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Einstein's general relativistic field equation is a nonlinear partial differential equation that lacks an easy 
way to obtain exact solutions. The most famous of which are Schwarzschild and Kerr's black hole 
solutions. Kerr metric has astrophysical meaning because most cosmic celestial bodies rotate. Kerr 
metric is even harder than Schwarzschild metric to be derived directly due to off-diagonal term of metric 
tensor. In this paper, a derivation of Kerr metric was obtained by ellipsoid coordinate transformation 
which causes elimination of large amount of tedious derivation. This derivation is not only physically 
enlightening, but also further deducing some characteristics of the rotating black hole.  
 
Key words: General relativity, Schwarzschild metric, Kerr metric, ellipsoid coordinate transformation, exact 
solutions.  

 
 
INTRODUCTION 
 
The theory of general relativity proposed by Albert 
Einstein in 1915 was one of the greatest advances in 
modern physics. It describes the distribution of matter to 
determine the space-time curvature, and the curvature 
determines how the matter moves. Einstein's field 
equation is very simple and elegant, but based on the 
fact that the Einstein' field equation is a set of nonlinear 
differential equations, it has proved difficult to find the 
exact analytic solution. The exact solution has physical 
meanings only in some simplified assumptions, the most 
famous of which is Schwarzschild and Kerr's black hole 
solution, and Friedman's solution to cosmology. One year 
after Einstein published his equation, the spherical 
symmetry, static vacuum solution with center singularity 
was found by Schwarzschild (Schwarzschild, 1916). 

Nearly 50 years later, the fixed axis symmetric rotating 
black hole was solved in 1963 by Kerr (Kerr, 1963). Some 
of these exact solutions have been used to explain topics 
related to the gravity in cosmology, such as Mercury's 
precession of the perihelion, gravitational lens, black 
hole, expansion of the universe and gravitational waves. 

Today, many solving methods of Einstein field equations 
are proposed. For example: Pensose-Newman's method 
(Penrose and Rindler, 1984) or Bäcklund transformations 
(Kramer et al., 1981). Despite their great success in 
dealing with the Einstein equation, these methods are 
technically complex and expert-oriented. 

The Kerr solution is important in astrophysics because 
most cosmic celestial bodies are rotating and are rarely 
completely at rest.  Traditionally,  the  general  method  of 
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the Kerr solution can be found here, The Mathematical 
Theory of Black Holes, by the classical works of 
Chandrasekhar (1983). However, the calculation is so 
lengthy and complicated that the College or Institute 
students also find it difficult to understand. Recent 
literature review showed that it is possible to obtain Kerr 
metric through the oblate spheroidal coordinate’s 
transformation (Enderlein, 1997). This encourages me to 
look for a more concise way to solve the vacuum solution 
of Einstein's field equation.  

The motivation of this derivation simply came from the 
use of relatively simple way of solving Schwarzschild 
metric to derive the Kerr metric, which can make more 
students to be interested in physics for the general 
relativity of the exact solution to self-deduction.  

In this paper, a more enlightening way to find this 
solution was introduced, not only simple and elegant, but 
also further deriving some of the physical characteristics 
of the rotating black hole.  
 
 
SCHWARZSCHILD AND KERR SOLUTIONS   
 

The exact solution of Einstein field equation is usually 
expressed in metric. For example, Minkowski space-time 
is a four-dimension coordinates combining three-
dimensional Euclidean space and one-dimension time 
can be expressed in Cartesian form as shown in 
Equation 1. In all physical quality, we adopt c = G = 1.  
 
𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2                                        (1) 
                                      
and in polar coordinate form in Equation 2:  
 

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃𝑑𝜙2                        (2)  
 
Schwarzschild employed a non-rotational sphere-
symmetric object with polar coordinate in Equation 2 with 
two variables from functions ν(r), λ(r), which is shown in 
Equation 3: 

 
𝑑𝑠2 = 𝑒2ν(r)𝑑𝑡2 − 𝑒2𝜆(𝑟)𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃𝑑𝜙2       (3) 

 
In order to solve the Einstein field equation, 
Schwarzschild used a vacuum condition, let 𝑅𝜇𝜈 = 0, to 

calculate Ricci tensor from Equation 3, and got the first 
exact solution of the Einstein field equation, 
Schwarzschild metric, which is shown in Equation 4 
(Schwarzschild, 1916): 

  

𝑑𝑠2 = (1 −
2𝑀

𝑟
)𝑑𝑡2 − (1 −

2𝑀

𝑟
)
−1

𝑑𝑟2 − 𝑑𝛺2 

𝑑𝛺2 =  𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃𝑑𝜙2                                        (4)  
 
However, Schwarzschild metric cannot be used to 
describe rotation, axial-symmetry and charged heavenly 
bodies. From the examination of the metric  tensor 𝑔𝜇𝜈  in  
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Schwarzschild metric, one can obtain the components: 

