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The atmospheric rate of dust fall has been reported to be the pollution indicator of urban area of 
Northwest of Balochistan, Pakistan. The multiplicity and complexity of sources of atmospheric dusts in 
urban regions has put forward the need of distribution of these sources indicating their contribution to 
specific environmental receptor. The present study is focused on investigation of the rate of dust fall in 
Quetta valley. The prediction equations were developed by using auto regressive integrated moving 
average (ARIMA) modeling to forecast the rate of dust fall at three different locations out of selected 
sites in Quetta from 2004 to 2008. Such a study would help us decide about controlling the pollutants 
particularly heavy and toxic metals present in the particulate matters. All the stochastic models have 
been critically analyzed on various climatic parameters and ARIMA model was found a relatively better 
forecaster for the rate of dust fall. 
 
Key words: Particulate matter, heavy metals, auto regressive integrated moving average (ARIMA), Stochasting 
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INTRODUCTION 
 
Quetta valley is about 1650 m above sea level and is 
bounded by the Murdar mountain ranges; Chiltan peak 
almost parallels it by 10 to16 km on the eastwest of the 
valley. Somewhat, farther are the mountain ranges of 
Zarghoon ranges and Takato ranges enclosing the valley 
along the northeast-northwest directions. Quetta is sited 
at 30°12 ′38″N, 67°1 ′ 8″E, having an area of around 2653 
km2 (SMEDA, 2005). Climate of Quetta is cold and dry; 
minimum temperature in winter reaches below freezing 
point while in summer it can reach as high as 40°C.  As 
compared to the rest of Balochistan, Quetta district was 
also affected by drought (2000 to 2004). However, in 
recent years, the rain increased by 105.9 mm which was 
much better in 2005 with 310.5 mm (SMEDA, 2005). 
Mainly, valley landscape has plains. Limestone is the 
major part of the sedimentary rocks around the valley.  
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The population of Quetta was recorded to be 1.5 million 
officially,  yet  unofficially  it  is  claimed  that  it  has  even 
crossed 2.5 million. Rickshaws are the major public 
transport (≥ 5000), besides the local buses and the 
haphazard population of both humans and traffic, and 
lack of planning trigger the pollution from bad to worst 
(Sami, 2009).  

In the present investigation, settling dust particulates 
samples were collected for the period of 5 years (2004 to 
2008) from ten different sites of Quetta city depending 
upon their locations, traffic situation, height, developed 
and underdeveloped areas. The sampling locations have 
been reported previously (Sami et al., 2006, 2011).  

Stochastic time series model such as autoregressive–
moving-average (ARMA) (p,q), non-seasonal auto 
regressive integrated moving average (ARIMA) and 
seasonal ARIMA (SARIMA) models were developed to 
simulate and forecast hourly averaged wind speed 
(HAWS), and average annual and monthly rate of dust 
fall sequences on 5 year data,  that  is,  2004  to  2008  of  



 
 
 
 
