
Power Transfer Stability Index (PTSI) based on Radial Basis Function Neural Network (RBFNN) for the Iraqi 
Super Grid network, 400 KV. Learning data has been obtained for various settings of load variables using 
load flow and conventional PTSI method. The input data was performed by using a 400 samples test with 
different bus voltage (Vb), Bus active and reactive power (Pb, Qb), bus load angle (δb) and PTSIb. The three 
RBFNN models have 2, 3 and 4 inputs representing the (Vb, Pb, Qb and δb) respectively, the best hidden 
layer have thirty six nodes and the output layer has node representing PTSIb have been used to assess 
bus security. The proposed method has been tested on a practical system and compared with Back-
propagation neural network. In Simulation results show that the proposed method is more suitable for on-
line bus voltage stability assessment in term of automatically detection of critical bus when additional real 
or reactive loads are added or loss of transmission line. 
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INTRODUCTION 
 
Recent year’s On-line voltage stability assessment (VSA) 
is considered as an important concern in to power system 
operation since voltage instability may lead to voltage 
collapse and total system blackout possibility (Joong et al., 
2007; Suthar and Balasubramanian, 2007). The voltage 
instability can associated with contingencies like 
unexpected line and generator outages, insufficient local 
reactive power supply and increased loading of 
transmission lines. Thus the development of stability 
assessment has been performed mainly off-line by system 
planners because the computational burden is too high for 
online stability assessment. Consequently, in tradition, 
system planners determine the stability limits of 
transmission corridors for operators to monitor system. 
System planners also developed operating guidelines to 
help operators in the control center to mitigate the 
problems. Over the last few decades,  a  number of  direct  
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Methods for assessment on-line transient stability using 
non-linear programming technique have been identified 
and investigated. Zhao et al. (2009) proposes an energy 
function approach for new models and tools for voltage 
stability assessment and comes out with voltage stability 
margin at the system level. Nizam et al. (2006) presented 
a dynamic description of voltage collapse by 
characterizing the voltage stability regions in terms of the 
continuous tap changer model.  Haque (2003) used the 
results of power flow study and the system admittance 
matrix to find the parameters of the Thevenin’s equivalent 
of the system, looking from various load buses. Lee and 
Lee (2002) introduced a criterion for static voltage stability 
enhancement and used accurate models for excitation 
systems, tap changer and other equipment for analysis of 
dynamic voltage stability. The voltage stability problem 
can be considered as a non-issue in distribution systems. 
However, in modern distribution systems, as they become 
more complex and large, the issue can be one of the 
critical problems. There have been some attempts to use 
ANN for online voltage stability assessment (Kamalasadan
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Figure 1. A Simple two-bus Thevenin equivalent system. 

 
 
 
et al., 2006) and comes out with voltage stability margin at 
the system level. In addition, various other methods for 
voltage stability assessments of power systems have 
been documented using static and dynamic methods in 
small radial network was performed by (Hasani and 
Parniani,  2005). Vu et al. (1994) proposed a simple 
method of determining the voltage stability margin of an 
interconnected power system using some local measure-
ments. Taylor (1994) and Kundur (1994) proposed 
different static methods and dynamic simulation with 
appropriate models for voltage stability assessments. 
However, methods based on the dynamic approach are 
exceptionally time consuming in terms of computer time 
for the online environment. An especially attractive means 
for solving the aforementioned problem is found in artificial 
neural networks (ANNs) (Fischl et al., 1996). Mohammad 
and Hadi (2008) attempts have been made to set up a 
direct mapping between the operating states of the system 
and the VSM index using supervised neural networks 
(NNs).  Celli et al. (2002) proposed ANN predicts L indices 
(which are simplified measures of maximum loadability of 
load buses) for all the load buses in a reduced order 
system. 

In this paper, a new intelligent application is developed 
to improve the voltage stability for Iraq super grid power 
systems. First, definitions and issues of voltage stability 
indices are presented. Secondly, the problem has been 
formulated as by a conventional approach based on the 
power transfer stability index (PTSI) and the analytical 
work done including various line outages and for various 
reactive power control variables and loading conditions to 
predicting system performance and using these data to 
training RBFNN.  Thirdly, three different RBFNN models 
have been used with 2, 3 and 4 inputs (which represent 
Bus data). Finally, the tests were carried out on the 
eastern part of the high-voltage power system of former 
Iraqi super grid 400 KV to demonstrate its favorable 
performance by using MATLAB 10 neural network toolbox. 

