
International Journal of Physical Sciences Vol. 7(10), pp. 1622 - 1632, 2 March, 2012 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.1010 
ISSN 1992 - 1950 ©2012 Academic Journals 
 
 
 
 

Full Length Research Paper 

 

Tree structured encoding based multi-objective 
multicast routing algorithm 

 

Sushma Jain1* and J. D. Sharma2 
 

1
Thapar University, Patiala (147004), India. 

2
Indian Institute of Technology, Roorkee (247667), India. 

 
Accepted 3 February, 2012 

 

Quality-of-service (QoS) based multicast routing is a major challenge to next generation networks due 
to the increasing demand of real-time applications which require strict QoS guarantee. In the presented 
multi-objective multicast routing, the QoS parameters, namely, cost and available bandwidth are 
represented as objectives, while end-to-end delay and delay jitter are represented as constraints. The 
optimization is strived using an elitist multi-objective evolutionary algorithm. The topological assisted 
tree structured encoding was proposed to represent the multicast tree. The individual solution or 
chromosome was represented as a combination of arrays where each array represents a random route 
from destination node in multicast group to source node. The effectiveness of the proposed algorithm 
is tested on various networks, including the network formed using network topology generator BRITE. 
The best compromise solution is obtained using fuzzy cardinal priority ranking. The performance of this 
algorithm was compared with weighted sum genetic algorithm. The simulation results demonstrate that 
the multi-objective optimization with the proposed encoding scheme is effective in providing faster and 
guaranteed convergence. 
 
Key words: Multicast routing, multi-objective optimization, tree structured encoding, evolutionary algorithm, 
genetic algorithm. 

 
 
INTRODUCTION 
 
Multicasting is the capability of a communication network 
to accept a single message from a source and to deliver 
its copies to multiple recipients at different locations. 
Multicasting is a key requirement of computer networks 
supporting resource-intensive multimedia applications, 
such as video conferencing, virtual whiteboard and 
computer-supported cooperative work. The quality and 
performance requirements are very high for such 
resource-intensive applications. A network must minimize 
the resources consumption while meeting their quality of 
service (QoS) requirements. The various QoS 
parameters are cost, bandwidth, end-to-end delay, delay 
jitter and packet loss. Researchers have been studying 
for many years to develop efficient multicast routing 
algorithm based on Steiner tree. 
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Various heuristics were used to obtain minimum Steiner 
tree of the network that spans over the given set of nodes 
with minimum sum of link cost (Takahashi and 
Matsuyama, 1980; Kou et al., 1981; Smith, 1983). The 
problem to obtain the minimum cost Steiner tree is NP-
complete (Smith, 1983). Kompella et al. (1993) first 
formulated the delay-constrained minimum Steiner tree 
problem. The bounded shortest multicast algorithm was 
used to obtain the minimum cost tree with end-to-end 
delay constraints (Parsa and Zhu, 1998). Noronha and 
Tobagi (1994) proposed an algorithm based on integer 
programming to construct the optimal source-specific 
delay-constrained minimum Steiner tree. Salama et al. 
(1997) compared the performance of a shortest path 
broadcast tree algorithm and a heuristic for tree cost 
under end-to-end delay and delay jitter bounds. Kumar 
and Jaffe (1983) presented algorithms for minimum 
Steiner tree  and least  delay  tree.  Rouskas and Baldine 
(1997) studied the problem of constructing multicast trees 
with end-to-   end    delay    and   delay   jitter constraints. 



 
 
 
 
The evolutionary algorithms (EAs) are the search and 
optimization algorithms based on the simulated 
evolutionary process of natural selection, variation and 
genetics. These algorithms obtain the optimal solution by 
improving the solution with the progress of iterations. 
These algorithms have been used for some NP-hard and 
NP-complete optimization problems, because there are 
many individuals that can search for multiple good 
solutions in parallel. The ability to handle complex 
problems, involving features such as discontinuities and 
disjointed feasible spaces, reinforces the potential 
effectiveness of these algorithms for such complex 
problems.  

Kun et al. (2006) used an algorithm based on simulated 
annealing (SA) to find minimum cost multicast tree by 
satisfying end-to-end delay and delay jitter. Genetic 
algorithm (GA) was used in routing for cost, bandwidth 
and delay optimizations (Zhang and Leung, 1999; Xiang 
et al., 1999; Zhengying et al., 2001). Zhang et al. (2009) 
presented least-cost QoS multicast routing by combining 
GA and SA. Randaccio and Atzori (2007) used GA to the 
group multicast problem and employed a heuristic 
procedure to generate a set of possible trees for each 
session in isolation. Yen et al. (2008) focused on energy 
consumption efficiency for selecting the node with 
minimum energy consumption in forming the route. 
Nesmachnow et al. (2007) evaluated EAs to the shortest 
path problem.  