 

𝑔00 = 1 −
2𝑀

𝑟
 , 𝑔11 = −(1 −

2𝑀

𝑟
)
−1

, 

𝑔22 = −𝑟2 , 𝑔33 = −𝑟2 𝑠𝑖𝑛2 𝜃 

 
Which can also be presented as:  

 

𝑔𝑡𝑡 = 1 −
2𝑀

𝑟
 , 𝑔𝑟𝑟 = −(1 −

2𝑀

𝑟
)
−1

, 

 𝑔𝜃𝜃 = −𝑟2 , 𝑔𝜙𝜙 = −𝑟2 𝑠𝑖𝑛2 𝜃                                         (5) 

 
Differences of metric tensor 𝑔𝜇𝜈 between the 

Schwarzschild metric in Equation 4 and Minkowski 
space-time in Equation 2 are only in time-time terms (𝑔𝑡𝑡) 
and radial-radial terms (𝑔𝑟𝑟). 

Kerr metric is the second exact solution of Einstein field 
equation, which can be used to describe space-time 
geometry in the vacuum area near a rotational, axial-
symmetric heavenly body (Kerr, 1963). It is a generalized 
form of Schwarzschild metric. Kerr metric in Boyer-
Lindquist coordinate system can be expressed in 
Equation 6: 

 

𝑑𝑠2 = (1 −
2𝑀𝑟

𝜌2
)𝑑𝑡2 +

4𝑀𝑟𝑎 sin2 𝜃

𝜌2
𝑑𝑡𝑑𝜙 −

𝜌2

∆
𝑑𝑟2 

−𝜌2𝑑𝜃2 − (𝑟2 + 𝑎2 +
2𝑀𝑟𝑎2 sin2 𝜃

𝜌2
) sin2 𝜃𝑑𝜙2                       (6) 

 
Where 𝜌2 ≡ 𝑟2 + 𝑎2 𝑐𝑜𝑠2 𝜃 and ∆ ≡ 𝑟2 − 2𝑀𝑟 + 𝑎2 

 
M is the mass of the rotational material, 𝑎 is the spin 
parameter or specific angular momentum and is related 

to the angular momentum 𝐽 by 𝑎 =  𝐽 /𝑀. 

 
By examining the components of metric tensor 𝑔𝜇𝜈 in 

Equation 6, one can obtain: 

 

𝑔00 = 1 −
2𝑀𝑟

𝜌2
, 𝑔11 = −

𝜌2

∆
 , 𝑔22 = −𝜌2 , 

 𝑔03 = 𝑔30 = 
2𝑀𝑟𝑎 𝑠𝑖𝑛2 𝜃

𝜌2
 

𝑔33 = −(𝑟2 + 𝑎2 +
2𝑀𝑟𝑎2 𝑠𝑖𝑛2 𝜃

𝜌2
) 𝑠𝑖𝑛2 𝜃                            (7) 

 
Comparison of the components of Schwarzschild metric 
Equation 4 with Kerr metric Equation 6: 

 
Both 𝑔03(𝑔𝑡𝜙) 𝑎𝑛𝑑 𝑔30(𝑔𝜙𝑡) off-diagonal terms in Kerr 

metric are not present in Schwarzschild metric, 
apparently due to rotation. If the rotation parameter 
𝑎 =  0, these two terms vanish. 
𝑔00𝑔11 = 𝑔𝑡𝑡𝑔𝑟𝑟 = −1 in Schwarzschild metric, but not 

in Kerr metric  when  spin  parameter 𝑎 =   0, Kerr  metric 
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turns into Schwarzschild metric and therefore is a 
generalized form of Schwarzschild metric. 
 
 
TRANSFORMATION OF ELLIPSOID SYMMETRIC 
ORTHOGONAL COORDINATE 
 
To derive Kerr metric, if we start from the initial 
assumptions, we must introduce 𝑔00,  𝑔11, 𝑔22,  𝑔03, 𝑔33 
(five variables) all are function of (r, θ), and finally we will 
get monster-like complex equations. Apparently, due to 
the off-diagonal term, Kerr metric cannot be solved by the 
spherical symmetry method used in Schwarzschild 
metric. 

