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In this study, a multitask dynamic testing measure concerning meters was developed using the virtual 
meter design software GL Studio in order to measure mental workload under multitasks. We recorded 
subjects’ electroencephalogram (EEG) and analyzed their brain electrical data using spectrum methods, 
brain maps, independent component analysis (ICA), and Lempel-Ziv complexity (LZC) calculation. The 
experimental results showed that the methods appeared to be more motivated on the parietal and 
occipital lobe of the brain. Besides, in the corresponding channels, theta, alpha and beta brainwave 
frequencies were found to be significantly motivated. LZC was also considered as a powerful tool in 
evaluating mental workload, whose value has a close connection with mental workload. This research 
provided a referable experiment design and analysis for studies on the assessment of mental workload 
under multitasks. 
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INTRODUCTION 
 
The meter display system whose function is to undertake 
the human-computer interaction plays an important role in 
complex electromechanical equipment, and it is also an 
important means to get the external environment infor-
mation and to monitor the running status of equipment. 
With the enhancement of modern automation level, the 
information provided by meter display system increased 
greatly. The irrationality of the information form and 
display quantity shown by panels often causes panel 
information shown beyond operators’ tolerance. This will 
lead to visual fatigue and improve the difficulty on 
information identification and judgment, which will further 
cause human-factor errors and threats equipment safety 
(Yao, 1997). 

Since the 1950s, researches on human-machine 
interface have attracted extensive attention worldwide; 
Hick (1952), Hyman (1953) and Fitts (1954) were the 
most important achievement. In the subsequent time, 
researchers explored a lot on human-machine interface 
and they gradually became focused on multi-target and 
multitask     human-    machine    interface.   Phillips   and 
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Repperger (2007) tested on an interface of five levels and 
analyzed subjects’ performance under multitask situation 
quantitatively. In Şenol et al. (2010) research, the best 
natural dialogue between the crew and interface was 
considered while reflecting user perspective to design by 
applying quantitative and qualitative approaches; in this 
way, proper positions of analogue indicators on the front 
of the display panel were determined. Card-sorting and 
multi-criteria decision making algorithms were employed 
as quantitative approaches. The multi-target tracking 
paradigm based on dynamic scene proposed by Pylyshyn 
(1988) has become a commonly used template of 
researches on human’s attention mechanism of limited 
capacity under multi-target tracking paradigm. Wei and 
Zhang (2010) carried out a research on human’s 
cognitive processing mechanism under multi-target 
tracking task using the paradigm mentioned previously. 
Yan et al. (2007) established an evaluation system using 
GL Studio and put forward a virtual evaluation method 
based on a human-machine interface of multiple meter 
display system. These researches provided theoretical 
basis and referable methods on designing human-
machine interface and projects of multitask and multi-
target. 

In 1977, some scholars of NATO convene a meeting on 
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mental workload theory and measurement. In the 
meeting, the definition, basic theory and measurement of 
mental workload were systematically discussed. In the 
subsequent time, a lot of substantive works were carried 
out on mental workload theory and its measurement 
(Moray, 1979; Hancock and Meshkati, 1988). Nowadays, it 
is of great significance to use mental workload 
measurement as a powerful tool in multitask cognitive 
experiment. Luximon and Goonetilleke (2011) have put 
forward a simplified mental workload assessment method 
in their research. Fournier et al. (1999) gave out 
manipulations of task difficulty by examining electro-
physiological, behavioral, and subjective indexes of 
workload when performing multiple tasks. Dussault et al. 
(2005) pointed out that the change of EEG and EOG 
signal during simulating operation may reflect mental 
workload and human’s awareness. Liao (1995) discussed 
the influence of mental workload on subjects’ 
performance and their information processing ability in his 

research under multitask. Yuan analyzed mental workload, 
operating performance, task model and summarized the 
standard of choosing and measuring mental workload. 
Wu and Liu (2008, 2009) assessed human’s mental 
workload based on experimental statistic method under 
multitask using QN-MHP. The information displayed 
intervals and dynamic display frequency were also 
analyzed in this research. 

There are mainly two ways of measuring mental 
workload: Subjective evaluation and physiological mea-
surement. Subjective evaluation includes Cooper-Harper 
rating method, SWAT scale, NASA-TLX scale and task 
index measurement. These methods considered time 
requirements, physical requirements, and level of effort 
as basic elements and test mainly on reaction time, 
speed and accuracy. As for physiological measurement, 
researchers employed EOG, heart rate, EMG and EEG 
as objective means of detecting mental workload. Fogarty 
and Stern (1989) considered the blink duration, blink rate 
and blink amplitude of eye were closely related to brain 
fatigue. Mascord (1992) employed heart rate variability to 
assess mental workload. Although, many physiological 
indicators were used to describe individuals’ mental 
fatigue, EEG has long been considered the most reliable 
standard monitoring mental workload. 