In solving multi-objective optimization problems, 
evolutionary algorithms have been adequately applied to 
demonstrate that multiple and well-spread Pareto optimal 
solutions can be found in a single simulation run. Various 
multi-objective evolutionary algorithms (MOEAs) use the 
concept of Pareto domination to guide the search (Zitzler 
and Thiele, 1999; Deb, 2001).  

Roy and Das (2004) proposed multi-objective genetic 
algorithm (MOGA) based approach to optimize end-to-
end delay, total bandwidth consumption and residual 
bandwidth utilization. Araújo and Garrozi (2010) 
considered three objectives for multicast routing. All 
objectives were combined into one function by using 
weighting factors depending on the importance of the 
objectives and used single objective optimization. Ant 
colony approach algorithm was used to simultaneously 
optimize cost, end-to-end delay and average delay (Pinto 
et al., 2005). The strength Pareto evolutionary algorithm 
(SPEA) was used for routing (Zitzler and Thiele, 1999). 
Zitzler et al. (2000) found that SPEA2 is better than 
SPEA, because the number of archived solutions is 
constant overtime and boundary individuals are protected 
from being removed. The SPEA2 used a strength value 
to determine which solution is dominated by the others. 
Srinivas and Deb (1994) proposed the non-dominated 
sorting genetic algorithm (NSGA) which combines the  
ranking approach and diversity mechanism into the 
fitness assignment. The NSGA-II retains the multi-
objective nature of the problem and has an  improvement 
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in rapidly assigning the solutions into several fronts and 
maintaining the diversity (Deb et al., 2002). After 
convergence, a set of Pareto optimal solutions was 
achieved in the first front F1. Among these, one solution 
known as best compromise solution is selected. This 
solution can be obtained using fuzzy cardinal priority 
ranking (Klir and Folger, 1993; Dhillon et al., 2002). 

In this paper, two objectives, namely, the cost and 
available bandwidth are simultaneously optimized while 
satisfying end-to-end delay and delay jitter constraints 
using the NSGA-II. The approach works in a source-
based fashion where the complete knowledge of a 
network is assumed to be known in advance. The 
topological assisted tree structured encoding is used to 
represent the multicast tree. The individual solution or 
chromosome was represented as a combination of arrays 
where each array represents a random route from 
destination node in multicast group to source node. Two 
consecutive nodes represent a topological connection or 
link between them. The proposed algorithm is tested on 
various networks, including the random networks formed 
using network topology generator BRITE working on 
Waxman model (Waxman, 1988; Medina et al., 2001). 
The best compromise solution was obtained using fuzzy 
cardinal priority ranking. The effectiveness of the 
developed algorithm is also tested for different sizes of 
multicast group and varying size of networks. The 
effectiveness of the multi-objective optimization algorithm 
was compared with weighted sum genetic algorithm. 
 
 

PROBLEM FORMULATION 
 

The network was simply represented as weighted connected graph 
N=(V,E), where V denotes the set of nodes and E the set of links. 
The existence of a link e=(u,v) from node u to node v implies the 

existence of a link e’=(v,u) for any u,vV, that is, full duplex in 

networking terms. Let M be a subset of V, that is, MV forms the 
multicast destination group with each node of M as a group 

member. The node sV is a multicast source for multicast group M. 

A multicast tree T(s,M)E is a sub-graph of N that spans all nodes 
in M, while it may include non-group member nodes along a path in 

the tree. Each link e=(u,v)E has its properties, cost C(e), available 
bandwidth Aw(e) and a delay D(e) as any real positive value R+. 
The link cost C(e) may be the monitory cost incurred by the use of 
the network link or may be some measure of network utilization. 
The link capacity, Cap(e), which represents the maximum data that 
can be transferred by link, is assumed uniform for all links. The 
Aw(e) represents the bandwidth available to meet the current traffic 
requirement. The delay D(e) represents the time needed to transmit 
information through link that includes transmission, queuing and 
propagation delays. A sample graph of 15-nodes Bellcore topology 
is as shown in Figure 1 (NT, online). 
The QoS provisioning in multicast routing is a challenging task due 

to the application-specific diverse requirements for end-to-end 
delay, delay jitter, bandwidth, cost, etc. The problem is to find a tree 
rooted at the source s and spanning to all the members of M such 
that the total cost of the tree is minimum, the available bandwidth is 
maximum, the delay from source to each destination is not greater 

than the specified limit  and the delay jitter between two 

destinations is not greater than the specified limit . Therefore, 
multi-objective multicast routing problem that minimize the total cost



1624          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 1.  A 15-node Bellcore network topology. 
 