Different from the derivation methods used in classical 
works of Chandrasekhar (1983), the author used the 
changes in coordinate of Kerr metric into ellipsoid 
symmetry firstly to get a simplified form, and then used 
Schwarzschild's method to solve Kerr metric. First of all, 
the following ellipsoid coordinate changes were apply to 
Equation 1 (Landau and Lifshitz, 1987):  

 

𝑥 → (𝑟2 + 𝑎2)
1
2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙,  

𝑦 → (𝑟2 + 𝑎2)
1
2 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙,  

𝑧 → 𝑟 𝑐𝑜𝑠 𝜃,  
𝑡 → 𝑡                                                                                       (8) 

 
Where a is the coordinate transformation parameter. The 
metric under the new coordinate system becomes 
Equation 9: 

 

𝑑𝑠2 = 𝑑𝑡2 −
𝜌2

𝑟2+𝑎2
𝑑𝑟2 − 𝜌2𝑑𝜃2 − (𝑟2 + 𝑎2) sin2 𝜃𝑑𝜙2    (9) 

 
Equation 9 has physics significance, which represents 
the coordinate with ellipsoid symmetry in vacuum, it can 
also be obtained by assigning mass M = 0 to the Kerr 
metric in Equation 6. Due to the fact that most of the 
celestial bodies, stars and galaxy for instance, are 
ellipsoid symmetric, Bijan started from this vacuum 
ellipsoid coordinate and derived Schwarzschild-like 
solution for ellipsoidal celestial objects following Equation 
10 (Bijan, 2011):

 

 

𝑑𝑠2 = (1 −
2𝑀

𝑟
)𝑑𝑡2 − (1 −

2𝑀

𝑟
)
−1 𝜌2

𝑟2 + 𝑎2
𝑑𝑟2 

        −𝜌2𝑑𝜃2 − (𝑟2 + 𝑎2) sin2 𝜃𝑑𝜑2                                  (10)  

 
Equation 10 morphs into the Schwarzschild’s solution in 
Equation 4 when the coordinate transformation 
parameter a = 0 and therefore Equation 10 is also a 
generalization of Schwarzschild’s solution. 

In order to eliminate the difference between Kerr metric 
and Schwarzschild metric described earlier, we can 
assume to rewrite the Kerr metric in the following 
coordinates: 

 
 
 
 

𝑑𝑠2 = 𝐺′00𝑑𝑇
2 + 𝐺′11𝑑𝑟

2 + 𝐺′22𝑑𝜃
2 + 𝐺′33𝑑∅

2                (11) 
 

To eliminate the off-diagonal term:  
 

𝑑𝑇 ≡ 𝑑𝑡 − 𝑝𝑑𝜑, 𝑑∅ ≡ 𝑑𝜑 − 𝑞𝑑𝑡                                              (12) 
 

to obtain 
 

𝐺′00𝐺′11 = −1                                                                                (13) 
 

By comparing the coefficient, Equations 14 to 18 were 
obtained. 
 

𝐺′00𝑝 + 𝐺′
33𝑞 =

−2𝑀𝑟𝑎 sin2 𝜃

𝜌2
                                                      (14) 

 

𝐺′00 + 𝐺′
33𝑞

2 = 1 −
2𝑀𝑟

𝜌2
                                                            (15) 

 

𝐺′00𝑝
2 + 𝐺′

33 = −(𝑟2 + 𝑎2 +
2𝑀𝑟𝑎2 sin2 𝜃

𝜌2
) sin2 𝜃              (16) 

 

𝐺′22 = −𝜌2                                                                                      (17) 
 

𝐺′11 = −
𝜌2

∆
                                                                                      (18) 

 

By solving six variables 𝐺′00, 𝐺′11, 𝐺′22, 𝐺′33, 𝑝, 𝑞 in the six 
dependent Equations 13 to 18, the results shown in 
Equation (19) were obtained: 
 

𝑝 = ±𝑎 sin2 𝜃 , take the positve result  
 

𝑞 = ±
𝑎

𝑟2 + 𝑎2
, take the positive result 

 

𝐺′00 =
∆

𝜌2
, 𝐺′11 = −

𝜌2

∆
, 𝐺′22 = −𝜌2 

𝐺′
33 = −

(𝑟2+𝑎2)2 sin2 𝜃

𝜌2
                                                                 (19) 

 

Put them into Equation 8 and obtain Equation 20: 
 

𝑑𝑠2 =
∆

𝜌2
(𝑑𝑡 − 𝑎 sin2 𝜃 𝑑𝜑)2 −

𝜌2

∆
𝑑𝑟2 − 𝜌2𝑑𝜃2 

−
(𝑟2+𝑎2)2 sin2 𝜃

𝜌2
(𝑑𝜑 −

𝑎

𝑟2+𝑎2
𝑑𝑡)

2

                                              (20) 

 

Equation 20 can be found in the literature and also 
textbook by O’Neil. It is also called Kerr metric with Boyer-
Lindquist in orthonormal frame (O'Neil, 1995). There is no 
off-diagonal terms, and 𝑔00𝑔11 = −1 after the coordinate 
transformation. 
 
