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A continuum model for artificial membrane was developed by treating the upper and lower layers of the 
membrane as a pair of coupled Ising monolayers. Linear coupling between the layers was included. 
Linear stability analysis was used to predict the phase diagram. The dependence of the phase-
separated regions on inter-layer coupling is determined. We numerically solve the Cahn-Hilliard type 
equations to obtain domain evolutions for both layers. The estimations of the coupling strengths 
between the bilayers are determined from simulations. The dynamic scaling of the characteristic 
domain sizes for the symmetric and asymmetric cases are also evaluated from the simulations. Unique 
domain-growth scaling is reported in both cases.  
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INTRODUCTION 
 
Phase separation in model membranes, such as giant 
unilamellar vesicles (GUVs), is a challenging topic in 
biophysics (Veatch and Keller, 2002, 2003, 2005; 
Honerkamp-Smith et al., 2008, 2009). GUVs consist of 
two opposing lipid monolayer. Each monolayer generally 
contains three components: saturated lipids, unsaturated 
lipids, and cholesterol. At temperatures above the critical 

temperature ( cT ), all of the lipid components in the 

vesicles are mixed, the vesicles appear to have a single 
phase. At temperatures below the critical temperature, 
the lipids on the membrane surface are laterally 
separated to small patches (or domains). These domains 
will  gradually  merge  until reach the one-biggest domain  
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so that the saturated lipids have preferential affinity to 
pack with cholesterol. The domains consisting of 
saturated lipids and cholesterol are usually called liquid-

ordered  ol  
phase, while the region of unsaturated 

lipids are usually called liquid-disordered  dl  
phase.  

Recent experiments (Collins and Keller, 2008; Kiessling 
et al., 2009; Wan et al., 2008) show the existence of 
coupling between the monolayers. The lipid domains in 
one layer can promote the formation of coherent domains 
in the opposing monolayer. If the lipid bilayers are 
prepared such that, both layers have the same lipid 
composition, then, complete domain registration would be 
observed. Three coupling mechanisms have been 
proposed (May, 2009). The first mechanism is based on 
electrostatic coupling due to the repelling force that 
occurs     between    the   electrostatic   charges   in    the  



 
 
 
 
hydrophilic head of the phospholipids for each layer. This 
repelling force reduces the strength of the coupling, but it 
is generally negligible. The second mechanism involves 
cholesterol flip-flop (rapid movement of cholesterol 
between the monolayers). The third mechanism is 
dynamic chain interdigitation due to the overhanging of 
the lipid tails between the opposing layers. May (2009) 
show that coupling could be dominated by the third 
mechanism.  

In the past decade, the interaction across the bilayer 
(or coupling) has received more attention. Estimating the 
coupling strength between monolayer is an active issue. 
According to May (2009), the coupling strength is defined 

by   2

Ba k T      where 
2, , , 0.6a nm     are 

the order parameters of the upper layer, the order 
parameters of the lower layer, the mismatch energy and 
the average cross-sectional area per lipid. Hence, the 
mismatch energy can be used to calculate the strength of 
coupling. The coupling strengths between monolayers 
were first theoretically predicted by Collins (2008) to be 
0.1 to 1, corresponding to 20.1 1 Bk T nm   . 

However, May (2009) argued that this range seems to be 
an overestimation. Related work by Risselada and 
Marrink (2008) used molecular dynamics simulations to 
determine the coupling strength. Their estimate for 

coupling was 0.1 0.2   , which correspond to 
20.15 Bk T nm  . Wagner et al. (2007) determined a 

formula for calculating the critical coupling strength, 
* , 

separating two and three phase regions. The two- and 
three-phase regions correspond to the matched and 
mismatch regions when the bilayer is observed from the 
top view. Wagner et al. (2007) showed that the value of 

*  can be in the order of 0.47, a bit larger than the 
estimation of Risselada and Marrink (2008). Recent work 
by Putzel et al. (2011) calculated the mismatch energy by 
using the molecular mean field approach. The mismatch 
energies calculated by this method are approximately 

20.01 0.03 Bk T nm   . They did not converse the 

mismatch energies to the coupling strengths, but it must 
be lower than that obtained by Risselada and Marrink 
(2008). A comprehensive review by Almeida (2009) 
stated that coupling across the bilayer is approximately -

100 cal/mol or around 0.169 TkB at room temperature. 