 
 
of multicast tree and maximize the available bandwidth while 
satisfying the end-to-end delay and delay jitter constraints is 
defined as: 
 

1. Minimize cost of multicast tree f1: 
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3. Subjected to end-to-end delay constraint: 
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4. Delay jitter bounds: 
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PT(s, d) is a path from ‘s’ to ‘d’ (sij... kd). 
 
 
MULTI-OBJECTIVE MULTICAST ROUTING USING NSGA-II 
 
The main objective of multi-objective evolutionary algorithm is to 
find multiple Pareto optimal solutions in single simulation run. The 
multi-objective multicast routing is based on an elitist non-
dominated sorting genetic algorithm, which has the following 
features suited for multi-objective optimization. 
 
1. It uses fast non dominated sorting techniques to provide the 
solutions as close as possible to the Pareto optimal solutions.   

2. It uses crowding distance techniques to provide diversity in 
solution. 
3. It uses elitist techniques to preserve the best solutions of current 
population in next generation. 
 

Let Pi be the parent population, Qi is the offspring population and Ri 
represent the total population of the generation i. Fk is the front k, 
where k is a positive integer. Note that the solutions in front F1 are 
better than those of F2, etc. Algorithm steps are as follows: 

 
S1: Combine the Pi and Qi to form Ri, combine the parent and 
offspring populations. Evaluate the offspring population. Assign Pi = 
P0 and Qi = Q0, where Pi and Qi denote the parent and offspring 
population at ith generation, respectively. Create a combined 
population Ri =Pi U Qi of size 2N.   
S2: Assign each population in Ri to the front (F1, F2, F3,….Fn) using 
fast-non-dominated-sort algorithm.  

Fast-non-dominated-sort algorithm divides the population in 
different fronts. A solution is said to dominate another solution, if it 
is not worse in all objectives and better in at least one objective. A 
solution is said to be non-dominated if it is not dominated by any 
other solution. The solutions in Ri, which do not dominate each 
other but dominate all other solutions of Ri, are kept in the first front, 
that is, set F1. Among the solutions not in F = F1, the solutions 
which do not dominate each other but dominate all other solutions, 
are kept in the second front, that is, set F2. Similarly, among the 

solutions not belonging to F = F1  F2, the solutions which do not 
dominate each other but dominate all of the other solutions are kept 
in the next front, that is, set F3. This process is repeated until all 
solutions in Ri are assigned one of the front. Subsequently, these 
generated fronts are assigned corresponding ranks, that is, F1, F2 
and F3 are assigned ranks 1, 2 and 3, respectively. 
S3: Calculate the crowding distance in each Fk using crowding 
distance-assignment algorithm.  

The crowding-distance-assignment algorithm was used in 
providing the diversity in population. To get an estimate of the 
density of solutions surrounding a particular point in the population, 
the average distance of the two points on either side of this point 
along each of the objectives is adopted. The obtained quantity 
serves as an estimate of the size of the largest cuboid enclosing the 
point of interest, without including any other point in the population. 
S4: Sort the population Ri (sort by front order (Fk) in ascending 
order and crowding distance in descending order). 
S5: Select only first half of the population Ri and assign to P(i +1).  

To create parent population P(i+1) from combined population Ri for 



 
 
 
 
next (i+1)th generation, initially, the solutions belonging to the set F1 

are considered. If size of F1 is smaller than N, then all the solutions 
in F1 are included in P(i+1). The remaining solutions in P(i+1) are filled 
from the rest of the non-dominated fronts in order of their ranks, 
that is, from F2, F3, etc., until the total number of solutions in P(i+1) is 
greater than N. To make the size exactly equal to N, some solutions 
from the last included non-dominated front are discarded from P(i+1). 

