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The modeling of wave propagation in microstructure materials should be able to account for the 
various scales of microstructure. In this paper, the extended trial equation method was modified to 
construct the traveling wave solutions of the strain wave equation in microstructure solid. Some new 
different kinds of traveling wave solutions was gotten as, hyperbolic functions, trigonometric functions, 
Jacobi  elliptic  functions and rational functional solutions for the  nonlinear strain wave equation when 
the balance number is positive integer. The balance number of this method is not constant and changes 
by changing the trial equation. These methods allow us to obtain many types of the exact solutions. By 
using the Maple software package, it was noticed that all the solutions obtained satisfy the original 
nonlinear strain wave equation. 
 
Key words: Strain wave equation, extended trial equation method, exact solutions, balance number, soliton 
solutions, Jacobi elliptic functions.  

 
 
INTRODUCTION 
 
Nonlinear evolution equations (NLEEs) are very 
important model equations in mathematical physics and 
engineering for describing diverse types of physical 
mechanisms of natural phenomena in the field of applied 
sciences and engineering. The search for exact traveling 
wave solutions to nonlinear evaluation equations plays 
very important role in the study of these physical 
phenomena. In recent years, the exact solutions of 
nonlinear partial differential equation have been 
investigated by many authors (Ablowitz and Clarkson, 
1991; Rogers and Shadwick,  1982;  Matveev  and  Salle, 

1991; Li and Chen, 2003; Conte and Musette, 1992; 
Ebaid and Aly, 2012; Gepreel, 2014; Cariello and Tabor, 
1991; Fan, 2000; Fan, 2002; Wang and Li, 2005; Abdou, 
2007; Wu and He, 2006; Wu and He, 2008; Li and Wang, 
2007; Zheng, 2012; Triki and Wazwaz, 2014; Bibi and 
Mohyud-Din, 2014; Yu-Bin and Chao, 2009; Zayed and 
Gepreel, 2009; He, 2006; Gepreel, 2011; Adomian, 1988; 
Wazwaz, 2007; Liao, 2010; Gepreel and Mohamed, 
2013; Wang et al., 2008; Yan, 2003a) who are interested 
in nonlinear physical phenomena. Many powerful 
methods have been  presented  by  authors  such  as  the
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inverse scattering transform (Ablowitz and Clarkson, 
1991), the Backlund transform (Rogers and Shadwick, 
1982), Darboux transform (Matveev and Salle, 1991), the 
generalized Riccati equation (Li and Chen, 2003; Conte 
and Musette, 1992), the Jacobi elliptic function expansion 
method (Ebaid and Aly, 2012; Gepreel, 2014), Painlev´e 
expansions method (Cariello and Tabor, 1991), the 
extended Tang-function method (Fan, 2000; Fan, 2002), 
the F-expansion method (Wang and Li, 2005; Abdou, 
2007), the ex-function expansion method (Wu and He, 
2006; 2008), the sub-ODE method (Li and Wang, 2007; 
Zheng, 2012), the extended sinh-cos and sine-cosine 
methods (Triki and Wazwaz, 2014; Bibi and Mohyud-Din, 
2014), the (G´/G) -expansion method (Yu-Bin and Chao, 
2009; Zayed and Gepreel, 2009), etc. Also, there are 
many methods for finding the analytic approximate 
solutions for nonlinear partial differential equations such 
as the homotopy perturbation method (He, 2006; 
Gepreel, 2011), a domain decomposition method 
(Adomian, 1988), variation iteration (Wazwaz, 2007) and 
homotopy analysis method (Liao, 2010; Gepreel and 
Mohamed, 2013). There are many other methods for 
solving the nonlinear partial differential equations (Wang 
et al., 2008; Yan, 2003a; 2003b; 2008; 2009; Zayed and 
Al-Joudi, 2009; Zayed, 2009; Zhang, 2009; Jang, 2009). 
Bulut et al. (2013); Bulut and Pandir (2013) and 
Baskonus et al. (2014) have used the modified trial 
equation method to find some new exact solutions for 
nonlinear evolution equations in mathematical physics. 