Quetta, Pakistan. Stochastic time series models take into 
consideration numerous fundamental features of wind 
rate including autocorrelation, non-Gaussian distribution 
and non-stationary. The positive correlation between 
consecutive wind speed observations is taken into 
account by fitting ARMA process to wind speed data. The 
data are normalized to make their distributions 
approximately Gaussian and standardized to remove 
scattering of transformed data (stationary, that is, without 
chaos). A diurnal variation has been taken into account to 
observe forecasts and its reliance on time. Though, the 
ARMA (p,q) model is suitable for prediction interval and 
probability forecasts; nevertheless this model is only 
suitable for both long ranges (1 to 6 h) and short range (1 
to 2 h). This indicates that forecast values are the 
deciding components for an appropriate wind energy 
conversion system (WECS). ARMA processes cannot be 
applied for non-stationary (chaotic) and random data. 
Non-seasonal ARIMA models and the prediction 
equations for each month and indeed for each season of 
5 meteorological years 2004 to 2008 rate of dust fall data 
is predicted. The SARIMA and its prediction equations for 
each month of 5 years data were also studied. With non-
stationary or chaos in data, stochastic simulator in the 
ARIMA processes even though its prediction equations 
do not effectively work, yet ARIMA is good enough to 
forecast relatively short range reliable values. Various 
statistical techniques are used on 5 years that is, 2004 to 
2008 data of dust fall, average humidity, rainfall, 
maximum and minimum temperatures, respectively. The 
relationships to regression analysis time series (RATS) 
are developed for determining the overall trend of these 
climate parameters on the basis of which forecast models 
can be corrected and modified. Badescu (2001) made 
use of ARIMA models to forecast daily average surface 
pressures. Our study is relevant to him for reasons that 
the surface pressure would certainly affect the dust fall 
rate and indeed the concentration of pollutants at various 
locations. We shall, however, give due considerations of 
this study in later stages while looking into a more 
generalized ARIMA model. However, our SARIMA model 
will take into account such considerations indirectly; 
Badescu (2001) performed the statistical study of 
ambient air pollution in Delhi. A state space model was 
developed by using Kalmin filter formulation for the 
prediction of various pollutants and repairable suspended 
particulate matter. The approach was found quite 
pertinent. They used the auto-regressive (ARX) model 
with exogenous input, which to our analysis are not 
adequate. We discarded ARMA modeling for reasons 
that the dust fall rate and the concentration of various 
pollutants follow random nature or non-stationarity. The 
ARMA modeling could be used only if the data is 
standardized. This unfortunately had not been done by 
Chelani et al. (2001). Instead we developed ARIMA and 
SARIMA models for dust fall rate and indeed their 
forecasters are provided with prediction equations. It  was  
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established by us that the ARIMA and SARIMA models 
could be considered relatively better than artificial neural 
network (ANN) models due to diurnal (seasonal) 
variations. It was taken into account in our studies, the 
diurnal variations by considering interrelationship 
between ARIMA and SARIMA. To our surprise, ARMA 
model did not work for our data, as a consequence of 
which, the ACF would not be considered. The regression 
analysis is, of course important too, but we avoided it 
because there are diverse statistical tests needed to 
support the analysis. Kolehanainen (2000) coined a new 
technique by developing hybrid neural network modeling 
for air quality forecasting. They followed self-organized 
map algorithm (SOM), Sammon’s mapping and fuzzy 
distance metrics. They categorized the clusters of data by 
overlapping multilayer perceptron (MLP) models. 
Needless to mention their work was logically pertinent 
and could be used for our data too. We shall look into 
such kind of models in near future but we are handicap 
due to non-availability of diverse algorithms. Hamdi et al. 
(2008) developed crop evapotranspiration time series 
simulation model by using ARIMA. This reflects the 
strength and validity of ARIMA model in most of the 
reported literature (Othman and Naseri, 2011; Li et al., 
2011; Kamarposhti, 2011).  
 
 
Stochastic time series modeling, simulation and 
prediction 
 
A technique of predicting dust fall yield a few hours 
before, from a dust fall collector with which suspended/-
settled dust fall under ‘g’ (gravity force) is required to 
ensure efficient measures, which might be taken in order 
to avoid its maximum calamity. Time series modeling of 
dust fall has been the subject of much discussion 
because of the interest in its rate of deposition, which 
proves mostly to be catastrophic. When the records of 
dust fall are incomplete or of too short duration or the 
handling and storage of large values of the data are not 
desirable, then a time series model is needed. Since dust 
fall is a manifestation of wind velocity, atmospheric 
pressure, geography and topography of the area, etc., 
generally the simulation is derived from simulations of 
wind speed. Dust fall simulations can be done with Monto 
Carlo techniques that depend upon exclusively on the 
anticipated factors of the trivial distribution of wind 
speeds.  

Aguiar and Collares-Pereira (1992) and Mora-Lopez 
and Sidrach-de-Cardona (1998) made some important 
contributions from modeling and simulation point of view, 
having used stochastic simulation by ARIMA modeling of 
solar irradiation, a time dependent autoregressive 
Gaussian model (TAG) for generating synthetic hourly 
radiation and the multiplicative ARMA models simul-
taneously to generate hourly series of global radiation. An 
ARMA process on hourly global radiation data  was  used 
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by Kamal et al. (1997). Stochasting modeling through 
Markov transition matrix (MTM) was performed by them 
and synthetic sequences of hourly global solar irradiation 
for Quetta, Pakistan were produced as well. Kamal and 
Jafri (1997) found MTM approach relatively better as a 
simulator compared to ARMA modeling. But, their 
analysis for ARMA process to simulate and forecast 
HAWS for Quetta, Pakistan produced good results as 
well. 

