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Einstein's general relativistic field equation is a nonlinear partial differential equation that lacks an easy
way to obtain exact solutions. The most famous of which are Schwarzschild and Kerr's black hole
solutions. Kerr metric has astrophysical meaning because most cosmic celestial bodies rotate. Kerr
metric is even harder than Schwarzschild metric to be derived directly due to off-diagonal term of metric
tensor. In this paper, a derivation of Kerr metric was obtained by ellipsoid coordinate transformation
which causes elimination of large amount of tedious derivation. This derivation is not only physically
enlightening, but also further deducing some characteristics of the rotating black hole.
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INTRODUCTION

The theory of general relativity proposed by Albert
Einstein in 1915 was one of the greatest advances in
modern physics. It describes the distribution of matter to
determine the space-time curvature, and the curvature
determines how the matter moves. Einstein's field
equation is very simple and elegant, but based on the
fact that the Einstein' field equation is a set of nonlinear
differential equations, it has proved difficult to find the
exact analytic solution. The exact solution has physical
meanings only in some simplified assumptions, the most
famous of which is Schwarzschild and Kerr's black hole
solution, and Friedman's solution to cosmology. One year
after Einstein published his equation, the spherical
symmetry, static vacuum solution with center singularity
was found by Schwarzschild (Schwarzschild, 1916).

Nearly 50 years later, the fixed axis symmetric rotating
black hole was solved in 1963 by Kerr (Kerr, 1963). Some
of these exact solutions have been used to explain topics
related to the gravity in cosmology, such as Mercury's
precession of the perihelion, gravitational lens, black
hole, expansion of the universe and gravitational waves.

Today, many solving methods of Einstein field equations
are proposed. For example: Pensose-Newman's method
(Penrose and Rindler, 1984) or Backlund transformations
(Kramer et al., 1981). Despite their great success in
dealing with the Einstein equation, these methods are
technically complex and expert-oriented.

The Kerr solution is important in astrophysics because
most cosmic celestial bodies are rotating and are rarely
completely at rest. Traditionally, the general method of
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the Kerr solution can be found here, The Mathematical
Theory of Black Holes, by the classical works of
Chandrasekhar (1983). However, the calculation is so
lengthy and complicated that the College or Institute
students also find it difficult to understand. Recent
literature review showed that it is possible to obtain Kerr
metric through the oblate spheroidal coordinate’s
transformation (Enderlein, 1997). This encourages me to
look for a more concise way to solve the vacuum solution
of Einstein's field equation.

The motivation of this derivation simply came from the
use of relatively simple way of solving Schwarzschild
metric to derive the Kerr metric, which can make more
students to be interested in physics for the general
relativity of the exact solution to self-deduction.

In this paper, a more enlightening way to find this
solution was introduced, not only simple and elegant, but
also further deriving some of the physical characteristics
of the rotating black hole.

SCHWARZSCHILD AND KERR SOLUTIONS

The exact solution of Einstein field equation is usually
expressed in metric. For example, Minkowski space-time
is a four-dimension coordinates combining three-
dimensional Euclidean space and one-dimension time
can be expressed in Cartesian form as shown in
Equation 1. In all physical quality, we adoptc = G = 1.

ds? = dt? — dx? — dy? — dz* )
and in polar coordinate form in Equation 2:
ds? = dt? —dr? —r?d6? — r?sin? 8d ¢? (2)

Schwarzschild employed a non-rotational sphere-
symmetric object with polar coordinate in Equation 2 with
two variables from functions v(r), A(r), which is shown in
Equation 3:

ds? = e?"0dt? — e M dr?2 — r2d0? — r?sin® 0dp?>  (3)

In order to solve the Einstein field equation,
Schwarzschild used a vacuum condition, let R,, =0, to
calculate Ricci tensor from Equation 3, and got the first
exact solution of the Einstein field equation,
Schwarzschild metric, which is shown in Equation 4
(Schwarzschild, 1916):

2M 2M\7t
ds? = (1—7)(11'2—(1—7) dr? — dn?
d0? = r2d0? + r? sin? 6d ¢*> 4)

However, Schwarzschild metric cannot be used to
describe rotation, axial-symmetry and charged heavenly
bodies. From the examination of the metric tensor g, in
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Schwarzschild metric, one can obtain the components:

4 2M B < 2M>‘1
Goo = - yJ11 = " )
922 = —1%,g33 = —r’sin* @

Which can also be presented as:

2M 2M\7!
gttzl_Tﬂgrr=_< _T) )
Joo = —T%,gpp = —T* sin*0 (5)
Differences of metric tensorg,, between the

Schwarzschild metric in Equation 4 and Minkowski
space-time in Equation 2 are only in time-time terms (g;;)
and radial-radial terms (g,,).