To choose the solutions to be discarded, initially, the solutions of 
the last included non-dominated front are sorted according to their 
crowding distances and, subsequently, the solutions having least 
crowding distances are discarded from P(i+1). 
S6: Use crossover and mutation to recombine the population P(i +1) 
and assign that to Q(i+1) 
S7: Increment the iteration counter (i = i + 1) 
S8: Repeat Steps S1 to S7, until the iteration meets with the 
maximum number of iterations. 

 
 
IMPLEMENTING MULTICAST ROUTING 

 
Encoding scheme  

 
An individual or a solution is encoded using M arrays, where M 
represents the number of destinations in multicast group. Each 
array represents the node numbers forming a random route from a 
destination node in multicast group to source node. The size of an 
array varies depending on the number of nodes in each path and it 
may contain the maximum V nodes. Two consecutive nodes 
represent the existence of a link. Therefore, each array has a 
sequence of nodes from a destination node to the source node that 
are topologically connected. In this way, a solution is encoded or 
represented as multi-array arrangement. The loop, free multicast 
tree was obtained by testing the connectivity of each node in the  
following array with that of the preceding arrays (Kun et al., 2006). If 
a destination node is already visited in the preceding arrays, the 
tree may have less than M arrays.  
With the aforementioned procedure, the population P0 of N 

individuals is created. The structure of two individuals I1 and I2 and 
corresponding loop free trees, T1 and T2 is as shown in Figure 2 for 
a sample 15-node Bellcore network presented in Figure 1. The 
source node is numbered as ‘0’, whereas multicast group M 
members are numbered as 7, 9, 11 and 14. The objective functions 
f1 and f2 were calculated from the resulted trees. 

 
 
Creation of offspring  

 
The offspring population Q0 of size N was created using tournament 
selection, crossover and mutation operator on parent population P0 
through the following two steps: 
 
Step 1: To perform crossover operation, two individuals were 
selected, randomly from parent population by tournament selection 
and two randomly selected arrays in the individuals were swapped, 
and therefore, the two offspring individuals were obtained. The 
realization of crossover operation in the proposed scheme for 
offspring generation is as shown in Figure 3 where the arrays at 
positions 2 and 4 in individuals I1 and I2 were swapped to obtain two 
offspring solutions O1 and O2. 
Step 2:  For mutation operation, an individual is selected randomly. 
Among this solution, a node within a randomly selected array is 
randomly selected. The sub-path from this selected node to the 
source is replaced by newly generated random sub-path. The 
realization of mutation operation in the proposed scheme is as 
shown in Figure 4. Node ‘5’ in 3rd array representing path between 
destination node ‘7’ and the source was selected randomly from the 
randomly   selected   individual   O1.   The   new  individual  O3  was 
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Figure 2. Illustration of solution and tree structure in the proposed 
tree structured encoding. 
 
 
 

 
 

Figure 3. Realizing crossover operation in the proposed scheme. 
 
 
 

 
 

Figure 4. Realizing mutation operation in the proposed scheme. 
 
 
 

generated by replacing the path from node ‘5’ to source ‘0’ in the 
3rd array by new random path.  

 
 
Constraints and dominance check 
 

Individuals were compared for the dominance and also for the 
constraints violation. If two solutions are feasible, the winner is 
decided by the nondominance criteria. If one is feasible and other is 
infeasible, the feasible solution dominates. If both the solutions are 
infeasible, then the one with lowest amount of constraint violation 
dominates the other. 
 
 
BEST COMPROMISE SOLUTION 
 

After convergence of the elitist multi-objective optimization, a set of 
Pareto optimal solutions is achieved. These are the best solutions 
and are contained in the first front F1.  For  practical  purposes,  one 
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solution among Pareto optimal solutions was selected and is known 
as the best compromise solution. For this, the normalize 

membership function
k  that provides the fuzzy cardinal priority 

ranking of the non-dominated solution was calculated. The solution 

for which the value of 
k  is maximum, is considered as the best 

compromise solution. 
k  is calculated as: 
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MULTI-OBJECTIVE MULTICAST ROUTING USING WEIGHTED-
SUM APPROACH 
 
The multi-objective multicast routing problem for attempting cost 
minimization and available bandwidth maximization was formulated 
as a single objective optimization by using weighted sum approach 
as: 
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weight W is varied between 0.0 and 1.0. A and B are the penalty 
factors for the violation of delay and delay jitter bounds, and these 
factors are specified as 100 for the simulation. The encoding 
scheme to represent the individual and the procedure to generate 
the offspring is same as discussed in the implementation of 
multicast routing.  