Jafri (1996a) found that the hierarchical unsystematic 
procedure is a Markovian random process, which can be 
portrayed by a scaling probability division. A breeding 
function for such a procedure was acquired. Jafri (1996b) 
proved that these observations can be fruitfully applied to 
muddle time series to surmount the non-stationarity in 
ARMA method but it would need practical stochastic 
simulation techniques. Jafri (1996a) recommended that 
the chaotic time series both in Bayesian and non-
Bayesian statistics is deterministic. Jafri (1995) built up a 
first order MTM for non-Gaussian character of wind 
velocity of Quetta for 1985 and suggested a Gaussian 
form of MTM order to produce HAWS series. The similar 
effort was extended more on wind and rate of dust fall 
data for a period of 5 years. Needless to state, the 
simulation of wind data using MTM is rather hard contrast 
to simulation on solar radiation data as was earlier 
considered by Kamal and Jafri (1999). The number of 
iterations went beyond a specific boundary therefore 
causing for HAWS and daily average wind speed 
(DAWS) series to become awkward and entwined. Jafri 
(1995) also established autocorrelation coefficient for 
wind data, which shows stages of determination in wind 
velocity frequencies and of wind velocity enormities when 
compared with diurnal variations over DAWS orders. 

A class of parametric time series models called ARMA 
processes engaged by Blanchard and Desrochers, 
(1984), Box et al. (1976) and Katz and Skaggs (1981) 
worked on such procedures, which have been in use to 
form many meteorological time series. The form of 
Blanchard and Desrochers, (1984) takes into 
consideration elevated autocorrelation and permits a time 
series to be produced which deduces all the main 
distinctiveness of the statistics; and it does not require 
any hypothesis about the wind velocity division. Actually, 
a larger class of seasonal models contains ARIMA 
models and was proved by Blanchard and Desrochers, 
(1984). Sfetsos (2002) studied the linear ARIMA models 
and feed forward artificial neural networks (FFANN). He 
discovered that the model arrangement is chosen from 
the minimization of the assessment set error in the 
ARIMA process. He proposed the multi-step forecasting 
and the consequent averaging to produce mean hourly 
prediction of wind statistics. The ARIMA models have 
been significantly examined by Jain and Lungu (2002). 
They considered equally non- seasonal and seasonal 
ARIMA models by using stochastic parts. The perseve-
rance patterns if any of  the stochastic  components were 

 
 
 
 
also calculated to decide by them. 

The model of Chou and Corotis (1981) is based upon 
Weibull distribution and does not need stationarity in the 
statistics. McWilliams and Sprevak (1982) explained a 
new description of an existing time series modeling 
method of Box et al. (1976) from which the distribution of 
wind velocities and wind directions are obtained by 
McWilliams and Sprevak (1982). Their model 
incorporated diurnal variations observed in wind speed in 
such a manner that the time series of wind speed 
component remain stationary; the sample autocorrelation 
functions for the series have identical stochastic behavior 
as far as the second order statistics are concerned, 
consequently plummeting the problem to modeling single 
Gaussian series. This model is accurate for auto-
correlation functions, to account for diurnal variations. 
There is one point which is clear: transformation of 
HAWS was not used by them. In its place, they measured 
annual deterministic variation µ (t) and σ2 (t) which is 
modeled by harmonic series representation to justify 
diurnal variation of wind velocity. Diurnal variation applied 
by Brown et al. (1984) ought to be engaged in model 
development in a way analogous to McWilliams and 
Sprevak (1982) with reference to our inference. 

The approach of Daniel and Chen (1991) was adopted 
by us which consists of first fitting ARMA processes of 
various orders to HAWS data which have been 
transformed to make their distribution approximately 
Gaussian and standardize to remove the so called diurnal 
stationarity. The main benefit of including more than 1 
year of data in the model development is the increased 
trustworthiness of the estimates of the model parameter. 
The methods of changing and standardization were not 
likened but favored this approach for the grounds that the 
model had the tendency of using wind data of more than 
1 year. 

MINITAB (version 11) for, non-seasonal ARIMA 
modeling and simulation was used by us. ARIMA models 
are used to model a special class of non-stationary 
series. SARIMA models are used to incorporate cyclic 
components in models. In other words, ARIMA models 
are in theory, the most general class of models 
(Parsimonious) for forecasting a time series which can be 
stationarized by transformations such as differencing and 
logging. SARIMA has the same structure as ARIMA. The 
non-seasonal model on monthly and annually averaged 
rate of dust fall data for 2004 to 2008 was used. For non-
seasonal ARIMA modeling and simulation, the six options 
that is, random walk ARIMA (0,1,0), differenced first order 
autoregressive model ARIMA (1,1,0), constant ARIMA 
(0,1,1), linear exponential smoothing (LES) without 
constant ARIMA (0,2,1) or (0,2,2) and mixed ARIMA 
(1,1,1) are tried for each month and on four seasons. 
Non-seasonal ARIMA (0,1,1) which deals with 
exponential growth and constant incorporates simple 
exponential smoothing (SES) model. MA (1) coefficients 
correspond to 1-α in the SES formula. The term α is called 



 
 
 
 
called training parameter. For LES without constant, MA 
(1) coefficient corresponds to 2α. The greatest choice is 
chosen by bearing in mind the mainly minimum chi- 
squared value at 5% confidence gap. 
 