Kerr metric is the second exact solution of Einstein field
equation, which can be used to describe space-time
geometry in the vacuum area near a rotational, axial-
symmetric heavenly body (Kerr, 1963). It is a generalized
form of Schwarzschild metric. Kerr metric in Boyer-
Lindquist coordinate system can be expressed in
Equation 6:

2Mr

) ) 4Mra sin? 6
5= (1= 2 s

dtde — ﬁdrz
p? A

2Mra? sin?

—p?d0? — (r* +a* + p ) sin? 8d¢p? (6)

Where p? =r? + a?cos? 6 and A=r? — 2Mr + a?
M is the mass of the rotational material, a is the spin
parameter or specific angular momentum and is related

to the angular momentum J by a = J /M.

By examining the components of metric tensor g,, in
Equation 6, one can obtain:

2Mr p? 5
Joo =1 _p_2'911 =T Y2 TP
2Mra sin® 0
Joz = Jzo0 = T
2 oin2
g3z = —(r*+a*+ 72Mmpzsm 9) sin? 6 ™)

Comparison of the components of Schwarzschild metric
Equation 4 with Kerr metric Equation 6:

Both go3(g:e) and gso(g4:) off-diagonal terms in Kerr
metric are not present in Schwarzschild metric,
apparently due to rotation. If the rotation parameter
a = 0, these two terms vanish.

900911 = 9t = —1 in Schwarzschild metric, but not
in Kerr metric when spin parametera = 0, Kerr metric
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turns into Schwarzschild metric and therefore is a
generalized form of Schwarzschild metric.

TRANSFORMATION OF ELLIPSOID SYMMETRIC
ORTHOGONAL COORDINATE

To derive Kerr metric, if we start from the initial
assumptions, we must introduce ggo, 911, 922, o3 933
(five variables) all are function of (r, 8), and finally we will
get monster-like complex equations. Apparently, due to
the off-diagonal term, Kerr metric cannot be solved by the
spherical symmetry method used in Schwarzschild
metric.

Different from the derivation methods used in classical
works of Chandrasekhar (1983), the author used the
changes in coordinate of Kerr metric into ellipsoid
symmetry firstly to get a simplified form, and then used
Schwarzschild's method to solve Kerr metric. First of all,
the following ellipsoid coordinate changes were apply to
Equation 1 (Landau and Lifshitz, 1987):

1
x — (r?> + a®)zsin 6 cos ¢,
1
y = (r? + a?)zsin @ sin ¢,
zZ->1rcosH,
tot ®)

Where a is the coordinate transformation parameter. The
metric under the new coordinate system becomes
Equation 9:

ds? = dt? — £

r2+a?

dr? — p2d6? — (r? + a®)sin? 8d¢p? (9)

Equation 9 has physics significance, which represents
the coordinate with ellipsoid symmetry in vacuum, it can
also be obtained by assigning mass M = 0 to the Kerr
metric in Equation 6. Due to the fact that most of the
celestial bodies, stars and galaxy for instance, are
ellipsoid symmetric, Bijan started from this vacuum
ellipsoid coordinate and derived Schwarzschild-like
solution for ellipsoidal celestial objects following Equation
10 (Bijan, 2011):

2M 2M\"' p?
a5 = (1= are - (1-22)" g
r r r“+a
—p — (r“+a°)sin (0]
2do* — (r? 2) sin? Od g? (10)

Equation 10 morphs into the Schwarzschild’s solution in
Equation 4 when the coordinate transformation
parameter a = 0 and therefore Equation 10 is also a
generalization of Schwarzschild’s solution.

In order to eliminate the difference between Kerr metric
and Schwarzschild metric described earlier, we can
assume to rewrite the Kerr metric in the following
coordinates:

dSZ = GloodTZ + G’lldT‘z + G’zzdgz + G,33d®2 (11)

To eliminate the off-diagonal term:

dT =dt —pde, dp = dp — qdt (12)
to obtain
GrooG’n =-1 (13)

By comparing the coefficient, Equations 14 to 18 were
obtained.