 

CALCULATING THE RICCI TENSOR  
 

From pervious discussion, Equation 9 can be recognized 
as the coordinate under the ellipsoid symmetry in 
vacuum.  Therefore,  when  the  mass  M  approached  0,  



 
 
 
 
Kerr metric Equation 20 will also be transformed into 
Equation 21, which equals Equation 9. The differences of 
metric tensor components are in time-time and radial-
radial terms, just the same as between Schwarzschild 
metric (Equation 4) and Minkowski space-time (Equation 
2). 𝑑𝑇 and 𝑑∅ defined in Equation 22 are ellipsoid 
coordinate transformation functions. 
 

𝑑𝑠2 =
𝑟2+𝑎2

𝜌2
𝑑𝑇2 −

𝜌2

𝑟2+𝑎2
𝑑𝑟2 − 𝜌2𝑑𝜃2 −

(𝑟2+𝑎2)2 sin2 𝜃

𝜌2
𝑑∅2    (21) 

 

𝑑𝑇 ≡ 𝑑𝑡 − 𝑎 sin2 𝜃 𝑑𝜑 

𝑑∅ ≡ 𝑑𝜑 −
𝑎

𝑟2+𝑎2
𝑑𝑡                                                                      (22) 

 

In this paper, Schwarzschild method was used to solve 
Kerr metric starting from Equations 21 to 22 by 

introducing two new functions 𝑒2ν(𝑟,𝜃), 𝑒2𝜆(𝑟,𝜃): 
 

𝑑𝑠2 =

𝑒2ν(𝑟,𝜃)𝑑𝑇2 − 𝑒2𝜆(𝑟,𝜃)𝑑𝑟2 − 𝜌2𝑑𝜃2 −
(𝑟2+𝑎2)2 sin2 𝜃

𝜌2
𝑑∅2     (23) 

 
Define the parameters 𝜌2 and  in Equation (24): 
 
𝜌2 ≡ 𝑟2 + 𝑎2 𝑐𝑜𝑠2 𝜃  
 ≡ 𝑟2 + 𝑎2                                                                          (24) 
 
Metric tensor in the matrix form shown in Equations 25 to 
26: 
 

𝑔𝜇𝜈 =

(

 
 

𝑒2ν(𝑟,𝜃) 0 0 0
0 −𝑒2𝜆(𝑟,𝜃) 0 0
0 0 −𝜌2 0

0 0 0 −
ℎ2𝑠𝑖𝑛2 𝜃

𝜌2 )

 
 
                  (25) 

 

𝑔𝜇𝜈 =

(

 
 

𝑒−2ν(𝑟,𝜃) 0 0 0
0 −𝑒−2𝜆(𝑟,𝜃) 0 0
0 0 −𝜌−2 0

0 0 0 −
𝜌2

ℎ2𝑠𝑖𝑛2𝜃)

 
 
            (26) 

 
Chrostoffel symbols can be obtained by the following 
steps in Equation 27: 
 

𝛤𝜇𝜈
𝛼 =  

1

2
𝑔𝛼𝛽(𝜕𝜇𝑔𝜈𝛽 + 𝜕𝜈𝑔𝛽𝜇 − 𝜕𝛽𝑔𝜇𝜈)                                 (27) 

 
Non-zero Chrostoffel symbols are listed in Equation 28 to 
37:  
 

𝛤00
1 = 𝑒2(ν-𝜆)𝜕1𝜈                                                                             (28) 

 
𝛤11
1 = 𝜕1𝜆                                                                                         (29) 

 

𝛤10
0 = 𝛤01

0 = 𝜕1𝜈                                                                             (30) 
 

𝛤12
2 = 𝛤21

2 =
𝑟

𝜌2
                                                                               (31) 
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𝛤13
3 = 𝛤31

3 =
2𝑟

ℎ
−

𝑟

𝜌2
                                                                       (32) 

 

𝛤22
1 = −𝑟𝑒-2𝜆                                                                                  (33) 

 

𝛤32
3 = 𝛤23

3 = 𝑐𝑜𝑡 𝜃 (
ℎ

𝜌2
)                                                                (34) 

 

𝛤33
1 = −𝑟𝑒-2𝜆𝑠𝑖𝑛2𝜃 (

2ℎ

𝜌2
−

ℎ2

𝜌4
)                                                     (35) 

 

𝛤22
2 = −

ℎ2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

𝜌2
                                                                       (36) 

 

𝛤33
2 = −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 (

ℎ3

𝜌6
)                                                              (37) 

 
The calculation of Ricci curvature tensor can be derived 
by the following (Equation 38), and the results are listed 
in Equations 39 to 50: 
 

𝑅𝛼𝛽 = 𝑅𝛼𝜌𝛽
𝜌

= 𝜕𝜌𝛤𝛽𝛼
𝜌
− 𝜕𝛽𝛤𝜌𝛼

𝜌
+ 𝛤𝜌𝜆

𝜌
𝛤𝛽𝛼
𝜆 − 𝛤𝛽𝜆

𝜌
𝛤𝜌𝛼
𝜆                 (38) 