This value lies within the range of Risselada and Marrink 
(2008). Therefore, the strengths of coupling are still 
controversial.  

To the best of our knowledge, only the work of Wagner 
et al. (2007) can be applied to the systems that have 
different lipid composition on bilayer. Otherwise, the 
calculations are based on the situation that lipid bilayers 
have the same lipid compositions. From the literature, 
you may see that the certain value (or even range) of the 
coupling strength is rather confusing. In this work, we use 
simulations,  which  are  based  on our model, to estimate  

Sornbundit et al.          6035 
 
 
 
the coupling strength for either the same and different 
lipid composition. 

An interesting question about model membrane 
systems is whether there are scaling laws for domain 
coarsening. Scaling laws have been investigated 
experimentally and computationally, but the reported 
results are conflicting. Saeki et al. (2006) measured the 
domain dynamics in cell-sized liposomes and found the 

relationship   15.0~ ttR  for off-critical mixtures. 

Yanagisawa et al. (2007) performed experiments on 
ternary model membranes and found two coarsening 
regimes. The first regime is the normal coarsening, which 

is governed by   32~ ttR . The second regime is called 

trapped coarsening, which means that domain 
coarsening is suppressed beyond a critical domain size. 
Liang et al. (2010) also performed experiments on ternary 
model membranes and reported that domains initially 

coarsen as   31~ ttR . After 10 to 100 s, the rate of 

coarsening increases to be   ttR ~ . Laradji and Kumar 

(2004, 2006) used dissipative particle dynamics (DPD) 
method to investigate the growth dynamics of lipid 
bilayers. They found that the domains, for both symmetric 

and asymmetric cases, first evolve with rate   3.0~ ttR . 

After a turning point, the growth rates depend strongly on 
area-to-volume ratios of vesicles. Ramachandran et al. 
(2010) simulated a sheet of membrane embedded in a 
bulk fluid by using the DPD method. They found the 

growth rate   31~ ttR  for either critical or off-critical 

compositions. Camley and Brown (2011) also simulated 
membranes in a bulk fluid using Cahn-Hillird (CH) typed 

equation. They observed the rate   21~ ttR for critical 

composition and the rate   31~ ttR for off-critical 

composition. The lattice-based model has also been used 
to study the domain growth dynamics. Gómez et al. 
(2008) proposed two interconnected lattices for modeling 
a lipid membrane. They obtained the dynamic scaling law 
in the form   31~ ttR  

for the late stage. Recently, Ehrig et 

al. (2011) found that the growth dynamics depend on the 
lipid composition and temperature. They reported that the 

growth dynamics are   nttR ~  where 1/ 4 1/ 3n   . 

Therefore, the domain coarsening law remains 
unresolved.  

The main goals of this research are to estimate the 
interlayer coupling strength and investigate the dynamic 
scaling law of the domains. Linear stability analysis is 
used to investigate the phase diagrams. The coupling 
strengths are evaluated by comparing simulations with 
experiments. We have found that our possible coupling 
strength ranges differ from previous estimations. A pair of 
Cahn–Hilliard-type equations for each monolayer are 
developed and used to simulate the systems. The 
dynamic scaling laws of the domains are determined from 
the simulations.  
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Figure 1. Schematic of a lipid bilayer used in this work. Red and 
blue circles represent particle A and B, respectively. The upper and 
lower lattices represent upper and lower lipid monolayers. The intra-

layer interactions of a particular particle are denoted by J , and the 
inter-layer interaction (or coupling) of a pair of particles that 
localizes to the same position on opposing monolayers is denoted 

by  .  