Recently, Gurefe et al. (2013) have presented a direct 
method, namely, the extended trial equation method for 
solving the nonlinear partial differential equations. 
Demiray et al. (2016; 2015a; 2015b); Demiray and Bulut 
(2015) and Bulut et al. (2014) have successively applied 
the extended trial method for solving the nonlinear partial 
differential equations. The governing nonlinear equation 
of the strain waves in microstructure solid is given by 
(Alam et al., 2014; Samsonov, 2001): 
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where   accounts for elastic strains,   characterizes 

the ratio between the microstructure size and the 
wavelength,   characterizes the influence of dissipation 

and )6,..,1( ii  are constants. The balance between 

nonlinearity and dispersion takes place when 

)( O . If 0  is set, then we have the non-

dissipative case and governed by the double dispersive 
Equation 45 and 46 as follows: 
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Previous models were derived using the assumption of 
the homogeneity of microstructure. This is the case for 
the example of functionally graded materials which are 
made up of two or more material combined in solid state 
(Mahamood et al., 2012; Birman and Byrd, 2007). The 
main objective of this paper is to use the modified 
extended trial equation method to find a series of new 
analytical solutions to the strain wave Equation 2 for 
many different type of the roots of the trial equation. 
 
 
DESCRIPTION OF THE EXTENDED TRIAL EQUATION METHOD 
 
Suppose we have a nonlinear partial differential equation in the 
following form: 
 

,0,.....),,,,,( xxxtttxt uuuuuuF
                              (3) 

 

where ),( txuu  is an unknown function, F is a polynomial in  

),( txuu   and its partial derivatives, in which the highest order 

derivatives and nonlinear terms are involved. Let us now give the 
main steps for solving equation (3) using the extended trial equation 
method as (Gurefe et al., 2013; Demiray et al., 2016; 2015a; 2015b; 
Demiray and Bulut, 2015; Bulut et al., 2014; Ekici et al., 2013): 
 
Step 1.  The traveling wave variable: 
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where V is a nonzero constant, Equation 4 permits reducing 

equation (3) to the following ODE: 
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where  P   is a polynomial of  )(u   and its total derivatives. 

 

Step 2. Suppose the solution of Equation 5 takes the form: 
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where  )(Y   satisfies the following nonlinear trial differential 

equation: 
 

,
...

...

)(

)(
)()(

01
1

1

01
1

12

































YYY

YYY

Y

Y
YY          (7) 

 

where  ji  ,   are constants to be determined later. Using 

Equations 6 and 7, we have 
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where  )(),( YY   are polynomials in  .Y  
 
Step 3.  Balancing the highest order derivative with the nonlinear 

terms, we can find the relations between   ,1   and  .  We can 

calculate some values of  ,1  and .  

 
Step 4. Substituting Equations 6 to 8 into Equation 5 yields a 

polynomial  )(y   of  )(Y   as follows: 
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Step 5. Setting the coefficients of this polynomial )(y  to be zero, 

we yield a set of algebraic equations: 
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Solve this system of algebraic equations to determine the values of  
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Step 6. Reduce Equation 7 to the elementary integral form: 
 

.
)(

)(

)(
)( 0 dY

Y

Y

y

dY







                                    (11) 

 

where 0  is an arbitrary constant. Using a complete discrimination 

system for the polynomial to classify the roots of  ),(Y we 

solve Equation 11 with the help of software package such as Maple 
or Mathematica and classify the exact solutions to Equation 5. In 
addition, we can write the exact traveling wave solutions to 
Equation 3, respectively. 
 
Remark 1. The difference between the modified trial expansion 
method, extended trial expansion method and modified extended 
trial method: 

 
(i) In the modified trial method, the trial equation is taking the 
following form: 
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and the reduced elementary integral takes the following form: 
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(ii) In the extended trial method, the trial equation is taking the 
following form: 
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and the reduced elementary integral takes the following form: 
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(iii)  In the modified extended trial expansion method, it seems to 
the reader as extended trial expansion method. But in the extended 
trial equation, there is no connection between the roots of the right 

side of Equation 11 i  and the coefficients of the solutions i   

and i . Many papers have used the extended trial equation without 

making the connection between the root i  and the coefficients of 

the solutions i  and i . So all the solutions in these papers does 

not satisfy the original equations. Then,  this response was 
searched for, the authors which used the extended trial equation 
must be related between the roots of right side of Equation 11 and 

the solution coefficients i  and the trial equation coefficients i . 

For this, we call the modified extended trial expansion method. 
 