 
Theory 
 
ARIMA models are used to model a special class of non-
stationary series. SARIMA model are used to incorporate 
cyclic components in models. We can split the time series 
into deterministic and stochastic components. The 
proportion of variance for each component can be 
modeled through Monto Carlo simulations. The stochastic 
component can be analyzed for persistence in time series 
by using Box et al. (1976). 

The general non-seasonal ARIMA model is auto-
=regressive to order p and moving average to order q , 
and operator on the dth differences of Zt, where {Zt} are 
time series values for t = 1,2,…, N and N is number of 
observations. Defining 
 

Bs Zt= Zt-s , s = (1-Bs),  = (1-Bs)d           (1) 
 
where d = 0,1,…, B is the backward shift operator, s is 
the period of the season (s = 12 in our present case for 
each month) and is the difference operator. The 
general non-seasonal ARIMA model can be written as: 
 
Φp (B) Zt= θq (B) at                (2) 
 
where { at} are residuals, and  
 
Φp (B) =1 - Φ1 B – Φ2 B

2 - ,…,- Φp B
p                      (3) 

 
θq (B) = 1- θ1B- θ2 B

2 - ,…,- θq B
q                                         (4) 

 
where p and q are the order of polynomials respectively. 
The error ‘e’ in our prediction equation is adjustable 
automatically with lead times, t.  

Time series prediction with harmonic analysis can also 
be accomplished in the similar fashion of and Lungu, 
(2002). Theories on RATS have long been established by 
Gujarati (2003), Chapra and Canale (2010) and Rawlings 
et al. (1998). 

We considered locations such as Gawalmandi and T.B. 
Sanatorium on the basis of optimum dust fall rate, that is, 
the most maximum in Gawalmandi and the second most 
minimum in the T.B. Sanatorium. To reflect the statistical 
variations in between the optimum values, we considered 
a third location C.G.S. Colony, which will provide 
statistical variations with respect to mean values of the 
optimum dust fall rate. Table 1 for non-seasonal ARIMA 
is shown on the basis of categorization for seasons such 
as the spring  of  Quetta,  which  comprises  of  February, 
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March and April, and so is the case for other seasons, for 
Gawalmandi, T.B. Sanatorium and C.G.S. Colony, 
respecttively. Each table for different locations for each 
month of the season for (Tables 1 to 12) non-seasonal 
ARIMA provides prediction equations obtained for each 
month of the season from ARIMA model, which is 
beneficial to predict the dust fall rate for larger as well as 
shorter lead times. 
 
 
Derived statistical equations/results 
 
We inferred from the statistical non-seasonal ARIMA 
modeling equations of our maximum dust fall receiving 
site ‘Gawalmandi’ for spring [February (1,1,1) yields 
x(t)=a+x(t-1)+Ф{x(t-1)- x(t-2)}- θe(t-1), March (1,1,1) 
yields x(t)=a+ x(t-1)+Ф{x(t-1)- x(t-2)}- θe(t-1) and April 
(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1)-x(t-2)}-θe(t-1)]; 
summer [May (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-
2)}, June (1,1,1) yields x(t)=a+ x(t-1)+Ф{x(t-1)- x(t-2)} and 
July (1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1)-x(t-2)}-θe(t-1)]; 
autumn [August (1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1)-x(t-
2)}-θe(t-1), September (1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-
1)- x(t-2)}- θe(t-1) and October (1,1,1) yields x(t)=a+ x(t-
1)+Ф{x(t-1)-x(t-2)}-θe(t-1))]; winter are [November (1,1,1) 
yields x(t)=a+x(t-1)+Ф{x(t-1)-x(t-2)}, December (1,1,1) 
yields x(t)=a+x(t-1)+Ф{x(t-1)-x(t-2)}-θe(t-1) and January 
(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1)-x(t-2)}-θe(t-1)]. 

