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This paper deals with application of a new kind of analytical technique for a non-linear problem called 
the He’s Energy Balance Method (EBM). This methodology has been utilized to achieve approximate 
solutions for nonlinear free vibration of conservative thick circular sector slabs. In Energy Balance 
Method, contrary to the conventional methods, only one iteration leads to high accuracy of solutions. 
These solutions do not only have high degree of accuracy, but are also uniformly valid in the whole 
solution domain. EBM operates very well in the whole range of the parameters involved. Excellent 
agreement of the approximate frequencies and periodic solutions with the exact ones could be 
established. Some patterns are given to illustrate the effectiveness and convenience of the 
methodology. It has been indicated that the numerical results of other methods have same conclusion; 
while EBM is much easier, more convenient and more efficient than other approaches. The Energy 
Balance Method is a novel method which alleviates drawbacks of the traditional numerical techniques. 
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INTRODUCTION 
 
Recently, nonlinear oscillator models have been widely 
considered in physics and engineering.  
   It is obvious that there are many nonlinear equations in 
the study of different branches of science which do not 
have analytical solutions. Therefore, these nonlinear 
equations must be solved using other methods. Many 
researchers have been working on various analytical 
methods for solving nonlinear oscillation systems in the 
last decades. Perturbation technique is one of the well- 
known methods (He, 1999); the traditional perturbation 
method contains many shortcomings. They are not useful 
for strongly nonlinear equations. So for overcoming the 
shortcomings, many new techniques have appeared in 
open literature. Some new perturbation methods include 
Homotopy perturbation (Bayat et al., 2010a), parameter–
expansion (Kimiaeifar et al., 2010), parameterized 
perturbation (He,1999), energy balance (Bayat et al., 
2011b; Bayat et al., 2011c; He, 2002), variational 
approach (Bayat et al., 2011d; Pakar et al., 2011; He, 
2007)  and  the  other  analytical  and  numerical methods  
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(Bayat et al., 2011e, 2011f, 2011g; Shahidi et al., 2011; 
Soleimani et al., 2011). 

Among these methods, we have considered energy 
balance method (EBM) for solving the nonlinear vibration 
of thin circular sector slab in this paper. Recently, 
nonlinear analytical techniques for solving nonlinear 
problems have been dominated by different methods. By 
extending the Energy Balance Method proposed by He, 
approximate analytical formulas for the period and 
periodic solution have been established. Variational 
methods such as Raleigh-Ritz and Bubnov-Galerkin 
techniques have been, and will continue to be popular 
tools for nonlinear analysis. When contrasted with other 
approximate analytical methods, variational methods 
combine the following two merits: 
 
1. They provide physical insight into the nature of the 
solution of the problem. 
2. The obtained solutions are the best among all the 
possible trial-functions. 
 
Comparison of the result which is obtained by this 
method with the obtained result by the other solution 
reveals that the He’s Energy Balance Method is very 
effective and convenient. 
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Figure 1. Geometric parameters of the homogeneous 
thin circular sector cylinder. 

 
 
 
THIN CIRCULAR SECTOR CYLINDER FORMULATION 

 
Swinging oscillation of thin circular sector cylinder in this condition a 
thin circular sector cylinder is considered as shown in Figure 1. As 
before thin circular sector cylinder rolls in an oscillatory motion back 
and forth on a flat stationary support, with no sliding effect. 
Governing equation of the oscillation is as follows: 
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where the geometrical parameters are shown in Figure 1. The 
height of mass center obtained as: 
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Introducing the dimensionless time variable: 
 

( )
1

sin1
.