 
 
EXPERIMENTAL RESULTS 
 
The effectiveness of the developed algorithm has been 
tested for various networks. The effects of change in 
multicast group size have also been studied. The Pareto 
optimal solutions and correspondingly, the best 
compromise solution have been obtained. The link 
parameters like cost and available bandwidth  have  been 

 
 
 
 

 
 

Figure 5. Initial Pareto fronts for 15-node Bellcore network. 
 
 
 

assigned randomly in specified range. The link cost is 
assigned random integer value between 2 and 10, 
whereas the available bandwidth was assigned, 
randomly, integer between 70 and 170 Kbps. The 
capacity of each link is taken as 200 Kbps. Simulation 
was executed for 100 iterations with crossover and 
mutation rates as 0.9 and 0.10, respectively. 
 
 
15-node Bellcore network 
 

For the 15-node Bellcore network as shown in Figure 1, 
the link cost and available bandwidth were assigned 
according to the earlier discussed procedure. The link 
delay is randomly assigned integer values between 1 and 
5. The optimization has been attempted for the source 
node as ‘0’ and four destination nodes as 7, 9, 11 and 14. 
The limits on end-to-end delay and delay jitter were 
considered as 15 and 4, respectively. The initial 
population size N has been considered as 25. The Pareto 
fronts obtained from the initial population is as shown in 
Figure 5. The ranks of “front 1”, “front 2” and “front 3” are 
1, 2 and 3, respectively. The tree cost and available 
bandwidth for these fronts are summarized in Table 1.  

The Pareto optimal front at the convergence is as 
shown in Figure 6. The best compromise solution is also 
marked as shown in Figure 6. Correspondingly, the 
solution structure and the encoded tree are as shown in 
Figure 7a and corresponding optimal multicast tree on 
the network topology is as shown in Figure 7b. 
 
 
100-node network 
 

A random network of 100 nodes is generated by the 
BRITE network topology generator using the Waxman 
model (Medina et al., 2001; Waxman, 1988). The network 
spread was assumed in the area of 500 500Km Km . The 

parameters that are controlling the edge density β and 
the density of short edges with respect to longer ones α 
were specified as 0.9 and 0.7, respectively. The 
connection  of  each new node has  been considered with
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Table 1. Cost and available bandwidth for Initial Pareto fronts for 15-node Bellcore network. 
 

Front 1  Front 2  Front 3 

Tree cost Available bandwidth  Tree cost Available bandwidth  Tree cost Available bandwidth 

39 63.92  45 60.00  46 60.79 

41 65.14  46 63.63  47 62.38 

51 66.72  50 64.67  49 62.78 

53 68.28  51 64.88  53 62.90 

- -  54 66.15  55 63.61 

- -  56 66.20  57 65.10 

- -  64 67.05  58 65.30 

- -  - -  69 65.42 

- -  - -  73 66.20 

 
 
 

 
 

Figure 6. Pareto optimal front for 15-node Bellcore network. 

 
 
 
two other nodes. The delay was calculated as 2/3 of light 
velocity multiplied by the distance between the 
communications nodes. The study was carried out with 
delay and delay jitter bounds as 100 and 25, respectively. 
The population size N is taken as 100. 

Simulation is attempted for the random multicast group 
size of 10%. Correspondingly, the initial population was 
classified into various Pareto fronts. Some initial Pareto 
fronts are as shown in Figure. 8. The cost and available 
bandwidth for these fronts were summarized as shown in 
Table 2. The ranks of the Pareto fronts are same as the 
number of front. The “front 1” is closest to the vertices, 
whereas the “front 3” is farthest to the vertices.  

The Pareto optimal front obtained in this study is as 
shown in Figure 9. For comparison, the initial “front 1” is 
also represented as shown in Figure 9. As expected, the 
Pareto optimal front is the closest to the vertices. 
Correspondingly, the cost and available bandwidth are as 
shown in Table 3. 

The effect of the change in the multicast group size on 
the convergence  time  has  been  studied  with  both  the 

multi-objective optimization and the weighted genetic 
algorithm. The 100-node network described earlier has 
been considered for the study. Correspondingly, the 
results were summarized as shown in Table 4 and are 
depicted as shown in Figure 10. In this study, the 
multicast group size varied and the destination nodes 
forming the multicast group were selected, randomly. The 
other parameters are kept unchanged. The convergence 
time increases as the size of the multicast group 
increases and they exhibits near linear relationship. The 
significantly high convergence time is needed with the 
weighted genetic algorithm as compared to multi-
objective optimization for all sizes of the multicast groups. 
As the size of multicast group increases, the difference of 
the convergence time needed by two algorithms also 
increase. 