Similarly, the statistical modeling ARIMA equations of 
our second minimum dust fall receiving site ‘T.B. 
Sanatorium’ for spring [February (1,1,1) yields x(t)=a+x(t-
1)+Ф{x(t-1)–x(t-2)} –θe(t-1), March (1,1,0) yields 
x(t)=a+x(t-1)+Ф{x(t-1)–x(t-2)} and April (1,1,1) yields 
x(t)=a+x(t-1)+Ф{x(t-1)–x(t-2)}–θe(t-1)]; summer [May 
(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1)–x(t-2)}–θe(t-1), June 
(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) and 
July (1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1)–x(t-2)}–θe(t-1)]; 
autumn [August (1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-
2)}–θe(t-1), September (1,1,0) yields x(t)=a+x(t-1)+Ф{x(t-
1)–x(t-2)} and October (1,1,0) yields x(t)=a+x(t-1)+Ф{x(t-
1)–x(t-2)}]; winter are [November (1,1,1) yields x(t)=a+x(t-
1)+Ф{x(t-1)–x(t-2)}–θe(t-1), December (1,1,1) yields 
x(t)=a+x(t-1)+Ф{x(t-1)–x(t-2)}–θe(t-1) and January 
x(t)=a+x(t-1)+Ф{x(t-1)–x(t-2)}] 

Finally, the statistical modeling ARIMA equations of our 
moderate (in a comparative with other sites of the Quetta 
city though it received very huge amount of average rate 
of dust fall including most of cities of the world) dust fall 
receiving site ‘C.G.S. Colony’ for spring [February 
x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-θe(t-1), March x(t)=a+x(t-
1)+Ф(x(t-1)-x(t-2))-θe(t-1) and April x(t)=a+x(t-1)+Ф(x(t-1)-
x(t-2))-θe(t-1)]; summer [May x(t)=a+x(t-1)-θe(t-1), June 
x(t) =a+x(t-1)+Ф(x(t-1)-x(t-2) and July x(t)=a+x(t-1)+Ф(x(t-
1)-x(t-2))-θe(t-1)]; autumn [August x(t)=a+x(t-1)+Ф(x(t-1)-
x(t-2))-θe(t-1), September x(t) =a+x(t-1)+Ф(x(t-1)-x(t-2) 
and October x(t)=a+x(t-1)-θe(t-1)]; winter are [November 
x(t) =a+x(t-1)+Ф(x(t-1)-x(t-2), December  x(t)=a+x(t-1)+Ф(  

∇
d

s∇

∇
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Table 1. ARIMA Gawalmandi (spring). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

February 

(0,1,0) - - - - - 
(1,1,0) 11.4 11 -0.8939 - -0.2319 
(0,1,1) 112.5 11 - 0.9360 -0.0376 
(1,1,1) 9.5 10 -0.7304 .9082 -0.0459 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 

March 

(0,1,0) - - - - - 
(1,1,0) 14.8 11 -0.9959 - -0.0180 
(0,1,1) 167.5 11 - 0.9408 -0.00698 
(1,1,1) 5.8 10 -0.9283 0.9629 -0.00668 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 

April 

(0,1,0) - - - - - 
(1,1,0) 4.4 11 - - 2.016 
(0,1,1) 6.1 11 -0.3236 0.2552 1.439 
(1,1,1) 3.3 10 -1.0054 -0.8638 3.324 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 
 
 

Table 2. ARIMA Gawalmandi (summer). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

May 

(0,1,0) - - - - - 
(1,1,0) 9.7 11 -0.2623 - 0.531 
(0,1,1) 18.2 11 - 0.9852 0.1252 
(1,1,1) 9.8 10 0.2470 1.0576 -0.0870 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)} 
 

June 

(0,1,0) - - - - - 
(1,1,0) 17.1 11 -0.9977 - -0.001 
(0,1,1) 127.2 11 - 0.9549 0.00405 
(1,1,1) - - - - - 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)} 
 

July 

(0,1,0) - - - - - 
(1,1,0) 28.2 11 -0.9232 - -0.2403 
(0,1,1) 129.7 11 - 0.9446 -0.0413 
(1,1,1) 11.4 10 -0.8417 0.9095 -0.0503 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 
 
 
x(t-1)-x(t-2))-θe(t-1) and January x(t)=a+x(t-1)+Ф(x(t-1)-
x(t-2))-θe(t-1)] 
 