 

𝑅101
0 = 𝜕0𝛤11

0 − 𝜕1𝛤01
0 +  𝛤0𝜆

0 𝛤11
𝜆 − 𝛤1𝜆

0𝛤01
𝜆   

         = 𝜕1𝜈 𝜕1𝜆 − (𝜕1𝜈)
2 − 𝜕1

2𝜈                                          (39) 
 

𝑅202
0 = 𝜕0𝛤22

0 − 𝜕2𝛤02
0 +  𝛤0𝜆

0 𝛤22
𝜆 − 𝛤2𝜆

0 𝛤02
𝜆  = −𝑟𝑒-2𝜆𝜕1𝜈     (40) 

 

𝑅303
0 = 𝜕0𝛤33

0 − 𝜕3𝛤03
0 +  𝛤0𝜆

0 𝛤33
𝜆 − 𝛤3𝜆

0 𝛤03
𝜆   

         = −𝑟𝑒-2𝜆𝑠𝑖𝑛2𝜃 (
2ℎ

𝜌2
−

ℎ2

𝜌4
) 𝜕1𝜈                                      (41) 

 

𝑅212
1 = 𝜕1𝛤22

1 − 𝜕2𝛤12
1 +  𝛤1𝜆

1 𝛤22
𝜆 − 𝛤2𝜆

1 𝛤12
𝜆   

         = 𝑒-2𝜆 (𝑟𝜕1𝜆 − 1 +
𝑟2

𝜌2
)                                           (42) 

 

𝑅313
1 = 𝜕1𝛤33

1 − 𝜕3𝛤13
1 +  𝛤1𝜆

1 𝛤13
𝜆 − 𝛤3𝜆

1 𝛤13
𝜆   

         = 𝑟𝑒-2𝜆𝑠𝑖𝑛2𝜃 (
2ℎ

𝜌2
−

ℎ2

𝜌4
) (𝜕1𝜆)                                      (43) 

 

𝑅323
2 = 𝜕2𝛤33

2 − 𝜕3𝛤23
2 +  𝛤2𝜆

2 𝛤33
𝜆 − 𝛤3𝜆

2 𝛤23
𝜆   

         = 𝑠𝑖𝑛2𝜃 *
ℎ4

𝜌8
(
5𝑟2−4𝜌2

ℎ
) −

𝑟2ℎ

𝜌4
(2 −

ℎ

𝜌2
) 𝑒-2𝜆+                (44) 

 

𝑅010
1 = 𝑔11𝑔00𝑅101

0 = 𝑒2(ν-𝜆)[−𝜕1𝜈 𝜕1𝜆 + (𝜕1𝜈)
2 + 𝜕1

2𝜈 ] (45) 

 

𝑅020
2 = 𝑔22𝑔00𝑅202

0 = 𝑒2(ν-𝜆) 𝑟

𝜌2
𝜕1𝜈                                         (46) 

 

𝑅030
3 = 𝑔33𝑔00𝑅303

0 = 𝑒2(ν-𝜆) (
2𝑟

ℎ
−

𝑟

𝜌2
) 𝜕1𝜈                            (47)  

 

𝑅121
2 = 𝑔22𝑔11𝑅212

1 =
1

𝜌2
(𝑟𝜕1𝜆 +

𝑟2

𝜌2
− 1)                              (48) 

 

𝑅131
3 = 𝑔33𝑔11𝑅313

1 = (
2

ℎ
−

1

𝜌2
) (𝑟𝜕1𝜆 +

2𝑟2

𝜌2
−

2𝑟2

ℎ
)             (49) 

 

𝑅232
3 = 𝑔33𝑔22𝑅323

2 = *
ℎ2

𝜌4
(
5𝑟2−4𝜌2

ℎ
) −

𝑟2

ℎ
(2 −

ℎ

𝜌2
) 𝑒-2𝜆+     (50) 
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𝑅𝜇𝜈 can be calculated by the Equations 51 to 54: 

 
𝑅00 = 𝑅010

1 + 𝑅020
2 + 𝑅030

3  

        = 𝑒2(ν-𝜆) *−𝜕1𝜈 𝜕1𝜆 + (𝜕1𝜈)
2 + 𝜕1

2𝜈 +
2𝑟

ℎ
𝜕1𝜈+            (51) 

 
𝑅11 = 𝑅101

0 + 𝑅121
2 + 𝑅131

3  

       = 𝜕1𝜈 𝜕1𝜆 − (𝜕1𝜈)
2 − 𝜕1

2𝜈 +
2𝑟

ℎ
𝜕1𝜆                             (52) 