R
t t t

y

α

α

−

 
 = =
 
 

                                                       (3)                                                                                      

 
Equation (1) becomes: 
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And   by   introducing   the   dimensionless  geometrical   parameter 
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Equation (4) becomes 
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BASIC IDEA OF EBM 
 
In the present paper, we consider a general nonlinear oscillator in 
the form (He, 2002); 
 

( ( )) 0u f u t′′ + =                                                                           (7)                                                                                          

 
In which u  and t are generalized dimensionless displacement and 

time variables, respectively. Its variational principle can be easily 
obtained: 
 

2

0

1
( ) ( ( ))

2

t

J u u F u dt′= − +∫                                           (8)                                                         

 

where  2
T

π

ω
=  is period of the nonlinear oscillator, 

( ) ( ) .F u f u du= ∫  

 
Its Hamiltonian, therefore, can be written in the form: 
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Or 
 

21
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Oscillatory systems contain two important physical parameters, that 

is, the frequency ω  and the amplitude of oscillation. A . So let us 

consider such initial conditions: 

 

(0) , (0) 0u A u ′= =                                                   (11)                                                                                    

 
We use the following trial function to determine the angular 

frequency ω : 

 

( ) co su t A tω=                                                                  (12)                                                                                              

 

Substituting (12) into u  term of (10), yield: 
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If, by chance, the exact solution had been chosen as the trial 

function, then it would be possible to make R zero for all values of 

t by appropriate choice of ω . Since Equation (12) is only an 

approximation to the exact solution, R cannot be made zero 

everywhere. Collocation at 
4

t
π

ω = gives: 
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Its period can be written in the form: 
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APPLICATION 
 
Its variational formulation can be readily obtained Equation (1) as 
follows: 
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Its Hamiltonian, therefore, can be written in the form: 
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We will use the trial function to determine the angular frequencyω , 

that is: 
 

( ) cost A tθ ω=                                                                    (20)                          

 
If we substitute (20) into (19), it results in the following residual 
equation: 
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If we collocate at 
4

t
π

ω = we obtain: 
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This leads to the following result: 
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According to Equations (20) and (23), we can obtain the following 
approximate solution: 
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RESULTS AND DISCUSSION 
 
In this section, to illustrate and verify the accuracy of this 
new approximate analytical approach, a comparison 
between Energy Balance Method and numerical ones are 
presented in Figures 2 to 4 for thin circular sector 
cylinder. Figures 2 and 3 show the motion of the system 
is a periodic motion and the amplitude of vibration is a 
function of the initial conditions. 
  The phase plane of the equation has been considered in 

Figure 4 for 12 , 10A gπ= = . 
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Figure 2. Comparison of analytical solution of ( )tθ based on time 

with the numerical solution for 

6, 12, 10, 5A g Rα π π= = = = . 

 
 
 

 
 

Figure 3. Comparison of analytical solution of ( )tθ& based 

on time with the numerical solution for 

6, 12, 10, 5A g Rα π π= = = =
.
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Figure 4. Phase plane, for  12, 10A gπ= =
. 

 
 
 

 
 
Figure 5. Comparison of frequency corresponding to various 

parameters of α  for , , ,
2 3 4 6

A
π π π π

= . 

 
 
 

The effect of α
 

on the frequency corresponding to 

12 , 10A gπ= =  has been studied in Figure 5. The 

comparison of frequency corresponding to various 

parameters of α
 
and amplitude (A) are shown in the 

Figures 6 and 7. It is evident that EBM shows an 

excellent agreement with the numerical solution and 
quickly convergent and valid for a wide range of vibration 
amplitudes and initial conditions. The accuracy of the 
results show that the EBM can be potentiality used for the 
analysis of strongly nonlinear oscillation problems 
accurately. 
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Figure 6. Comparison of frequency corresponding to various parameters of 

amplitude ( A ) for , , ,
2 3 4 6
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Figure 7. Comparison of frequency corresponding to various parameters of 

amplitude ( A ) and α . 
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Conclusion 
 