 
 
METHODOLOGY 
 
Model and kinetics equations 
 
We develop a model to include the effect of inter-layer interaction 
(or coupling) between two layers which have received less attention 
in the past. The structural basis of model membranes is two lipid 
monolayers that are coupled in some way. Therefore, the systems 
are modeled as two opposed, fully filled planar square lattices that 
are Ising monolayers, as shown in Figure 1. One monolayer is the 
upper layer, and the other is the lower layer. Each layer consists of 
a binary mixtures species A and B representing the two liquid 
phases lo and ld, respectively. Particle A is a tight binding state (or 
complex) of the saturated lipid and cholesterol, and the unsaturated 
lipid is particle B. The coupling between the layers is represented 
by the interaction of a pair of particles located opposite each other 
in the layers. Since we assume that lipid or cholesterol molecules 
exchange between the bilayer and environment are not allowed, 
then the amount of lipids and cholesterol are conserved.  

According to Hohenberg and Halperin (1977), the model can be 
classified to the class of model B. 

The Hamiltonian of the system is a combination of the 

Hamiltonians corresponding to the upper layer (
tH ), the lower 

layer (
bH ) and interlayer interactions ( H 

). It is given by: 
 

tot t b
i j i j i i

ij ij i

H H H H J U U J L L U L         ,   (1) 

 
Where the total Hamiltonian of the system is totH . 

iU  and 
iL  are  

 
 
 
 
the particles that reside on the upper and lower layers, respectively, 

at site i . Particle values of +1 or -1 denote the occupation at site i 

by A or B, respectively. The neighboring particle-particle interaction 

strength is represented by 0J  , and it corresponds to the 

preferential affinity for a like component. The summations in the first 
two terms denote the sum of the nearest-neighbor particles. The 
strength of the interlayer coupling is represented by the parameter 

0  . The summation in the last term denotes the sum of all 

interactions between two opposed particles, one on the top layer 
and another one on the bottom layer. 

Extracting information analytically from a model in the Ising-like 
form is difficult. However, the Ginzberg-Landau free energy can be 
used to explain most phase-separating systems, and a large 
amount of information can be derived from it. The Ginzberg-Landau 
free energy is written as powers of the order parameters. Such free 
energy can be deduced from our Ising-like model by using the 
mean field approximation. To do so, each lattice is partitioned into 

smaller sub-partitions (called cells), labeled by index p , (Figure 1). 

Note that, cell p  in Figure 1 is drawn for a guide line. It does not 

contain only 9 particles. We assume that the cells are large enough 
to contain many particles and are very small when compared with 

the size of the systems. The energy of a particular subsystem, pE , 

is defined as a combination of energies of one cell on the top layer, 
a coherent cell on the other layer and a transbilayer interaction 

term. It is defined in terms of the unit Bk T (where Bk  is 

Boltzmann’s constant and T is absolute temperature) as: 
 

p i J i J i i

ij p ij p i p

E J U U J L L U L
  

       ,             (2) 

 

Where the summations denote the sum within cell p . The order 

parameters in the subsystems are called the average field 
variables. They are given as follows: 
 

( ) , ( )
U U L L
A B A B

p i p iU L
i p i pAB AB

N N N N
r U r L

N N
 

 

 
    

 

         

(3) 

 

Where 
X

jN is the number of species j  in cell p of the upper 

layer (the superscript UX  ) or the lower layer (the superscript 

LX  ). The parameters  
pr


  and  pr
  represent the order 

parameter for a particular cell (called cell p ) on the top and an 

opposed cell on the bottom layer, respectively. X

ABN  is the total 

number of particles in cell p , 
X

B

X

A

X

AB NNN  . The effect of the 

neighboring particles is approximated as the product of the number 
of neighboring particles, z  (for this work, 4z   corresponds to a 
square lattice), and the averaged field variable, that is, the 
neighboring particles are replaced by the averaged value of the 
particles. The energy of the cell p on the upper layer is:  

 

 

       

 
2

summation of neighboring spins

1 1 1

2 2 2

1
.