 
MODIFIED EXTENDED TRIAL EQUATION METHOD FOR THE 
STRAIN WAVE EQUATION 
 
Here, the modified extended trial equation method was used to find 
the traveling wave solutions to the following nonlinear strain wave 
differential equation: 
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Porubov and Pastrone (2004) studied the propagation and 
attenuation or amplification of bell-shaped and kink-shaped waves, 
whose parameters are defined in an explicit form through the 
parameters of the microstructured medium. Also, Alam et al. (2014) 
used the generalized (G′/G)-expansion method to find an exact 
traveling wave solution of nonlinear strain wave differential 
equation. The traveling wave variable: 
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where V is the speed of the traveling wave, permitting us to 

convert Equation 16 into the following ODE: 
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Integrating Equation 18 twice with respect to  , we have: 
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where k  is the integral constant. We suppose the traveling wave 

solution of the Equation 19 into the following form: 
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where  Y  satisfies  Equation  7 and  1   is  an   arbitrary   positive  
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integer. Balancing the highest order derivative u   with the 

nonlinear term 
2u  in Equation 19, we have: 

 

21   .                                                                        (21)  

 
Equation 21 has infinitely many solutions, consequently, we 
suppose some of these solutions as the following cases. 
 

Case 1. In the special case, if 0  and 3 , we get 

,11   then Equations 6 to 11 lead to: 
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Substituting equations (22) into Equation 19 we get a system of 
algebraic equations which can be solved by using the Maple 
software package to obtain the following results: 
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where  300 ,,    and  0   are arbitrary constants. Substituting 

Equation 5 into Equations 7 and 9, we have 
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L .  Now we will discuss the roots of the following 

equation: 
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to integrate Equation 24 as the following families: 
 

Family 1. If Equation 25 has three equal repeated roots 1 , 

consequently we can write Equation 25 in the following form: 
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From equating the coefficients of Y to both sides of Equation 26, 
we get a system of algebraic equations: 
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We use the Maple software package to solve the system (equation 

27) in 300 ,,, k , 0  and 1 .  We get the following results:  
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Equations (27), (23) and (24) lead to: 
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where 0  is  an arbitrary constant and 
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Substituting Equations 30, 28 and 27 into Equation 22, we get the 
traveling wave solution of nonlinear strain wave Equation 16 takes 
the following form: 
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Family 2. If  Equation 25 has two equal repeated roots 1  and the 

third root is 2  and 21   , consequently we can write 

Equation 25 in the following form: 
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From equating the coefficients of Y to both sides of Equation 32, 

we get a system of algebraic equations in 300 ,,, k and 0  

which can be solved by using the Maple software package to get 
the following results: 
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Equations 33, 23 and 24 lead to: 
 

,
2

)(3
,)2(,)2(

1

3
2

4
1321232111









V     (34) 

 

where 3   is an arbitrary constant. In this family, the solution of 

Equation 24, when 12    takes the following form: 
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Substituting Equations 36, 34 and 33 into Equation 22, we get the 
traveling wave solution of nonlinear strain wave Equation 16 taking 
the form: 
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Also when 21   , the solution of Equation 24 has the form: 
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Substituting Equations 38, 34 and 33 into Equation 22, we get the 
traveling wave solution of nonlinear strain wave Equation 16 takes 
the form: 
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Family 3. If Equation 25 has three different roots 1 , 2
 

and 3 , ,321   consequently we can write Equation 25 

in the following form: 
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From equating the coefficients of Y to both sides of Equation 40, 

we get a system of algebraic equations in 300 ,,, k   and 0  

which can be solved by using the Maple software package to get 
the following results: 
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Equations 41, 23 and 24 lead to: 
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where 3   is an arbitrary constant. In this family, the solution of 

Equation 24 has the form: 
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Substituting Equations 44, 42 and 41 into Equation 22, we get the 
traveling wave solution of nonlinear strain wave Equation 16 takes 
the form: 
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The behavior of the exact Solution 45 has been illustrated in 

Figure 1. 

Family 4. If Equation 25 has one real roots 1  and two imaginary 

roots ,212 NiN  213 NiN  , where
1N ,

2N  are 

real numbers, consequently we can write Equation 25 in the 
following form: 
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Figure 1. The traveling wave solution Equation 45 and its projection at 0t  when the parameters take 

special values ,2,5.1,1,5 1321   ,33  5.2,2,14   V
 
and .50   
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From equating the coefficients of Y to both sides of Equation 46, 

we get a system of algebraic equations in 300 ,,, k  and 0  

which can be solved by using the Maple software package to get 
the following results: 
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Equations 47, 28 and 24 lead to: 
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where 3  is an arbitrary constant.  In this family, the integration of 

Equation 24 takes the following form: 
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Substituting Equations 50, 48 and 47 into Equation 22, we get the 
traveling wave solution of nonlinear strain wave Equation 16 has 
the form: 
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The behavior of the exact Solution 51 has been illustrated in 

Figure 2. 