In addition the performance of proposed method 
compared with Back-propagation neural network including 
its capabilities and limitations of are discussed. 
 
 
RELATED WORK 
 
Power transfer stability index 
 
The proposed dynamic voltage collapse indicator named 
as the Power Transfer Stability Index (PTSI) is derived by 
considering a simple two-bus Thevenin equivalent system, 
with a slack bus connected to a load bus by a single 
branch as shown in Figure 1. Referring to Figure 1, the 
current drawn by the load is given by, 
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Figure 2. Radial basis function neural networks. 
 
 
 

The magnitude of load apparent power SL from (4) can be 
expressed as, 
 

           (5) 
 
Expanding SL from (5), we get 
 

                         (6) 
 
The maximum load apparent power SL is then determined 
by considering ∂SL/∂ZL = 0. Maximum load apparent 
power becomes, 
 

                          (7) 
 
To assess the load bus distance to voltage collapse, a 
power margin is defined as SLmax – SL. The power margin 
equals to 0 if ZL = ZThev and it implies that power cannot be 
transferred at this point and a voltage collapse is said to 
occur. In other words, a voltage collapse will occur if the 
ratio, 
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Substituting Equations (6) and (7) into (8), the proposed 
PTSI is obtained and expressed as, 
 

        (9) 
 
Using equation (9), PTSI is calculated at every bus by 
using information of the load power, Thevenin voltage and 
impedance and load impedance phase  angles. The  value  

 
 
 
 
of PTSI will fall between 0 and 1 such that when PTSI 
value reaches 1, it indicates that a voltage collapse has 
occurred (Muhammad et al., 2007). 
 
 
Radial basis function neural network 
 

RBFNN have increasingly attracted interest for 
engineering applications due to their advantages over 
traditional multilayer perceptions, namely faster 
convergence, smaller extrapolation errors, and higher 
reliability. Over the last few years, more sophisticated 
types of neurons and activation functions have been 
introduced in order to solve different sorts of practical 
problems (Kumar, 2005; Kurban and Beşdok, 2009). In 
particularly, RBFNN have proved very useful for many 
systems and applications (Kumar, 2005). RBFNN is 
defined as a kind of ANN that has radial activation 
functions on its intermediary layer. RBFNN were robust 
used in the context of neural networks as linear and 
nonlinear function estimators and indicated their 
interpolation capabilities by Broomhead and Lowe 
(Broomhead and Lowe, 1988). (Hartman et al., 1990; Park 
and Sandberg, 1993) proved that RBFNN are capable of 
approximating any function with arbitrary accuracy. The 
neural network is a mapping between its inputs and 
outputs based on a number of known sample input-output 
pairs. In general, the more samples available to train the 
network, the more accurate the representation of the real 
mapping will be. These samples are obtained by solving 
the direct problem (times), in its simplest form, a RBFNN 
consists of three layers of neurons as shown in Figure 2. 
The first layer acts as the input layer of the ANN. The 
second layer is hidden layer as a high-scale dimension, 
which promotes a linear transformation of input space 
dimension by computing radial functions in their neurons. 
Third layer, the output layer, outputs the ANN response, 
promoting a linear transformation of the intermediary layer 
high-scale dimension to the low-scale dimension (Pandya, 
1995). 
 
 
MATERIALS AND METHODS 
 

RBFNN Model for PTSI 
 

Several types of ANN structures and training algorithms have been 
proposed as shown in Figure 3. The basic form of RBFNN 
architecture involves entirely three different layers. The input layers 
is made n, of source nodes while the second layer is hidden layer of 
high enough dimension which senses a different purpose from that 
in a multilayer perception. 

The output layer supplies the response of the network to the 
activation patterns applied to the input layer. The transformation 
from the input layer to the hidden layer is nonlinear whereas the 
transformation from the hidden layer to the output layer is linear. 

From above analytical methods involve considerable computa-
tional effort and hence cannot be used directlyfor online monitoring 
and initiation of preventive control actions to enhance system 
voltage stability. The major steps of the RBFNN design and training 
to determining the voltage instability problem a resummarized by the
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Figure 3. PTSI Predication model based on ANN.  