2

t

p i j i

ij p i p

i p p i p p

i p i p

p

E J U U J U

J U z r Jz r U zJ r r

zJ r

   



 

 

   

     

 

 

 
   



  

(4) 



 
 
 
 

The factor 1 2 is added to avoid the double counting. The same 

approximation is applied to the lower layer. The energy due to the 
coupling between both layers at cell p is: 

 

.p i i

i p

E U L



                                                             (5) 

 
With the Bragg-Williams approximation, spin configurations in cell 
p are represented by one parameter which is called order 

parameter. Therefore, we assume that the product of individual spin 
in cell p are represented by the product of the order parameter of 

cell p as follows: 

 

   .p i i p p

i p

E U L r r 



   
 

                            (6) 

 
The bulk free energy per cell is expressed by: 
 

            

        

2

2

1 1
, 1 ln 1 1 ln 1

2 2

1 1
1 ln 1 1 ln 1 2 ln 2.

2 2

p p p Bf r r Jk T

J

      

    

       

         

  



 

 

(7) 

 

Where J zJ  and Bk T   . In the vicinity of the  

 

critical temperature (where   and   are very small), this free 

energy can be rewritten as: 
 

       2 2 4 4( 1) 1
, .

2 12
/

p p p B

J
f r r k T      

 
        

 

  

(8) 

 
Note that, in the absence of coupling, the free energy splits into two 
free energies according to each monolayer. The total free energy 
functional is integral to the overall cells and is defined by: 
 

   2 2
, ( ( )) ( ( ))

2
p p p

F ds f r r


        
 

 
,             (9) 

 

Where 0   is an interfacial parameter. The first term in the 

integral is the bulk free energy, and the square-gradient terms are 
the energies associated with non-uniform domain distributions. The 
line tension between the phases is related to the parameter   by 

 
3 21 2(2 2) 9 1J    . The pair of coupled Cahn-Hilliard 

equations that describe the temporal patterns for each layer are 
expressed as follows: 
 

 
  













 2322 31
,,

JM
TF

M
t  

(10) 

 

2 2 3 2( , , )
[(1 ) ],3

F T
M M J

t

  
  


 

 
         

 
  

(11) 

 

Where M is the diffusivity of lipid. 
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Linear stability analysis 
 
We can extract a useful relationship from a linear stability analysis 
of the kinetic Equations 10 to 11. We tested the stability of the 

homogeneous solution  0 0,   by adding small perturbations 

exp[ ( ) ]q t iqx  
 
and exp[ ( ) ]q t iqx   . We first 

define 
 

0                                                                            (12) 

 

0                                                                            (13) 

 
Next, we substituted Equations 12 to 13 into Equations 10 to 11, 
and then, Taylor expanded up to the first order. Finally, we obtain 
the linearized equations, as follows: 
 

 

 2 2 2

01M J
t


    


         
             (14) 

 

 2 2 2

01M J
t


    


        
             (15) 

 
with the constraints 
 

  31
1 0

3
J       

                                         (16) 
 

  31
1 0

3
J       

.                                         (17) 
 
Substituting the small perturbations into Equations 14 to 15, we 
obtain the following matrix equation: 
 

2 2 2 2
0

2 2 2 2
0

[1 ]
0

[1 ]

Mq J q Mq

Mq Mq J q

  

 

        
              

(18) 

 

The growth rate function,  q , is the largest eigenvalue obtained 

from Equation 18. The growth rate is: 
 

 
2

2 2 2 2 2 2 2
0 0 0 0

1
( ) 2(1 ) 4

2
q Mq J q     

 
            

 

   (19) 

 

The plots of  q
 
versus   for condition 0 0 0  

 
and 

3.2J    are shown in Figure 2. 

The wave numbers q  that make positive growth rate function 

are the unstable modes. The wave numbers q  that make negative 

growth rate function are the stable modes. The unstable mode 
means that phase separation occurs. A useful relation can be 
determined by considering the wave numbers at which the growth 
rate function becomes negative. The growth rate function vanishes 

at 0q 
 
and 

0q q
, 
 

Where 
 

 
2

2 2 2 2 2

0 0 0 02

0

2 2 4
.

2

J
q

   



        


        

(20) 



6038          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 2. A plot of the growth rate function for the critical symmetric 

condition, 
   0 0, 0,0  

, with different couplings. 