Specific to EEG analysis, the mostly used are FFT, 
wavelet entropy, spectral analysis, independent 
component analysis (ICA) and Lempel-Ziv complexity 
calculation. In 1996, Makeig et al. (1996) first introduced 
ICA as a conventional tool in mental workload analysis. In 
1997, Vigario (1997) collected the brain wave signal of 
children lying with their eyes closed and removed EEG 
artifacts by means of ICA. But they did not analyze the 
effect of ICA denoising quantitatively. Flexer et al. (2004) 
found out that ICA can be employed to separate the 
irregular eye movement artifacts of blind people in 2005. 
Since the definition of complexity was proposed by 
Lempel and Ziv (1976) (known as LZC), Lempel-Ziv 
complexity calculation has made significant progress. Wu 

 
 
 
 
and Xu (1991) for the first time introduced LZC into EEG 
research and found that LZC of EEG was much greater in 
comparison with other known chaotic system (Lorenz, 
Rossler). Researches of these studies provide a more 
effective way in EEG analysis and it is increasingly and 
widely used nowadays. 

However, there get to be little research on multitask 
and multi-information based on the existing cognitive 
models as well as EEG acquisition and analysis 
techniques. It is necessary to assess brain workload by 
establishing multitask cognitive model and employing 
modern methods of EEG analysis on the existing basis. 
In this study, we introduced EEG acquisition into multitask 
and multi-target experimental program of meters. A virtual 
meter designing software GL Studio is used to design the 
program. EEG signal is recorded using a 40 electrodes 
device and was analyzed with the help of spectral map of 
ICA and LZC. We then assess mental workload by 
comparing subjects’ EEG signal under different task 
difficulty of calm state, single-task and multitask. 
 
 
METHODS 

 
Subjects  

 
In this experiment, we chose 10 subjects aged from 20 to 30 years 
old, who are all students from Xian University. Five were males and 
five were females. All of them were in good health and were not 
engaged in long time sports as well.  

 
 
Equipment 

 
In this experiment, a multi-task experimental device used to collect 
the EEG signal from the awareness of the visual information was 
built. It consists of three parts: the simulation of cognitive test 
bench, the EEG collection device and the interactive test system, 
which are shown in Figure 1. The interactive test system and 
simulation of cognitive test bench is used to simulate visual 
perception task on various conditions. The EEG collection device is 
used to collect brain signals in the procession of visual perception 
stimulation synchronously. This experimental device enable us 

collect and extract the EEG signal under single-task or multi-task 
visual cognition program. And the simulation of cognitive test bench 
is multi-screen displayed, which means installing three display 
screens on the multi-screen bracket. 

 
 
Tasks  

 
In this experiment, we designed multi-instrument and multi-task 
program indicating that there are 6 m in every screen uniformly and 
the meters in different screens have the same or similar function; 
the categories of which are horizon; speed meter and pressure 
gauge. The dial plates, the speed meters and pressure gauges 
were all designed to have the safe area on the left, and the 
dangerous area on the right. And every meter has special button to 
control the movement of the pointer. When the pointer moves into 
the dangerous area, the subjects click on the corresponding button 

to make the pointer move from the dangerous area to the safe area. 
As a result of the pointer of the horizon can make the combined 
movement of up and down translation  and  rotation,  every  horizon  
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Figure 1. Simulation experiment devices. 

 
 
 

 
 
Figure 2. Multi-meters experimental program. 

 
 

 
has been designed to have two buttons, which are used to control 
the translation and the rotation separately. When the climb angle, 
dive angle and deflection angle corresponding with the pointer of 
the horizon is outside the normal range, the subjects click on the 
corresponding button to make the pointer move into the normal 
range. The program is shown in Figure 2, the creating platform of 
which is GL Studio and C++ and it can generate applications 
running independently on the end. 