Case 2. In the special case, if   0   and 4 ,  we get  2 , 

then Equations 6 to 11 lead to: 
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Substituting Equation 51 into Equation 19, we get a system of 
algebraic equations which can be solved to obtain the following 
results: 
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where  1040 ,,,    and  2   are arbitrary constants.  

Substituting Equation 53 into Equations 7 and 11, we have: 
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equation: 
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Figure 2.  The real part of the traveling wave solution (Equation 51) and its projection at  0t  when the parameters take 

special values ,25.0,5.0,2 211  NN   
,5.21 
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To integrate Equation 54, we discuss the roots of Equation 55 as 
the following families: 
 

Family 5. If Equation 55 has four equal repeated roots 1 , 

consequently we can write the Equation 55 in the following form: 
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From equating the coefficients of Y to both sides of Equation 56, 

we get a system of algebraic equations in 1040 ,,,   and 2 ,  

which can be solved by using the Maple software package to get 
the following results: 
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Equations 57, 53 and 54 lead to: 
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where 4  is an arbitrary constant and 
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Substituting Equations 60, 58 and 57 into Equation 52, we get the 
traveling wave solution of nonlinear strain wave Equation 16 taking 
the following form: 
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The behavior of the exact Solution 61 has been illustrated in 

Figure 3 

Family 6. If the Equation 55 has two equal repeated roots 1  and 

2 , 
21   consequently we can write Equation 55 in the 

following form: 
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From equating the coefficients of Y to both sides of Equation (62), 

we get a system of algebraic equations in 1040 ,,,   and 2  

which can be solved by using the Maple software package to get 
the following results: 
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Equations 63, 53 and 54 lead to: 
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Figure 3. The traveling wave solution (Equation 61) for nonlinear strain wave Equation (Equation 16) when 

5.2,2,1,3,2,5.1 4311   V and .10 
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where 4  is an arbitrary constant and 
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Substituting Equations 66, 64 and 63 into Equation 52, we get the 
traveling wave solution of the strain wave Equation 16 takes the 
form: 
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The behavior of the exact Solution 67 has been illustrated in 
Figure 4. 

Family 7. If Equation 55 has four different roots 1 , 2 , 3  and 

4 , consequently we can write Equation 55 in the following form: 
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From equating the coefficients of Y to both sides of Equation 68, 

we get a system of algebraic equations in 1040 ,,,   and 2  

which can be solved by using the Maple software package to get 
the following results: 
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Equations 69, 53 and 54 lead to: 
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where 4   is an arbitrary constant and 
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Figure 4. The traveling wave solution (Equation 67) for nonlinear strain wave Equation (Equation 16) at 

5.2,5.0,6,3,2,5,9.0 43121   V and .3.00   

 
 
 
Substituting Equations 72, 70 and 69 into Equation 52, we get the 
traveling wave solution of nonlinear strain wave Equation 16 takes 
the form: 
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Family 8. If Equation 55 has four complex roots,
211 iNN  , 

212 iNN  , 
433 iNN  and 

434 iNN  , 

4...,1, jN j
 are real numbers, consequently we can write 

Equation 55 in the following form: 
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From equating the coefficients of Y to both sides of Equation 74, 

we get a system of algebraic equations in 1040 ,,,   and 2  

which can be solved by using the Maple software package to get 
the following results:  
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Equations 75, 66 and 67 lead to get: 
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where 4 is an arbitrary constant and 
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Substituting Equations 78, 76 and 75 into Equations 52, we get the 
traveling wave solution of the strain wave Equation 16 taking the 
form: 
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RESULTS AND DISCUSSION 
 
This method allowed the construction of many types of 
the traveling wave solutions in the hyperbolic functions, 
trigonometric functions, and Jacobian elliptic functions. 
The balance number of this method is not constant as in 
other methods but changes when the trial equation 
changes. This method has generalized the tanh-function 
method, Jacobian elliptic functions methods, and Exp 
function method. 
 
 
Conclusion  
 
In this paper, the modified extended trial equation method 
was used to construct series of some new analytic 
solutions for some nonlinear partial differential equations 
in mathematical physics when the balance numbers is 
positive integer. The exact solutions were constructed in 
many different functions such as hyperbolic function 
solutions, trigonometric function solutions and Jacobi 
elliptic functions solutions and rational solutions for 
nonlinear strain wave equation. The performance of this 
method is reliable, effective and powerful for solving more 
complicated nonlinear partial differential equations in 
mathematical physics. This method is more powerful than 
other method for solving the nonlinear partial differential 
equations. This method can be used to solve many 
nonlinear partial differential equations in mathematical 
physics.  
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