Gmp+0%qzjﬂgﬂﬁ (14)
G'oo+G'33q° =1— 2% (19)
G'oop? + G'33 = — (Tz +a?+ mm;%ze) sin” 6 (16)
Gy = —p? (17)
Gy == (18)

By solving six variables G'yo, G'11,G'52, G'33,p,q in the six
dependent Equations 13 to 18, the results shown in
Equation (19) were obtained:

p = +asin? 0, take the positve result

a
q= irz-l-—cﬂ'take the positive result
A p?
G'oo = ?'6’11 = _X’Glzz = —p?
, 2+ 232 29
G 33 = _% (19)

p

Put them into Equation 8 and obtain Equation 20:

A 2
ds? = E(dt —asin? 8 dg)? — '%er — p?d6?

. 2
_ (r?+a®)*sin* g (d(p __a dt) (20)

pz r2+a?

Equation 20 can be found in the literature and also
textbook by O’Neil. It is also called Kerr metric with Boyer-
Lindquist in orthonormal frame (O'Neil, 1995). There is no
off-diagonal terms, and g,,9,; = —1 after the coordinate
transformation.

CALCULATING THE RICCI TENSOR

From pervious discussion, Equation 9 can be recognized
as the coordinate under the ellipsoid symmetry in
vacuum. Therefore, when the mass M approached O,



Kerr metric Equation 20 will also be transformed into
Equation 21, which equals Equation 9. The differences of
metric tensor components are in time-time and radial-
radial terms, just the same as between Schwarzschild
metric (Equation 4) and Minkowski space-time (Equation
2). dT and d@ defined in Equation 22 are ellipsoid
coordinate transformation functions.

ds? = 5dT? - Lo dr? - prde? - I gz (21)
dT = dt — asin®? 6 de

_ a
do = dp — " dt (22)

In this paper, Schwarzschild method was used to solve

Kerr metric starting from Equations 21 to 22 by
introducing two new functions e2V(9), 2.

ds? =

e2VrO) JT2 — g2A(r0) g2 _ p2d92 _ (r*+a*)*sin® 6 dp? (23)

p2
Define the parameters p? and h in Equation (24):

p?=r?+a’cos?h

h=r?+a? (24)
Metric tensor in the matrix form shown in Equations 25 to
26:
e2Vr) 0 0 0
/ 0 _eZA(T,G) 0 0 \
I = 0 0 _p2 0 (25)
0 0 0 _ hzsirzl2 0
p
e 2V 0 0 0
0 —e728 0 0
g = 0 0 —p~2 0 (26)
p?
0 0 0 " hZsin26

Chrostoffel symbols can be obtained by the following
steps in Equation 27:

I—;'ﬁ/ = %gaﬁ(augvﬁ + avg/}u - aﬁguv) (27)

Non-zero Chrostoffel symbols are listed in Equation 28 to
37:

Iy = e?vMg v (28)
LL =02 (29)
LY =1y = 0yv (30)
I3 =rA=> (31)

p
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E=rGi="-7% (32)
Ly =—re® (33)
15 = I3 = cot 6 () (34)
Ly = —re?*sin?6 (2—’21 - Z—j) (35)
rz =— h? sinp92 cos 0 (36)
I =—sinfcosf (Z—Z) (37)

The calculation of Ricci curvature tensor can be derived
by the following (Equation 38), and the results are listed
in Equations 39 to 50:

Rap = Ripg = 0I5 — 0T + I Iie, — T I (38)

R?m = 601"1% - a11?)01 + 11)(3111){ - 111(/)11})/}
= 0,v 0,1 — (8,v)? — d%v (39)

RYo, = 013y — 0,135 + Fo(jlrzé - rz(ilroé = —re'malv (40)

Rgos = 6011303 - 631“003 + 1})31113/13 - I}‘il})’%

= —reZsin?0 (% - Z—j) a,v (41)

R%12 = 611}12 - 621112 + 1113111212 - I}aﬂ}‘z

=e?(roa-1+5) (42)
R313 = 01135 — 05135 + 11231111% — Ghl

= re?sin%6 (Z—Z - 2—4) G (43)
R3y5 = 0,13 7[4635223_"' 21122/1113/132; 152/11}%

= sin?0 [p—8 (=) - (- p—z) e?| (44)

Rém = gllgooRgm = 92(“)[_611/ 0,1+ (611/)2 + 6121/] (45)

R$20 = 9% gooR302 = €V #611/ (46)
R330 = 9**gooR30s = €V (2% - pr_z) 01v (47)
REys = 97911 Rh = 5 (ro 2 + 55 1) (48)
Riz = g¥guRln = (3= 2) (roa+ 5 -2)  (49)