 
CONCLUSIONS AND SUGGESTIONS 
 
(1) The area under present study is one of the cities of 
globe having very high level of lead (Pb) in its suffocating 
atmosphere.   The   major  contributors  of  pollutants  are 

automobiles running on Pb contaminated fuel/gas, a 
large part of which is adulterated before its distribution in 
order to gain more and more profit.  
2) Due to scarcity of industries, luckily the concentrations 
of other heavy and toxic elements in air were not on an 
alarming level. That is why the phenomenon of 
photochemical smog has not been experienced so far. 
Though, the occurrence of thermal inversion spells, 
Quetta has been  completed  wrapped/blanketed  in  dust 
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Table 3. ARIMA Gawalmandi (autumn). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

August 

(0,1,0) - - - - - 
(1,1,0) 0.4 11 -1.000 - -3.237 
(0,1,1) 1.4 11 -1.009 0.8981 -0.5870 
(1,1,1) 0.1 10 - -0.0325 -3.223 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 

September 

(0,1,0) - - - - - 
(1,1,0) 22.7 11 -0.9579 - -0.0075 
(0,1,1) 146.1 11 - 0.9373 -0.0141 
(1,1,1) 16.6 10 -0.9430 1.0574 0.0072 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 

October 

(0,1,0) - - - - - 
(1,1,0) 10.1 11 -0.4231 - 0.762 
(0,1,1) 10.0 11 - 0.4519 0.437 
(1,1,1) 6.8 10 -0.9981 -0.8879 1.049 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 
 
 

Table 4. ARIMA Gawalmandi (winter). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

November 

(0,1,0) - - - - - 
(1,1,0) 6.0 11 0.0695 - 0.316 
(0,1,1) 6.1 11 - 0.0663 0.333 
(1,1,1) 6.5 10 0.2787 0.2068 0.253 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)} 
 

December 

(0,1,0) - - - - - 
(1,1,0) 55.1 11 -0.9413 - -0.5028 
(0,1,1) 158.0 11 - 0.9409 -0.0067 
(1,1,1) 45.1 10 -0.8374 0.9419 0.0027 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 

January 

(0,1,0) - - - - - 
(1,1,0) 20.0 11 -0.9988 - -0.001 
(0,1,1) 116.9 11 - 0.9332 -0.0193 
(1,1,1) 16.1 10 -0.9595 1.0206 0.245 

Prediction equation for ARIMA (1,1,1) yields x(t)=a+ x(t-1)+ Ф{x(t-1)- x(t-2)}- θe(t-1) 
 
 
 
cloud time and again continuously for three to four days 
which, of course, triggered the particulates associated 
diseases (for instance, asthma, bronchitis, blood 
pressure, nuisance causing depression and anxiety etc).  
(3) Statistical non-seasonal ARIMA modeling reflects that 
our ARIMA and the prediction equations, which we deve-
loped, are beneficial to look into design and engineering 
consideration to make environment of Quetta clean from 
dust fall rate. With these predictions equations,  we  could 

suggest remedial solutions to minimize the dust fall and 
indeed to make our environment clean by evolving 
natural eco system. 
(4) The prediction equations for dust fall rate for each 
month categorized with respect to seasons, for non-
seasonal ARIMA are given in their corresponding tables.  
(5) Above all, a sense of ownership should be cultivated 
in the hearts and minds of the sons of the soil by 
emancipating them politically, economically and,  last  but
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Table 5. ARIMA T.B. Sanatorium (spring). 
 

Month ARIMA(p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

February 

(0,1,0) - - - - - 
(1,1,0) 10.8 11 -0.9589 - -0.1864 
(0,1,1) 145.6 11 - 0.9457 -0.0361 
(1,1,1) 9.3 10 -0.8623 0.9169 -0.2331 

Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
 

March 

(0,1,0) - - - - - 
(1,1,0) 8.1 11 -0.7167 - -0.227 
(0,1,1) 29.8 11 - 0.9819 -0.1933 
(1,1,1) 9.2 10 -0.3349 0.9662 -0.2152 

Prediction equation for ARIMA(1,1,0) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} 
 

April 

(0,1,0) - - - - - 
(1,1,0) 10.1 11 -.2068 - 2,431 
(0,1,1) 12.2 11 - .1736 1.967 
(1,1,1) 3.2 10 -1.0009 -.9839 4.954 

Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
 
 
 

Table 6. ARIMA T.B. Sanatorium (summer). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

May 

(0,1,0) - - - - - 
(1,1,0) 22.4 11 -0.3259 - 0.991 
(0,1,1) 14 11 - 0.9467 0.0329 
(1,1,1) 13.3 10 0.0547 0.9682 0.0179 

Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
 

June 

(0,1,0) - - - - - 
(1,1,0) 15.7 11 0.9978 - -0.0002 
(0,1,1) 277.6 11 - 0.9525 -0.0212 
(1,1,1) 6.6 9 -0.9774 1.0138 -0.2010 

Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
 

July 

(0,1,0) - - - - - 
(1,1,0) 15.7 11 -0.9978 - -0.0002 
(0,1,1) 227.6 11 - 0.9525 -0.0212 
(1,1,1) 6.6 10 -0.9774 1.0138 -0.0106 

Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
 
 
 

Table 7. ARIMA T.B. Sanatorium (autumn). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

August 
(0,1,0) - - - - - 
(1,1,0) 14.9 11 -0.9737 - -0.0927 
(0,1,1) 152.0 11 - 0.9672 -0.01507 

 (1,1,1) 11.3 10 -0.9745 0.5331 -0.0414 
Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
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Table 7. Contd 
 

September 

(0,1,0) - - - - - 
(1,1,0) 39.4 11 -0.9958 - -.003 
(0,1,1) 198.2 11 - 0.9505 -0.0071 
(1,1,1) - - - - - 

Prediction equation for ARIMA(1,1,0) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} 
 

October 

(0,1,0) - - - - - 
(1,1,0) 6.9 11 -0.6200 - 0.87 
(0,1,1) 14.6 11 - 0.6243 1.89 
(1,1,1) 8.5 10 -0.4879 0.2264 0.82 

Prediction equation for ARIMA(1,1,0) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} 
 
 
 

Table 8. ARIMA T.B. Sanatorium (winter). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

November 

(0,1,0) - - - - - 
(1,1,0) 4.5 11 0.1147 - 0.684 
(0,1,1) 4.6 11 - -0.1049 0.771 
(1,1,1) 4.5 10 0.1351 0.0206 0.668 

Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
 

December 

(0,1,0) - - - - - 
(1,1,0) 9.4 11 -0.6817 - 0.0697 
(0,1,1) 10.5 11 - 0.9975 0.01124 
(1,1,1) 7.0 10 0.2424 0.9605 -0.0247 

Prediction equation for ARIMA(1,1,1) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} –θe(t-1) 
 

January 

(0,1,0) - - - - - 
      

(1,1,0) 
23.6 11 -0.9966 - 0.0278 
28.3 23 - - - 

      

(0,1,1) 
164.4 11 - -0.9950 -0.0144 
274.5 23 - - - 

      

(1,1,1) 
26.8 10 -0.9589 0.9513 -0.00411 
31.2 22 - - - 

Prediction equation for ARIMA(1,1,0) yields x(t)=a+x(t-1)+Ф{x(t-1) – x(t-2)} 
 
 
 

Table 9. ARIMA CGS Colony (spring). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1)Φ MA (1) Θ Constant (a) 

February 

(0,1,0) - - - - - 
(1,1,0) 3.9 11 -0.5163 - -0.298 
(0,1,1) 111.9 11 - 0.9490 0.4492 
(1,1,1) 2.1 10 -0.0952 0.9451 0.5138 

The prediction equation for non-seasonal ARIMA (1,1,1) yields x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-θe(t-1) 
where a is constant, e is the error at period (t-1), Ф=AR(1) and θ=MA(1) 

 
 



684          Int. J. Phys. Sci. 
 
 
 

Table 9. Cont’d 
 

March 

(0,1,0) - - - - - 
(1,1,0) 8.7 11 -0.9355 - -0.2360 
(0,1,1) 121.1 11 - 0.9491 -0.0375 
(1,1,1) 2.8 10 -0.8315 0.8979 -0.02664 

The prediction equation for non-seasonal ARIMA (1,1,1) yields x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-θe(t-1) 
where a is constant, e is the error at period (t-1), Ф=AR(1) and θ=MA(1) 
 

April 

(0,1,0) - - - - - 
(1,1,0) 6.0 11 -0.3438 - 2.078 
(0,1,1) 9.0 11 - 0.2812 1.436 
(1,1,1) 3.9 10 -0.10005 -1.0180 5.143 

The prediction equation for non-seasonal ARIMA (1,1,1) yields x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-θe(t-1) 
where a is constant, e is the error at period (t-1), Ф=AR(1) and θ=MA(1) 

 
 
 

Table 10. ARIMA CGS Colony (summer). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