 
 
 
The right-hand side of Equation 20 must be positive, so the right-
hand side can be written as: 
 

 
2

2 2 2 2 2

0 0 0 02 2 4
0

2

J    



        
 .          (21) 

 

We can use Equation 21 to derive the critical value of  CJJ   as a 

function of lipid compositions and the interlayer coupling. This 
relationship can be expressed as: 
 

 
2

2 2 2 2 2

0 0 0 0

1
2 4 .

2
CJ    

 
        

 
             (22) 

 

In the single-layer case 0 , the famous relationships 

 2
01cJ z  and  2

01cJ z 
 
are archived. These are 

the critical values for J  in a binary mixture system. The plots of 

CJ 
 

versus  for the critical composition 0 0 0  
 

are 

shown in Figure 3. 

Figure 3 shows how the critical value of CJ 
 
depends on the 

strength of interlayer coupling  . The areas above the lines are 
the phase-separated regions, while the areas below the lines are 
the homogeneous regions. Figure 3 shows that at a particular 

coupling strength the minimum strength of J  required for phase 

separation in critical symmetric case is lower than that in 
asymmetric case. 

Another point is that when coupling is larger, the critical strength 

of J   for phase separation is lower. Moreover, the relationship is 

linear when the lipid compositions on both layers are the same.   

 
 
 
 

 
 

Figure 3. A plot of the critical values of 
CJ   as a function of   for 

different initial conditions 
 
 
 
Simulation details 
 
To obtain morphological patterns, we have solved Equations 10 to 
11 numerically by using the finite-difference method. The 
discretized version of those equations are expressed by: 

 

 

 

 
 1 2 2

, , , , , , , ,2

3
[ ]

k k k k k k

i j i j i j i j i j i j i j i j

M t
r u

x
      

 
        


  ,   (23) 

 

 
 1 2 2

, , , , , , , ,2

3
[ ]

k k k k k k

i j i j i j i j i j i j i j i j

M t
r u

x
      

        


 

  , (24) 

 
Where the discretized Laplacian operator is defined for a generic 
function as: 
 

2
, , 1, 1, , 1 , 1 ,4i j i j i j i j i j i j i jy y y y y y         .  

 
All of the simulations have been performed on lattices of size 

512 512N N   , with a periodic boundary condition. The 

compositional fields are defined in the site , [1, ]i j N , and the 

iteration index is defined by k . The total time lapse up to iteration 

k  then becomes t k t  . To ensure the Von Neumann stability 

criteria, the simulation parameters are chosen to be 
310t    

and 1 . We choose the simulation length unit  ... uls  to be 

1x  as a unit of the interfacial width, representing a physical 

size  of approximately nm5 . The diffusivity M is chosen to be 1 in  



 
 
 
 

a unit of    unittimesimulationunitlengthsimulation
2

 or 

   ......
2

utsuls . All of the systems have been initially prepared 

in a homogeneous state. The simulations are started by adding a 
small perturbed distribution to each site. The intra-layer interaction 

in the simulations is 3.2J    and corresponds to the temperature 

below the critical temperature of the classical Ising model (Onsager, 
1944). The strengths of the interlayer coupling are varied as 

 1,0 . These probable values of the coupling are compiled 

from earlier estimations.  
 
 
RESULTS AND DISCUSSION 
 
Here, we show snapshots of characteristic domain 
evolutions for different membrane compositions. The 
rough estimation of the coupling strength for the 
symmetric and asymmetric cases can be obtained by 
comparing these snapshots with the experimental results. 
Then, the compositional domain scaling dynamics were 
investigated.  
 