Nonlinear oscillators are useful for all oscillators and 
vibrations in high domain branches of sciences. Energy 
Balance Method has been utilized on the thin circular 
cylinder. It has been proved that the Energy Balance 
Method is clearly effective, convenient and does not 
require any linearization or small perturbation, and 
adequately accurate to both linear and nonlinear 
problems in physics and engineering. It has illustrated 
that the results of EBM are in an excellent agreement 
with those obtained by the numerical one.  EBM is a 
fantastic method for the analysis of nonlinear systems. 
The results indicated that Energy Balance method is 
extremely speedy, light, with high accuracy. Excellent 
agreement between approximate solution and the 
numerical one is demonstrated and discussed. The 
method can be easily extended to any nonlinear oscillator 
without any difficulty. Energy Balance Method provides 
an easy and direct procedure for determining 
approximations of periodic solutions.  
 
 
REFERENCES 
 
Bayat M, Shahidi M, Barari A, Domairry G (2010). The Approximate 

Analysis of Nonlinear Behavior of Structure Under Harmonic Loading. 
Int. J. Phys. Sci., 5(7): 1074-1080.  

Bayat M, Shahidi M, Barari A, Domairry G (2011a). Analytical 
Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems. 
Zeitschrift fur Naturforschung Section A-A. J. Phys. Sci., 66(1-2): 67-
74. 

Bayat M, Abdollahzadeh GR, Shahidi M (2011b). Analytical Solutions 
for Free Vibrations of a Mass Grounded by Linear and Nonlinear 
Springs in Series Using Energy Balance Method and Homotopy 
Perturbation Method. J. Appl. Func. Anal., 6(2): 182-194. 

Bayat M, Barari A, Shahidi M (2011c). Dynamic Response of Axially 
Loaded Euler-Bernoulli Beams , Mechanika, 17(2): 172-177. 

Bayat M, Bayat M, Bayat M (2011d). An Analytical Approach on a Mass 
Grounded by Linear and Nonlinear Springs in Series. Int. J. Phys. 
Sci., 6(2): 229-236.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
Bayat M, Shahidi M, Bayat M (2011e). Application of Iteration 

Perturbation Method for Nonlinear Oscillators with Discontinuities. Int. 
J. Phy. Sci., 6(15): 3608-3612.   

Bayat M, Iman P, Bayat M (2011f). Analytical Study on the Vibration 
Frequencies of Tapered Beams, Latin Am. J. Solids  Struct, 8(2): 
149-162. 

Bayat M, Abdollahzadeh G (2011g). Analysis of the steel braced frames 
equipped with ADAS devices under the far field records, Latin 
American J. Solids Struct., 8(2): 163-181. 

He JH (1999) Some New Approaches to Duffing Equation with Strongly 
and High Order Nonlinearity (II) Parameterized Perturbation 
Technique. Commun. Nonlinear Sci. Numer. Simul., 4: 81. 

He JH (2002). Preliminary report on the energy balance for nonlinear 
oscillators. Mech. Res. Commun., 29: 107-111. 

He JH (2007). Variational Approach for Nonlinear Oscillators. Chaos. 
Soliton. Fractals. , 34(5): 1430-1439. 

Kimiaeifar A,  Saidia AR,  Sohouli AR,  Ganji DD (2010). Analysis of 
modified Van der Pol’s oscillator using He’s parameter-expanding 
methods, Curr. Appl. Phys., 10(1): 279-283. 

Pakar I, Shahidi M, Ganji DD, Bayat M (2011). Approximate Analytical 
Solutions for Nonnatural and Nonlinear Vibration Systems Using He’s 
Variational Approach Method, J. Appl. Func. Anal., 6(2): 225-232. 

Shahidi M, Bayat M, Pakar I, Abdollahzadeh GR (2011). On the solution 
of free non-linear vibration of beams, Int. J. Phys. Sci., 6(7): 1628-
1634. 

Soleimani KS, Ghasemi E, Bayat M (2011). Mesh-free Modeling of Two-
Dimensional Heat Conduction Between Eccentric Circular Cylinders. 
Int. J. Phys. Sci., 6(16): 4044-4052. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