May 

(0,1,0) - - - - - 
(1,1,0) 17.9 11 -0.3328 - 1.504 
(0,1,1) 9.6 11 - 0.9817 0.2541 
(1,1,1) 11.6 10 -0.1476 0.9721 0.4379 

The prediction equation for non-seasonal ARIMA (0,1,1) yields x(t)=a+x(t-1)-θe(t-1) where a is 
constant, e is the error at period (t-1)and θ=MA(1) 

 

June 

(0,1,0) - - - - - 
(1,1,0) 48.5 11 -0.9601 - -0.0427 
(0,1,1) 185.0 11 - 0.9549 -0.195 
(1,1,1) Not working - - - - 

The prediction equation for non-seasonal ARIMA(1,1,0) yields x(t) =a+x(t-1)+Ф(x(t-1)-x(t-2) 
where a is constant and Ф=AR(1) 

 

July 

(0,1,0) - - - - - 
(1,1,0) 13.3 11 -0.9187 - -0.0429 
(0,1,1) 138.3 11 - 0.9844 -0.02995 
(1,1,1) 7.2 10 -0.8464 0.9538 -0.02241 

The prediction equation for non-seasonal ARIMA (1,1,1) yields  x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-
θe(t-1) where a is constant, e is the error at period (t-1), Ф=AR(1) and θ=MA(1) 

 
 
 

Table 11. ARIMA CGS Colony (autumn). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

August 

(0,1,0) - - - - - 
(1,1,0) 47.7 11 -0.9345 - -0.1356 
(0,1,1) 129.6 11 - 0.9852 -0.05185 
(1,1,1) 20.5 10 -0.8327 .9324 -0.0185 

The prediction equation for non-seasonal ARIMA (1,1,1) yields  x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-θe(t-1) 
where a is constant, e is the error at period (t-1), Ф=AR(1) and θ=MA(1) 
 

September 
(0,1,0) - - - - - 
(1,1,0) 10.7 11 -0.9961 - -0.0002 
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Table 11. Cont’d 
 

 
(0,1,1) 167.2 11 - 0.0692 0.0492 
(1,1,1) Not working - - - - 

The prediction equation for non-seasonal ARIMA(1,1,0) yields x(t) =a+x(t-1)+Ф(x(t-1)-x(t-2) where a 
is constant and Ф=AR(1) 
 

October 

(0,1,0) - - - - - 
(1,1,0) 11.1 11 -0.4207 - 0.548 
(0,1,1) 8.0 11 - 0.5835 0.3576 
(1,1,1) 9.3 10 0.3272 -.9827 0.0341 

The prediction equation for non-seasonal ARIMA (0,1,1) yields x(t)=a+x(t-1)-θe(t-1) where a is 
constant, e is the error at period (t-1)and θ=MA(1) 

 
 
 

Table 12. ARIMA CGS Colony (winter). 
 

Month ARIMA (p.d.q.) χχχχ2
0.05 d.f AR (1) Φ MA (1) Θ Constant (a) 

November 

(0,1,0) - - - - - 
(1,1,0) 5.7 11 0.0074 - -7.63 
(0,1,1) 5.7 11 - -0.0074 -7.69 
(1,1,1) 5.8 10 -0.9358 -1.0248 -0.2979 

The prediction equation for non-seasonal ARIMA(1,1,0) yields x(t) =a+x(t-1)+Ф(x(t-1)-x(t-2) 
where a is constant and Ф=AR(1) 
 

December 

(0,1,0) - - - - - 
(1,1,0) 40.0 11 -0.9600 - -0.1570 
(0,1,1) 94.2 11 - 1.055 -0.0818 
(1,1,1) 11.5 10 -0.8360 0.9141 0.0386 

The prediction equation for non-seasonal ARIMA (1,1,1) yields  x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-
θe(t-1) where a is constant, e is the error at period (t-1), Ф=AR(1) and θ=MA(1) 
 

January 

(0,1,0) - - - - - 
(1,1,0) 21.7 11 -0.9336 - -0.2413 
(0,1,1) 99.8 11 - 0.9427 -0.0421 
(1,1,1) 8.5 10 -0.7906 -0.9047 -.03788 

The prediction equation for non-seasonal ARIMA (1,1,1) yields x(t)=a+x(t-1)+Ф(x(t-1)-x(t-2))-θe(t-
1) where a is constant, e is the error at period (t-1), Ф=AR(1) and θ=MA(1) 

 
 
 
not least, linguistically and culturally. So that they may 
get on board and ultimately could counter the corruption 
eventually to make the environment of their city peaceful, 
clean and tranquilizing.  
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