 
 
 
following steps: 
 
(i) A set of realistic system loading patterns are generated by varying 
the real power and reactive power loadings at various line outages 
and for various variables loading conditions. 
(ii) For each of the loading patterns generated in step (i) the load 
flow and modal analysis of the reduced Jacobian matrix are done 
and PTSI was calculated for each bus in the system to identify the 
most vulnerable few load buses from the voltage stability point of 
view. 
(iii) The RBFNN are designed and trained by deferent’s input 
patterns (Vb, δb, Pb, Qb) for each bus is generated as shown in Figure 3. 

(iv) The RBFNN, the target output is PTSI to show distance to 
voltage collapse for each input pattern is computed by running the 
contour program. 
(v) Training of these RBFNN using the input/output patterns 
developed in Steps 3 and 4 is carried out. 
(vi) Finally, the outputs of three models have been compared to 
check the sensitivity of bus stability index based on the four input 
parameter. 

 
 
Iraqi super grid network 
 

The transmission level in the Iraqi electrical network consists of the 
400 KV network (the super grid network) and part of the 132 kV 
network connected to it. The aim of this work is limited to the study 
of only the 400 KV network with all its bus-bars and transmission 
lines. The network under consideration consists of 24 bus bars and 
30 transmission lines (the total transmission line 3664.6 Km) and 
configuration of this network (Omer et al., 2011). 

 
 
RESULTS AND DISCUSSION 
 
To demonstrate the effectiveness of the proposed 
technique for online voltage stability monitoring for 
different types of contingencies including variable load and 
line outage has been applied to the Iraqi super grid 

network 24-bus test system. Two different cases used for 
generating training data (for both the RBFNN, BPNN) 
active and reactive power set the load buses are varied 
random load ± 25% base case values; (b) Fix active and 
reactive powerset the load buses and most critical line 
outages. Foreach operating condition, bus operating 
parameters are recorded as the input features. The 
experiment results were used to train the neural network 
which have been constructed and trained using 400 data 
samples from the experimental data and 20 samples were 
used for generalization test of the trained neural network. 
 
 
Case 1: Varied random load (dynamic stability) 
 
From Tables 1 and 2, it is clear that Iraqi power system 
working with limited power sources has caused the 
system to operate at its maximum capacity. In addition, 
the maximum error depend on number of inputs for 
RBFNN, that is the RBFNN can get better result depend of 
training input data but with long training time. In addition, 
Both RBFNN and BPNN have superior CPTSI. 

From Table 3, it is clear that RBFNN faster than BPNN 
and nearly not depend on training data. Speed of training 
PBNN depend on the size of training data that is the time 
increasing with increasing training data.The average 
errorsapproximately samefor both RBFNN and BPNN. 

 
 
Case 2: Contingency (line outages) 

 
Contingency analysis is performed for all line outages and 
the most critical transmission line in the system has been 
identified and appropriate algorithms tha is TL6-15 is
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Table 1. PTSI prediction based on RBFNN for loaded buses with varied random load. 
 

No. Bus no. CPTSI 
(4 Inputs) (3 Inputs) (2 Inputs) 

RBFNN output Error RBFNN output Error RBFNN output Error 

1 3 0.987914 0.96785 0.020064 0.963095 0.024819 0.95834 0.029574 

2 6 0.954004 0.939169 0.014835 0.934326 0.019678 0.929483 0.024521 

3 7 0.981182 0.973121 0.008061 0.971444 0.009738 0.969766 0.011416 

4 8 0.973669 0.957885 0.015784 0.954733 0.018936 0.951581 0.022088 

5 9 0.983717 0.964664 0.019053 0.960133 0.023584 0.955602 0.028115 

6 11 0.977562 0.966569 0.010993 0.964461 0.013102 0.962352 0.01521 

7 12 0.957789 0.946098 0.011691 0.942017 0.015772 0.937936 0.019853 

8 13 0.974447 0.959171 0.015276 0.95661 0.017838 0.954048 0.020399 

9 14 0.939308 0.928461 0.010847 0.932732 0.006576 0.937003 0.002305 

10 16 0.993132 0.995873 -0.00274 0.994685 -0.00155 0.993497 -0.00036 

11 19 0.991891 0.992188 -0.0003 0.992592 -0.0007 0.992996 -0.00111 

12 20 0.977767 0.976676 0.001091 0.978782 -0.00101 0.980887 -0.00312 

13 22 0.950816 0.946258 0.004558 0.951221 -0.0004 0.956183 -0.00537 

 Maximum error 0.020064  0.024819  0.029574 

 Average ABS error 0.010407  0.011823  0.014111 
 
 
 