 
𝑅22 = 𝑅202

0 + 𝑅212
1 + 𝑅232

3  

= 𝑒-2𝜆 (𝑟(𝜕1𝜆 − 𝜕1𝜈) − 1 +
2𝑟2

𝜌2
−

2𝑟2

ℎ
) +

ℎ2

𝜌4
(
5𝑟2−4𝜌2

ℎ
)      (53) 

 
𝑅33 = 𝑅303

0 + 𝑅313
1 + 𝑅323

2  

= 𝑠𝑖𝑛2𝜃 (
2ℎ

𝜌2
−

ℎ2

𝜌4
) [𝑒-2𝜆 (𝑟(𝜕1𝜆 − 𝜕1𝜈) −

𝑟2

𝜌2
) +

ℎ2

𝜌4
(
5𝑟2−4𝜌2

ℎ
) (

2ℎ

𝜌2
−

ℎ2

𝜌4
)
−1

](54) 

 
 
FINDING A SOLUTION OF THE VACCUM EINSTEIN 
FIELD EQUATIONS 

 
To solve vacuum Einstein's field equations, first, the Ricci 
tensor was set to zero, which means: 𝑅𝜇𝜈 = 0, 𝑅 = 0, in 

the empty space, θ is approximately constant. Then 
combine with R00 and R11 to get Equation 55, and solve 
the equation, Equations 56 to 58 were obtained: 

 

𝑒-2(ν-𝜆)R00 + R11 =
2𝑟

ℎ
(𝜕1𝜈 + 𝜕1𝜆) = 0                                   (55) 

 
𝜕1𝜈 + 𝜕1𝜆 = 𝜕1(𝜈 + 𝜆) = 0                                                        (56) 

 
𝜈 = −𝜆 + 𝑐, 𝜈(𝑟, ) = −𝜆(𝑟, ) + 𝑐                                             (57) 

 

𝑒ν = 𝑒-𝜆                                                                                            (58) 

 
To solve this partial differential equation, one has to 
remember that when the angular momentum approaches 
zero (a → 0), the Kerr metric Equation 6 turns into 
Schwarzschild metric (Equation 4). Then Equation 59 to 
61 were obtained: 

 
𝑙𝑖𝑚
𝑎→0

𝑅33 = 𝑠𝑖𝑛2𝜃[𝑒-2𝜆(𝑟(𝜕1𝜆 − 𝜕1𝜈) − 1) + 1] = 𝑠𝑖𝑛2𝜃𝑅22     (59) 

 
𝑙𝑖𝑚
𝑎→0

𝑅22 = 𝑒-2𝜆(𝑟(𝜕1𝜆 − 𝜕1𝜈) − 1) + 1                                      

 
              = 𝑒2ν(– 2𝑟 ∂1ν − 1) + 1 =  0                                     (60) 

 

 𝑒2ν = 1 +
𝐶

𝑟
, 𝑙𝑒𝑡 𝐶 = −2𝑀                                                       (61) 

 
So under the limit condition of angular momentum 
approaching zero (𝑎 → 0), the equations could be solved 
as shown in Equation 62: 

 
 
 

𝑙𝑖𝑚
𝑎→0

𝑒2𝜈 = 1 −
2𝑀

𝑟
=

𝑟2−2𝑀𝑟

𝑟2
                                         (62) 

 
One could also demand the other limit condition of flat 
space-time, where the mass approaches zero (M → 0) in 
the Equation 18, which could be represented as in 
Equation 63:     

 

𝑙𝑖𝑚
𝑀→0

𝑒2𝜈 =
𝑟2+𝑎2

𝜌2
=

𝑟2+𝑎2

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
                                    (63) 

 
Deduced from the above conditions in Equations 62 to 
63, the equations of Ricci tensor could be solved as in 
Equation 64:   

 

𝑒2ν =
𝑟2−2𝑀𝑟+𝑎2

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
  

𝑒2𝜆 =
𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃

𝑟2−2𝑀𝑟+𝑎2
                                                        (64) 

 
Finally, the Kerr metric was gotten as shown in Equation 
65: 

 

𝑑𝑠2 =
𝑟2−2𝑀𝑟+𝑎2

𝜌2
(𝑑𝑡 − 𝑎 sin2 𝜃 𝑑𝜑)2 −

𝜌2

𝑟2−2𝑀𝑟+𝑎2
𝑑𝑟2  

−𝜌2𝑑𝜃2 −
(𝑟2+𝑎2)2 sin2 𝜃

𝜌2
(𝑑𝜑 −

𝑎

𝑟2+𝑎2
𝑑𝑡)

2

                       (65) 

 
 