R33; = 9% g22R523 = [ (5r2;4p2) - %(2 - piz) 3_2/1] (50)
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R,, can be calculated by the Equations 51 to 54:

ROO = R[1]10 + R(Z]ZO + R(?]’?)O
— p2(v-h) [—611/ 9,4 + (8,v)2 + 0%V + 2%611/] (51)

Ry = RYy1 + Riy + Rz
= 0,v 0,4 — (3,v)% — 03v + 20, (52)

Ry, = Rgoz + R%u + R%sz

- 2r?  2r?\ | h? (5r%—4p?
=eﬂ(r(ala—alv)—1+p%—%)+p—4(’h") (53)

R33 = R3y3 + R3y3 + R3p3 -
- sin2f (i_le - h_z) [e-ﬂ (r(all —a,v) — ;_22) + (5r2—4p2) (2 - E) ](54)

p* p* h p?  p*

FINDING A SOLUTION OF THE VACCUM EINSTEIN
FIELD EQUATIONS

To solve vacuum Einstein's field equations, first, the Ricci
tensor was set to zero, which means: R,, =0,R = 0,in
the empty space, 6 is approximately constant. Then
combine with Ry and R;; to get Equation 55, and solve
the equation, Equations 56 to 58 were obtained:

e2UDRyy + Ryy = = (8yv + ;1) = 0 (55)
v+ A=0,(v+21) =0 (56)
v=—1+¢ v(r,)=—-A(r)+c (57)
eV =e* (58)

To solve this partial differential equation, one has to
remember that when the angular momentum approaches
zero (a— 0), the Kerr metric Equation 6 turns into
Schwarzschild metric (Equation 4). Then Equation 59 to
61 were obtained:

ﬂi_’,’(%R% = sin?@[e 2 (r(0;4 — 8,v) — 1) + 1] = sin?6R,, (59)

fli_r,%RZZ =e?(r(@A-0v) -1 +1
=e?(-2ro,v—1)+1=0 (60)

e? =1+ ,let C = —2M (61)

So under the Ilimit condition of angular momentum
approaching zero (a — 0), the equations could be solved
as shown in Equation 62:

2M  r?-2Mr
lime? =1-"=
a—0 r r2

(62)

One could also demand the other limit condition of flat
space-time, where the mass approaches zero (M - 0) in
the Equation 18, which could be represented as in
Equation 63:

oy _T3+a? _ r?+a?

lime

M—0 p? (63)

r2+a?cos? 6

Deduced from the above conditions in Equations 62 to
63, the equations of Ricci tensor could be solved as in
Equation 64

oy _ T*-2Mr+a?
r2+a?cos? 0
21 _ r?+a”cos®0

e _——
r2—2Mr+a?

(64)

Finally, the Kerr metric was gotten as shown in Equation
65:

2 _ r2—2Mr+a? _ ) 2 _ pz 2
ds* = — (dt —asin® 0 dp)* — —————dr
. 2
—p2de? — (r2+azp)22 sin? @ ( _ rzjaz dt) (65)
DISCUSSION

It is proved that Kerr metric equation (Equation 65) can
be obtained by combining the ellipsoid coordinate
transformation and the assumptions listed in Equations
21 to 23 following these steps: transforming the Euclidian
four-dimension space-time in Equation 1 to vacuum
Minkowski space-time with ellipsoid symmetry in
Equation 9; transforming from (t,r,6,¢) to (T,7,0,0)
under the new coordinate system to eliminate the major
difference in metric tensor components between Kerr
metric and Schwarzschild metric, and the product of dtd¢
and gg0g11 becomes -1; solving vacuum Einstein’s
equation by using Schwarzschild method from Equation
23; applying limit method to calculate Ricci curvature
tensor; and finally deducting Kerr metric.

Table 1 shows the list of the metric tensor components
discussed in previous sections, including the Minkowski
space-time, the Schwarzschild solution, empty ellipsoid, a
Schwarzschild-like ellipsoid solution and the Kerr solution.
The Minkowski space-time and the Schwarzschild solution
have spherical symmetry, and the others have ellipsoid
symmetry.

Further, some of characteristics with deeper physics
meaning of ellipsoid symmetry, Kerr metric and rotating
black hole can be obtained from this new coordinate
function dT,d®. Remember when a approaches to zero
(a » 0), dT,d® degenerate to dt, d¢.