Table 2. PTSI prediction based on BPNN for loaded buses with varied random load. 
 

No. Bus no. CPTSI 
(4 Inputs) (3 Inputs) (2 Inputs) 

BPNN output Error PBNN output Error BPNN output Error 

1 3 0.987914 0.961169 0.026745 0.955465 0.032449 0.975206 0.012708 

2 6 0.954004 0.932457 0.021547 0.926695 0.027309 0.946307 0.007697 

3 7 0.981182 0.969501 0.011681 0.966857 0.014325 0.980517 0.000665 

4 8 0.973669 0.952824 0.020845 0.948726 0.024943 0.965165 0.008504 

5 9 0.983717 0.958213 0.025504 0.952735 0.030982 0.971995 0.011722 

6 11 0.977562 0.962532 0.01503 0.959465 0.018097 0.973915 0.003647 

7 12 0.957789 0.940133 0.017656 0.935122 0.022667 0.953288 0.004501 

8 13 0.974447 0.954697 0.01975 0.951186 0.023261 0.966461 0.007986 

9 14 0.939308 0.930867 0.008441 0.934192 0.005116 0.935517 0.003791 

10 16 0.993132 0.992696 0.000436 0.990517 0.002615 1.003442 -0.01031 

11 19 0.991891 0.990607 0.001284 0.990017 0.001874 0.999729 -0.007838 

12 20 0.977767 0.976824 0.000943 0.977944 -0.000177 0.984099 -0.006332 

13 22 0.950816 0.949319 0.001497 0.953314 -0.002498 0.95345 -0.002634 

 Maximum error 0.026745  0.032449  0.012708 

 Average ABS error 0.013185  0.016673  0.018349 
 
 
 

Table 3. Compare the Performance of RBFNN and BPNN. 
 

CPTSI 
RBFNN BPFNN 

Ave. error Time (s) Ave. error Time (s) 

4 Inputs 0.010407 0.152739 0.013185 0.300316 

3 Inputs 0.011823 0.162183 0.016673 0.235524 

2 Inputs 0.014111 0.159696 0.018349 0.196094 
 
 
 

unstable under same load in case 1. From Table 2, it can 
observed that Bus 6 (PSTI = 0.9997) is most effect bus by 
this transmission line because this TL cut one supported 

source for this load bus and on the other hand bus 3 and 
16 get better compared with case 1 (PSTI = 0.877914 and 
0.954126 respectively). In addition, Bus 9 also  is  affected 
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Table 4. PTSI prediction based on RBFNN for TL6-15 with varied random load. 
 

No. Bus no. CPTSI 
(4 Inputs) (3 Inputs) (2 Inputs) 

RBFNN output Error RBFNN output Error RBFNN output Error 

1 3 0.877914 0.85215 0.025764 0.85536 0.022554 0.850718 0.027197 

2 6 0.999754 0.999685 0.000115 0.999511 0.000273 0.999665 0.000121 

3 7 0.983282 0.972811 0.010471 0.974338 0.008944 0.972705 0.010577 

4 8 0.981669 0.961308 0.020361 0.964222 0.017447 0.961157 0.020512 

5 9 0.991891 0.966532 0.025359 0.970465 0.021426 0.966042 0.02585 

6 11 0.989422 0.975334 0.014088 0.977314 0.012108 0.975266 0.014156 

7 12 0.986723 0.969764 0.016959 0.972922 0.013801 0.968911 0.017813 

8 13 0.975392 0.956212 0.019180 0.958752 0.01664 0.956274 0.019119 

9 14 0.941528 0.934457 0.007071 0.932773 0.008755 0.937088 0.004441 

10 16 0.954126 0.955793 -0.00167 0.956282 -0.00216 0.955081 -0.00096 

11 19 0.996591 0.997347 -0.00076 0.997094 -0.00050 0.997496 -0.00091 

12 20 0.976567 0.977656 -0.00109 0.976526 4.07E-05 0.978632 -0.00207 

13 22 0.951416 0.95185 -0.00043 0.949327 0.002089 0.954301 -0.00289 

 Maximum error 0.025764  0.022554  0.027197 

 Average ABS error 0.009749  0.011024  0.011278 
 
 
 

Table 5. PTSI prediction based on BPNN for TL6-15 with varied random load. 
 