 
Coupling strength estimation 
 
Here, we propose another way for estimating the 
coupling strength. We use simulation method based on 
our Cahn-Hilliard-typed equations and compare the 
simulations with experimental results. Two experimental 
scenarios must be reproduced from the simulations. First, 
the domain strips on both layers would be completely 
registered if the compositions of both layers are the 
same. The second scenario is the three-phase region 
that would be obtained if the lipid compositions of both 
layers are different. The three-phase region consists of 
registered regions of each phase and the unregistered 
region. These mimic the lo/lo, ld/ld and lo/ld interfaces 
between two layers in model membranes. We have 
performed the simulations for the critical symmetric and 
asymmetric cases with the coupling strength ranging 

from 0.02 0.5   . This choice is based on previous 

estimations. The results are shown and are discussed  
 
 
Symmetric bilayer 
 
In the experiments, the lipid domains on both monolayers 
register completely - either critical or off-critical 
compositions. This situation must be reproduced by the 
simulations. For this case, we have performed 
simulations in the bilayers which have critical composition 
on both layers. It means that both layers are initially 

prepared in the composition 0 0 0   . The simulation 

results for this case are shown in Figure 4. Here, we 
should clarify the meaning of the colours in the figures.  

All of the figures in this section show the top view of the 
bilayers. The  red and blue regions represent matched (or 
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Figure 4. Snapshots of the phase morphologies in critical 
symmetric bilayers at the time unit 6 × 10

6
 for different interlayer 

couplings. 

 
 
 

registered) regions, and the green regions represent 
mismatch (or unregistered) regions. 

From Figure 4, the complete domain registration, which 
reflects real situations, is found since the coupling 
strength is 0.15. On the other hand, the three-phase 
regions (red, blue and green) are produced at the 
coupling strength 0.02. This indicates that the strength 
0.02 is not sufficiently large to induce the proper patterns. 
Therefore, the minimum coupling for this case should be 
approximately 0.15. This value has the same order as the 
previous predictions by Collins (2008) and Risselada and 
Marrink (2008). It should be noted that our method does 
not provide an estimated maximum coupling strength for 
this case. 

 
 
Asymmetric bilayer 
 
The asymmetric bilayer means that each monolayer has 
a different lipid composition. It is straightforward to expect 
that the three-phase regions must be observed. 
Interestingly, three-phase regions can be observed for 
some of the coupling strengths. We have performed 
simulations for the bilayer with 

0 00.7, 0.05   (system I),  
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Figure 5. Snapshot of the phase morphologies in asymmetric 
bilayers at time unit 6 × 10

6
 for different interlayer couplings. The 

lipid compositions for the first, second and third panels are 

       0 0, 0.7,0.05 , 0.1, 0.7 and 0.6, 0.6     
, 

respectively. 

 
 
 

0 00.1, 0.7      (system II) and 

0 00.6, 0.6    (System III). The simulation results 

are shown in Figure 5.  
For Systems I to III, the coupling strengths 0.02 to 0.2 

induce the simulation patterns that are similar to 
experimental results, and exhibit three-phase regions. 
This reflects experimental situations. At the coupling 
strength 0.5, the System I to II exhibit only two-phase 
regions, even if they are initially prepared in different 
compositions. It does not capture the real situations. 
However, these abnormal situations are previously 
predicted by Wagner et al. (2007). Some results of 
Wagner et al. (2007) are discussed here. In their phase 
diagrams (Figure 3 in their paper), the coupling strength 
is 0.02 reflecting real situations more than the other 
values. In Wagner et al. (2007) diagram, the symmetric 
bilayers show two-phase regions, while the asymmetric 
bilayers show three-phase regions (the areas within the 
triangles). At larger coupling strengths (larger than 0.02), 
the three-phase regions are reduced. This allows the 
present of two-phase regions; even both layers have 
different lipid compositions. At the coupling strengths 
larger than 0.47, all preparation provide only two-phase 
regions, for the value of non-ideality of the binary mixture 
is 2.2. Therefore, in order to produce a reasonable phase 

 
 
 
 
separation, the coupling strengths should be on the order 
of 0.02. For our result in System III, the three-phase 
regions are observed at the coupling 0.02, 0.2, and 0.5. 
This means that the probable coupling strength for the 
asymmetric case depend strongly on the lipid 
distributions on each layer. Moreover, the strengths of 
coupling can be in the order of 0.5. It is larger than the 
maximal coupling strength from the results of Wagner et 
al. (2007) for the non-ideality of the binary mixture is 2.2. 
The results about the coupling strength estimations are 
summarized in Table 1. 
 