DISCUSSION 

 
It is proved that Kerr metric equation (Equation 65) can 
be obtained by combining the ellipsoid coordinate 
transformation and the assumptions listed in Equations 
21 to 23 following these steps: transforming the Euclidian 
four-dimension space-time in Equation 1 to vacuum 
Minkowski space-time with ellipsoid symmetry in 
Equation 9; transforming from (𝑡, 𝑟, 𝜃, 𝜙) to (𝑇, 𝑟, 𝜃, ∅) 
under the new coordinate system to eliminate the major 
difference in metric tensor components between Kerr 
metric and Schwarzschild metric, and the product of 𝑑𝑡𝑑𝜙 

and 𝑔00𝑔11 becomes -1; solving vacuum Einstein’s 

equation by using Schwarzschild method from Equation 
23; applying limit method to calculate Ricci curvature 
tensor; and finally deducting Kerr metric.  

Table 1 shows the list of the metric tensor components 
discussed in previous sections, including the Minkowski 
space-time, the Schwarzschild solution, empty ellipsoid, a 
Schwarzschild-like ellipsoid solution and the Kerr solution. 
The Minkowski space-time and the Schwarzschild solution 
have spherical symmetry, and the others have ellipsoid 
symmetry. 

Further, some of characteristics with deeper physics 
meaning of ellipsoid symmetry, Kerr metric and rotating 
black hole can be obtained from this new coordinate 
function d𝑇, 𝑑∅. Remember when a approaches to zero 
(𝑎 → 0), d𝑇, 𝑑∅ degenerate to d𝑡, 𝑑𝜙.    
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Table 1. Metric tensor components and symmetry. 
 

Metric tensor    (   )            (   ) Symmetry and state 

Minkowski 1 -1 −𝑟2 −𝑟2𝑠𝑖𝑛2𝜃 Spherical, empty 

Schwarzschild 
𝑟2−2𝑀

𝑟2
 −

𝑟2

𝑟2−2𝑀
 −𝑟2 −𝑟2𝑠𝑖𝑛2𝜃 Spherical, static, mass 

Ellipsoid 
𝑟2+𝑎2

𝜌2
 −

𝜌2

𝑟2+𝑎2
 −𝜌2 −

(𝑟2+𝑎2)2𝑠𝑖𝑛2𝜃

𝜌2
 Ellipsoid, empty 

Schwarzschild-like 
𝑟2−2𝑀

𝑟2
 −

𝑟2

𝑟2−2𝑀

𝜌2

𝑟2+𝑎2
  −𝜌2 −(𝑟2 + 𝑎2)𝑠𝑖𝑛2𝜃 Ellipsoid, static, mass 

Kerr 
𝑟2−2𝑀+𝑎2

𝜌2
 −

𝜌2

𝑟2 − 2𝑀 + 𝑎2
 −𝜌2 −

(𝑟2+𝑎2)2𝑠𝑖𝑛2𝜃

𝜌2
  Ellipsoid, axisymmetric, mass 

 
 
 
Ellipsoid symmetry and Kerr metric 
 

While metric with spherical symmetry in vacuum has the 
following expression: 
 

−𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃𝑑𝜙2                                                              (66) 
 

And metric of ellipsoid symmetric in vacuum has the 

following expression in Equation 67, where  
𝑎

𝑟2+𝑎2
 and 

𝑎 𝑠𝑖𝑛2 𝜃 term can be seen in multiply and divide 
combination:     
 

−𝜌2𝑑𝜃2 − (𝑟2 + 𝑎2) sin2 𝜃𝑑𝜙2 

−𝜌2𝑑𝜃2 − (
  +𝒂 

𝒂
) (𝒂𝐬𝐢𝐧  ) 𝑑𝜙2                                             (67) 

 

Terms of 𝑑𝜃2, 𝑑𝜙2 in Kerr metric is shown in Equation 68, 

where 
𝑎

𝑟2+𝑎2
 and 𝑎 𝑠𝑖𝑛2 𝜃 term can also be seen in linear 

combination: 
 

−𝜌2𝑑𝜃2 − (𝑟2 + 𝑎2 +
2𝑀𝑟𝑎2 𝑠𝑖𝑛2 𝜃

𝜌2
) 𝑠𝑖𝑛2 𝜃𝑑𝜙2  

−𝜌2𝑑𝜃2 − (
  +𝒂 

𝒂
+

2𝑀𝑟𝒂 𝒔𝒊𝒏  

𝜌2
)(𝒂𝒔𝒊𝒏  ) 𝑑𝜙2                   (68) 

 

The 𝑎 in Equation 67 represents a parameter in the 
ellipsoid symmetric coordinate transformation, however, a 
in Kerr metric Equation (Equation 68) represents a spin 
parameter, which is proportional to angular momentum. 
Both 𝑎’𝑠 are equivalent in mathematic perspective and 
used to transform the space-time into ellipsoid symmetry 
with a rotational symmetric z-axis. As 𝑎 → 0, both 
Equation (67) and Equation (68) degenerate into spherical 
symmetry equation (Equation 66).  
 