The effect on the convergence time for varying sizes of 
the random networks has been studied and the results 
are summarized in Table 5 and are as shown in Figure 
11 for the optimization carried out by NSGA-II and 
weighted genetic algorithm. Random networks were 
obtained using Waxman model as per the procedure 
explained for 100-node network. For each, the multicast 
group size is kept as 20%. The link parameters cost, 
delay and available bandwidth were assigned as 
explained during the study of 15-node Bellcore network. 
The delay and delay jitter are taken as 100 and 25, 
respectively. The convergence time increases 
exponentially with the network size and the time needed 
by weighted approach is significantly high as compared 
to multi-objective optimization NSGA-II. 
 
 
Conclusion 
 
The multi-objective multicast routing using an elitist multi-
objective evolutionary algorithm was presented in this 
paper to simultaneously optimize cost and available 
bandwidth, while considering end-to-end delay and delay 
jitter as constraints. The topological assisted tree 
structured   encoding   has   been used  to  represent  the
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(a) 

 

(b) 

 
 

Figure 7. Representation of optimal compromise solution and multicast tree: (a) encoded best compromise solution and tree, (b) best 
compromise optimal tree on network topology. 
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Figure 8. The initial Pareto fronts for 100-node network. 

 
 
 

Table 2. Cost and available bandwidth for initial Pareto fronts for 100-node random network. 
 

Front 1  Front 2  Front 3 

Tree cost Available bandwidth  Tree cost Available bandwidth  Tree cost Available bandwidth 

189.42 59.19  189.61 58.57  192.51 56.54 

192.07 61.34  202.68 60.37  212.65 58.56 

193.82 61.41  209.94 61.17  219.34 61.37 

196.62 62.62  210.51 62.06  231.14 62.30 

217.70 65.10  213.16 62.53  237.13 62.58 

226.36 67.39  221.12 63.49  248.42 63.37 

- -  236.38 63.92  253.22 64.53 

- -  241.67 64.89  288.96 64.86 

- -  243.46 65.56  - - 

- -  252.92 66.39  - - 

 
 
 

 
 

Figure 9. Representation of Pareto “optimal front” and initial Pareto “front 1” for 100-node network. 
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Table 3. Summary of Pareto optimal (final) front and initial Pareto “front 1” for 100-node random network. 
 

Pareto optimal front  Initial Pareto “front 1” 

Tree cost Available bandwidth  Tree cost Available bandwidth 

130.21 61.24  181.90 58.02 

135.57 63.91  189.42 59.19 

142.36 64.86  192.07 61.34 

152.41 66.63  193.82 61.41 

175.35 68.44  196.62 62.62 

175.35 68.44  217.70 64.10 

175.35 68.44  226.36 67.40 

 
 
 

Table 4. Summary of convergence time for different sizes of multicast group in 100-node network. 
 

Multicast group size Weighted GA NSGA-II 

5 4.50 2.34 

10 7.74 4.32 

15 11.43 6.04 

20 14.66 6.98 

25 17.88 10.05 

30 22.95 11.57 
 
 
 

 
 

Figure 10. Effect of multicast group on the convergence time on 100-node network. 

 
 
 
multicast tree. The individual solution, which is a 
multicast tree, has been represented as a combination of 
arrays where each array represents a random route from  
destination node in multicast group to source node. The 
tree structure was  preserved  during  the  crossover  and 

mutation operations. The effectiveness of the proposed 
algorithm has been tested on various networks and the 
compromise solution was obtained using fuzzy cardinal 
priority ranking. The performance of this algorithm has 
been compared with weighted sum genetic algorithm.   
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Table 5. Summary of convergence time for different sizes of random networks. 
 

No. of nodes in the network Time (s) weighted GA Time (s) NSGA-II 

25 1.01 0.44 

50 3.74 1.57 

75 8.47 3.89 

100 14.66 6.98 

125 27.42 14.43 

150 38.65 22.80 

 
 
 

 
 

Figure 11. The effect of network size on convergence time. 

 
 
 

The convergence time increases with increase in the 
size of the multicast group and the size of the networks. 
The experimental study demonstrates that the multi-
objective optimization with the proposed encoding 
scheme is effective in providing faster and guaranteed 
convergence. 
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