 

Compositional domain dynamics 
 
We investigate domain coarsening dynamics on both 

layers. The averaged domain size at a given time ( )R t  is 

calculated by using the correlation function at different 

times for  and   fields. The correlation function for the 

  field at a time t  and a distance r


 from the reference 

site r


 is defined by: 
 

 
     

   

2

22

, , ,
,

, ,

r t r r t r t
C r t

r t r t

  

 

   


 

   


 
,                (25) 

 

Where the brackets are the average over all positions r


. 

The distance r R


satisfying the condition ( , ) 0C R t  is 

the average radius of domains. This method is also 
applied for the   field. The results are shown and are 

discussed below. 
 
 

Symmetric bilayer 
 
We have performed simulations with initial composition 

0 00, 0    with 0.2and 0.5  as shown in Figure 

6a and b. In this figure, the averaged domains sizes on 

both layers are evolved by the law   nttR ~ , where 

31n . Note that, all data points of both layers are 

completely overlapped because domains on both layers 
are developed in the same patterns, (Figure 6a and b). 
The complete overlap of domains can be observed in 
previous experiments on symmetric bilayers. Moreover, 
the coupling strengths do not affect the coarsening rate. 

With the coupling strengths 0.2and 0.5  , the 

dynamics length scales are the same. Domains evolving 

with the law   31~ ttR suggest that domains grow by 

collision and coalescence mechanism. 
Our results can be compared with those experiments of 

Liang et al. (2010) in the early stage. They reported that 

domain grow with the rate   31~ ttR for 10 to 100 s. For 

the  late  stage,  domains grow faster than the early stage 
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Table 1. Summary of the previous coupling strength  estimations according to the definition of May (2009), except for Putzel et 
al. (2011). 
 

Author The mismatch energy   The estimated coupling strength   Remark 

Collins (2008) 
20.1 1 Bk T nm    0.1 1    

Neglects the electrostatic effect 
between head group of lipids 

    

Risselada and 
Marrink (2008) 

20.15 Bk T nm   0.1 0.2    

The coupling are calculated by fitting 
with the probability distribution of the 
mismatch areas 

    

Putzel et al. (2011) 
20.01 0.03 Bk T nm    

They do not calculate the coupling 
strengths. 

Calculate analytically by using 
molecular theory 

    

Our results 
We do not calculate the mismatch 
energies. 

1) symmetric case: the minimum 

strength is min 0.15   Compare the simulation results with 
the experimental results 2) asymmetric case: the coupling 

strength vary with lipid compositions 
 

Our results are also compared with the earlier results. 
 
 
 

 

 
 

 

 
 

  
 

Figure 6. Log-Log plots of the time evolution of the characteristic domain sizes for symmetric (a-b) and 

asymmetric cases (c-e). Circles and triangles are the data for the upper (outer) layer with 02.0 and 

06.0 , respectively. Crosses and squares are the data for the lower (inner) layer with 02.0 and 

06.0 , respectively. The lines with slope 1/4, 0.3 and 1/3 are drawn for visual comparisons.  
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Table 2. Summary of the previous domain growth dynamics estimations.  
 

Author Domain growth dynamics 

Saeki et al. (2006) Experiment:   15.0~ ttR  for off-critical mixtures 

Yanagisawa et al. (2007) Experiment:   32~ ttR  (normal coarsening) and trapped regime. 

Liang et al. (2010) Experiment:   31~ ttR  (early stage),   ttR ~  (late stage) 

Laradji and Kumar (2004, 2006) Simulation: The dynamics depend on area-to-volume ratios 

Ramachandran et al. (2010) Simulation:   31~ ttR for both critical and off-critical compositions with Solvent 

Gomez et al. (2008) Simulation:   31~ ttR for the late stage 

Ehrig et al. (2011) Simulation:   nttR ~ where 1/ 4 1/ 3n    

Our results 
Simulation:   nttR ~  where 1 3n  for symmetric case and 0.3n  for 

asymmetric case. 
 

Our results are also compared with the earlier results. 
 