 
Frame-dragging angular momentum 
 
In physics, a spinning heavenly body with a non-zero 
mass will generate a frame-dragging phenomenon along 
the equator’s direction, which has been proven by Gravity 
Probe B experiment (Everitt et al., 2011). Therefore, an 

extra term 
2𝑀𝑟𝑎2 sin2 𝜃

𝜌2
 in Kerr metric is found in Equation 

68 as compared to the vacuum ellipsoid symmetry in 

Equation 67. As the mass approaches zero 𝑀 → 0, 
Equation 68 degenerates into Equation 67. 
 

In order to describe frame-dragging, Kerr metric can be 
re-written as Equation 69:  
 
𝑑𝑠2 = 𝑔𝑡𝑡𝑑𝑡

2 + 2𝑔𝑡𝜙𝑑𝑡𝑑𝜑 + 𝑔𝑟𝑟𝑑𝑟
2 + 𝑔𝜃𝜃𝑑𝜃

2 + 𝑔𝜙𝜙𝑑𝜑
2 

= (𝑔𝑡𝑡 −
𝑔𝑡𝜙
2

𝑔𝜙𝜙
) 𝑑𝑡2 + 𝑔𝑟𝑟𝑑𝑟

2 + 𝑔𝜃𝜃𝑑𝜃
2 + 𝑔𝜙𝜙 (𝑑𝜑 +

𝑔𝑡𝜙

𝑔𝜙𝜙
)
2

  (69) 

 
The definition of angular momentum (Ω) in frame-
dragging: 

 

Ω = −
𝑔𝑡𝜙

𝑔𝜙𝜙
=

2𝑀𝑟𝑎sin2 𝜃

𝜌2

(𝑟2+𝑎2+
2𝑀𝑟𝑎2 sin2 𝜃

𝜌2
) sin2 𝜃

  

=
2𝑀𝑟𝑎

𝜌2(𝑟2+𝑎2)+2𝑀𝑟𝑎2 sin2 𝜃
=

2𝑀𝑟

𝜌2(
  +𝒂 

𝒂
)+2𝑀𝑟(𝒂 𝐬𝐢𝐧  )

                (70) 

 

So, we see both the 𝑎 sin2 𝜃 and 
𝒂

  +𝒂 
 term in Ω, which 

means d𝑇, 𝑑∅ would have some relation with frame-

dragging angular momentum.   
 
 
Black hole angular velocity  
 
Its close relationship with the black hole angular velocity 
(Ω𝐻) can be easily identified by examining 𝑑∅ term in 
Equation 71.  
 

𝑑∅ = 𝑑𝜙 −
𝑎

𝑟2 + 𝑎2
𝑑𝑡  

Ω𝐻 =
𝑎

𝑟+
2 + 𝑎2

 

𝑓𝑟𝑜𝑚 Δ = 0, 𝑠𝑜𝑙𝑣𝑒 𝑟± = 𝑀 ± √𝑀2 − 𝑎2                               (71) 

 
Base on this derivation, in the future, we will further study 
whether the method mentioned in this paper can be 
extended to other more general cases. For example, 
suppose we start with three functions 

𝑒2ν(𝑟,𝜃), 𝑒−2ν(𝑟,𝜃), 𝑒2𝜆(𝑟,𝜃), 𝑒2𝜇(𝑟,𝜃) as shown in Equation 
(72):  
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𝑑𝑠2 = 𝑒2ν(𝑟,𝜃)𝑑𝑇2 − 𝑒−2ν(𝑟,𝜃)𝑑𝑟2 − 𝑒2𝜆(𝑟,𝜃)𝑑𝜃2 − 𝑒2𝜇(𝑟,𝜃)𝑑∅2  (72) 
 
Besides, as 𝑑𝑇, 𝑑∅ is shown to be related to ellipsoid 
symmetry, frame-dragging angular momentum, and black 
hole angular velocity, which are all rotation parameters, it 
deserves further study if this method could be extended 
to solve the other axial-symmetry exact solutions of 
vacuum Einstein's field equation.  
 
 
CONCLUSION 
 
In this paper, the Kerr metric was derived from the 
coordinate transformation method. Firstly, the Kerr Metric 
was obtained with Boyer-Lindquist in orthonormal frame, 
and then it was proven that it is possible to derive the 
Kerr metric from the vacuum ellipsoid symmetry, and this 
derivation allows us to better understand the physical 
properties of the rotating black hole, such as the frame-
dragging effect, the angular velocity. This deduction 
method is different from classical papers written by Kerr 
and Chandrasekhar, and is expected to encourage future 
study in this subject. 
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