Table 1. Metric tensor components and symmetry.
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Metric tensor dt?(dT?%) dr? de? d¢p?(dd?) Symmetry and state
Minkowski 1 -1 -r —r2sin?0 Spherical, empty
Schwarzschild riozM T -r —r2sin?0 Spherical, static, mass
r2 r2—2M
2 2 2 2\2¢in2
Ellipsoid L ;a _$ —p —w Ellipsoid, empty
ad-li r2—2M _ r? p? _ ) 2N i 2 : : .
Schwarzschild-like — Som i p (r* + a®)sin°6 Ellipsoid, static, mass
2_ 2 2 2, 1220702
Kerr : ZPIZM —# -p —(TMP# Ellipsoid, axisymmetric, mass
re — +a

Ellipsoid symmetry and Kerr metric

While metric with spherical symmetry in vacuum has the
following expression:

—12d6? — r? sin? §d ¢p* (66)

And metric of ellipsoid symmetric in vacuum has the
. . . . a
following expression in Equation 67, where T and

asin?@ term can be seen in multiply and divide
combination:

—p?d0? — (r? + a®) sin® d ¢p*

—p2ds? — ("2 (asin?6) dp? (67)

Terms of d@z d¢? in Kerr metric is shown in Equation 68,

where —— and a sin? 6 term can also be seen in linear
comb|nat|on

—p?d0? — (r* +a* + M) sin? Bd¢?

—p2d92 _ (r +a? 2Mrasm 0)((1511129) d¢2 (68)

The a in Equation 67 represents a parameter in the
ellipsoid symmetric coordinate transformation, however, a
in Kerr metric Equation (Equation 68) represents a spin
parameter, which is proportional to angular momentum.
Both a’s are equivalent in mathematic perspective and
used to transform the space-time into ellipsoid symmetry
with a rotational symmetric z-axis. As a — 0, both
Equation (67) and Equation (68) degenerate into spherical
symmetry equation (Equation 66).

Frame-dragging angular momentum

In physics, a spinning heavenly body with a non-zero
mass will generate a frame-dragging phenomenon along
the equator’s direction, which has been proven by Gravity
Probe B experiment (Everitt et al., 2011). Therefore, an

2Mra?sin2 6 . e . H
=222 in Kerr metric is found in Equation

extra term >
p

68 as compared to the vacuum ellipsoid symmetry in

Equation 67. As the mass approaches zero M — 0,
Equation 68 degenerates into Equation 67.

In order to describe frame-dragging, Kerr metric can be
re-written as Equation 69:

ds® = g, dt? + 2g,pdtde + g,.dr? + gged6® + g¢,¢,d<p

(gn - T) dt? + g, dr? + goed6* + gyg (dgo + ) (69)

The definition of angular momentum (Q)in frame-

dragging:
2Mrasin? @
_ Y _ p?
= Zsin2
9o ( 2+a.2+72MmpZSm 9) sin2 @
2Mra 2Mr

= = (70)

2(y24q2 2 ¢in2 2
p2(r2+a2)+2Mra? sinZ p (T +a )+2Mr(asm2 0)

So, we see both the asin?8 and 5 term in Q, which

means dT,d® would have some relatlon with frame-
dragging angular momentum.

Black hole angular velocity

Its close relationship with the black hole angular velocity
(Qy) can be easily identified by examining d@term in
Equation 71.

a
dp =d¢ _7”2+—azdt
a

Q, =——
H
r? + a?

fromA =0, solvery =M +VM? — a? (71)
Base on this derivation, in the future, we will further study
whether the method mentioned in this paper can be
extended to other more general cases. For example,
suppose we start with three functions
e2V(r8) g=2v(r0) o24(r0) o2u(r8) a5 shown in Equation
(72):
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ds? = eZv(r,B)dTZ _ e—Zv(r,B)er _ eZA(r,G)dQZ _ eZM(r,G)dQZ (72)

Besides, as dT,d@ is shown to be related to ellipsoid
symmetry, frame-dragging angular momentum, and black
hole angular velocity, which are all rotation parameters, it
deserves further study if this method could be extended
to solve the other axial-symmetry exact solutions of
vacuum Einstein's field equation.

CONCLUSION

In this paper, the Kerr metric was derived from the
coordinate transformation method. Firstly, the Kerr Metric
was obtained with Boyer-Lindquist in orthonormal frame,
and then it was proven that it is possible to derive the
Kerr metric from the vacuum ellipsoid symmetry, and this
derivation allows us to better understand the physical
properties of the rotating black hole, such as the frame-
dragging effect, the angular velocity. This deduction
method is different from classical papers written by Kerr
and Chandrasekhar, and is expected to encourage future
study in this subject.
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