 
 

with the rate   32~ ttR  
by collision-induced collision 

mechanism (CIC). This mechanism can be explained as 
follows:  
 
When two domains collide and merge into one bigger 
domain, they generate hydrodynamics flow. The 
hydrodynamics flow will induce subsequent collisions of 
neighboring domains which make domains grow faster. 
However, these results differ from the experimental works 
of Yanagisawa et al. (2007). They concluded that some 

domains grow with the law   32~ ttR
 

while some 

domains are trapped. Their explanation is that the law 

  32~ ttR occurs because domains grow in the presence 

of hydrodynamics. Furthermore, the repulsive forces 
between capped domains are the key to inhibit the 
coalescence of other domains. Liang et al. (2010) 
suggested that the different topology of domains yield the 
different growth dynamics. In our work, we do not include 
the effect of hydrodynamic flow and the topology of 
membrane surface, such as domain budding, in the 
model so we cannot observe the rate   32~ ttR , 

  32~ ttR or domain stabilization. However, the 

computational works of Laradji and Kumar (2004, 2006) 
used the model that is able to include the effect of 
membrane topology but they did not observe the 

rate   32~ ttR ,   32~ ttR or domain stabilization. 

Moreover, the recent computational work of 
Ramachandran et al. (2010) and Camley and Brown 
(2011) that explicitly include the hydrodynamics flow in 

the model do not report the rate   32~ ttR . Therefore, the 

domain coarsening dynamics are still debatable.  
Note that although our model does not include the 

effect  of  hydrodynamics  and  the  effect  of   membrane  

topology, it includes the effect of the coupling field 
between layers. For the symmetric case, the effect of the 
coupling field does not provide a significant difference 
from single layer but it will show clearly in the asymmetric 
case. 
 
 

Asymmetric Bilayer 
 

In the present, the vesicles with different lipid ratios on 
both layers can be made in a laboratory (Collins and 
Keller, 2008). Interestingly, to the best of our knowledge, 
there is no report about the dynamics length scale 
measurements in either experimental or computational 
works. Therefore, our work seems to be the first work to 
report about the domains coarsening dynamics on both 
layers. Figures 6c to e show that the averaged domain 
sizes on both layers develop with nearly the same rate. 

The coarsening rate at the late stage is   ttR ~ , where 

0.3  . This rate is slightly lower than the rate in the 

symmetric case. Moreover, it agrees with the growth rate 
of the early stage obtained by Laradji and Kumar (2006). 
However, we do not consider the effect of the area-to-
volume ratio so our results do not agree with their results 
in the late stages.  

Unlike the symmetric case, the presence of coupling 
between layers induces domains in the same kind on 
each layer to transversely register. It yields the matched 
domains move within the mismatch domains (red or blue 
domains move within green domains). This event can be 
observed in experiments of asymmetric bilayers (Collins 
and Keller, 2008). Indeed, computational models that 
consider a membrane as a single-layered object cannot 
reproduce this phenomenon. The results about the 
domain growth dynamics measurements are summarized 
in Table 2. 



 
 
 
 
Conclusion 
 
This work investigates the phase diagrams and the 
compositional domain dynamics in lipid bilayers. The 
model is based on two coupled Ising monolayers. The 
free energy governing the system is derived by applying 
the mean-field approximation to the Ising bilayer.  

The strength of the coupling can be roughly extracted 
by comparing the compositional domain morphologies 
from the simulations with the experimental results. We 
propose that the minimum coupling strength of the 
symmetric bilayer which has critical composition on each 
layer is approximately 0.15. For the asymmetric case, 
with the compositions used in this work, the probable 
coupling strengths depend on the lipid ratios on each 
layer. The coupling ranges estimated from our work differ 
from the ranges reported in previous works. We have 
predicted the domain coarsening dynamics for the 
symmetric and asymmetric cases. The scaling law is 

  nttR ~  where 1 3n  for symmetric case and 0.3n  for 

asymmetric case. The scaling law in the power-law of 
time agrees with previous computational works but it 
differs from the values of the growth exponent.  
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