No. Bus no. CPTSI 
(4 Inputs) (3 Inputs) (2 Inputs) 

PBNN output Error BPNN output Error BPNN output Error 

1 3 0.877914 0.847315 0.010599 0.864085 0.011829 0.865955 0.011959 

2 6 0.999754 1.000865 -0.00111 1.009706 -0.00995 1.01588 -0.01613 

3 7 0.983282 0.973872 0.00941 0.984276 -0.00099 0.988571 -0.00529 

4 8 0.981669 0.96231 0.010359 0.974057 0.007612 0.976881 0.004788 

5 9 0.991891 0.967201 0.02469 0.980364 0.011527 0.98219 0.009701 

6 11 0.989422 0.976436 0.012986 0.987283 0.002139 0.991134 -0.00171 

7 12 0.986723 0.970074 0.016649 0.982846 0.003877 0.985474 0.001249 

8 13 0.975392 0.957422 0.01797 0.968531 0.006861 0.971703 0.003689 

9 14 0.941528 0.938213 0.003315 0.942287 -0.00076 0.949595 -0.00807 

10 16 0.954126 0.956227 -0.0021 0.966036 -0.01191 0.971277 -0.01715 

11 19 0.996591 0.998693 -0.0021 1.007264 -0.01067 1.013504 -0.01691 

12 20 0.976567 0.979806 -0.00324 0.986487 -0.00992 0.993494 -0.01693 

13 22 0.951416 0.955446 -0.00403 0.95901 -0.00759 0.96727 -0.01585 

 Maximum error 0.010599  0.011829  0.013959 

 Average ABS error 0.011351  0.01751  0.019956 
 
 
 

because bus 6 start depends on it to support the load 
demands and bus 20 and 22 is very less affected by this 
TL. 

Form Tables 4 and 5, it is clear that the RBFNN’s 
response same as in case 1 which 4 input RBFNN is 
slightly superior when compared to the CPTSI and Both 
RBFNN and BPNN have superior CPTSI. 

From Table 6, it is clear that RBFNN faster than BPNN 
and nearly not depend on training data. Speed of training 
PBNN depend on the size of training data that is, the time 
increasing with increasing training data. The average 
errors approximately same for both RBFNN and BPNN.  

Finally, for the analysis of above the results, it is 
observed that the accuracy of the 4 input-RBFNN method 
was slightly superior when compared to the CPTSI on 
account of maximum error both cases but 2 input-RBFNN 
method was fast for PTSI prediction compared to the 
CPTSI and 3 input-RBFNN method keep in midpoint in 
term of accuracy and time.  
 
 
Conclusion 
 
In this study voltage stability assessment of power systems 
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Table 6. Compare the performance of RBFNN and BPNN. 
 

 

CPTSI inputs 

RBFNN BPFNN 

Ave. error Time (s) Ave. error Time (s) 

4 0.009749 0.149839 0.011351 0.297316 

3 0.011024 0.159783 0.01751 0.226624 

2 0.011278 0.158796 0.019956 0.198794 

 
 
 
by using RBFNN has been explored, and this was obvious 
from the generalization test. The simulation data from 
PTSI test has been used for training and testing.Using this 
approach, for a given operating condition, the most critical 
transmission line of the system has been identified and 
appropriate algorithms, which directly employ the 
designed NN architecture, have been suggested to 
evaluate on-line the previously considered control 
strategies. The difference of PTSI between prediction by 
RBFNN and CPTSI test is considered almost negligible; 
this means that it can solve many problems that have 
been costly and time consuming.The effectiveness of the 
proposed approach has been tested on Iraqi super grid 
power system. 
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