The single-task displayed cognitive experiment is carried out at 
first. The program is designed to have three full-screen displays. 
When we use it to make the experiment, the screens on the right 
and the left was shut off. When the program is running, all the 
meters are at rest. If we click on the total control button, a meter will 
come into running and the subject need to be concerned about the 
state of the movement of the pointer on the screen. When the 
pointer moves into the dangerous area, click on the button to make 
it move back to safe area or normal range. And after that, the 
pointer in the later movement will not come into the dangerous area 
or abnormal range again. At the same time, when clicking on the 
button, another meter will begin to move. And meters achieve to 
linkage with each other by the control between buttons. But on the 
process of the experiment, there is only one meter running into the 
dangerous area on each screen and the task of the subjects is to 
trace the meter and respond as quickly as they can. 

Subsequently, we came to the multi-task and multi-meter 

cognitive program. When it is running, open all the three screens, 
afterwards, click on the total control button and one meter will begin 
to move in every screen. The horizon instrument on the  left  screen 

has two buttons. When the horizon instrument seems to tilt over or 
the climb angle and dive angle are too large, subjects are required 
to make a feedback by clicking on the corresponding button to 
make the pointer move back to normal range. The feedback mode 
of other two meters on the right and the left is the same with the 
single-task. Similarly, the task of the subjects in this program is to 
trace the meter and make a feedback as quickly as they can when 
the pointer of a meter moves into the dangerous area or abnormal 

range. 
 
 
Procedures  
 

At the beginning of the experiment, every subject is required to read 
the description of the experimental procedure. Also, the staff will 
explain the specific experiment procedure to them, including the 

running mode of the program and the operation they need to 
perform to make sure every subject is fully aware of the content of 
the experiment and is able to make the right operation. After this, 
they lead the subjects to soundproof experimental rooms. Then do 
the skin treatment for subjects; connect the EEG collection device, 
inject electrode paste and adjust the channel to a low impedance 
state. After finishing all the aforementioned procedure, lead subjects 
to sit before the experiment table and adjust the location of seats 
according to body condition of different subjects to make sure the 

distance between the subject and the experiment table is 50 cm 
and to help subjects sit comfortably so as to keep the position; do 
not move in the follow-up experiment. 
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Figure 3. The scene used to carry out the experiment.  

 
 
  

  
                          (a)                                               (b)           
 

 

 
 
Figure 4. Electrode location and show up of pole-cap 
wearing; (a) electrode location, A2 is reference; (b) subjects 
wearing pole-cap. 

 
 
 

 
 
Figure 5. Functional division of the brain. 

 

 
 
After the preparation, the staff should train subjects to be familiar 
with the experiment condition and procedures and stress that they 
should concentrate on the task test in the process. Before the 
experiment, let subjects keep calm for two minutes and collect their 
EEG signals on calm condition, then begin the single-task test and 
collect their EEG signals. After this part, subjects have a rest for 5 
min on their seat and try to keep calm; then begin the multi-task test 
and collect their EEG signals. The procedure is shown in Figure 3. 

This program used 40 electrodes, EEG equipment computer 
device and collects EEG signals by electrode caps. The collection 
of computers records the signals after amplifying them by amplifiers. 
The layout of  electrode  channel  is  made  according  to  10  to  20  

 
 
 
 
international combinations. The distribution of EEG electrodes and 
electrode cap is shown in Figure 4. 

In this experiment, the most important information is on ocular 
electrophysiological, parietal lobe and occipital lobe. The distribution 
of joint passages and brain function areas are shown in Figure 5. 
The acquisition channel corresponding with the aforementioned 
areas are HEOG, VEOG, FZ, PZ, CZ, O1, O2 and the data from 
these channels are the most valuable points in the following 
analysis. 

 
 
Data analysis 

 
Analyzing method 

 
Spectral map: EEG spectral map is the mainly used frequency 

domain of the analysis method, with which we can transform rate 
change over time into spectral map of brain wave change over 
frequency. Thus, changes and distributions of EEG brain wave 
rhythms can be directly observed in the map. In quantitative 
analysis of EEG, spectral map is the basis for frequency domain 
analysis. In this study, the power spectral density can be defined as 
follows: 
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In the equation, x (n) stands for a random signal, E stands for 

mathematical expectation. We may get the EEG frequency 
spectrum and some brain maps of corresponding frequencies 
based on the aforementioned equation. 

 
ICA (independent component analysis): ICA is an analyzing 

method belonging to blind source separation. The idea of ICA came 
from the central limit theorem: If the mean and variance of a group 
of random variables are of the same order of magnitude, then the 
result of their interaction must be close to Gaussian. The basic 
theory of ICA can be explained as follows: Assume 

that 1 2( ) [ ( ), ( ), , ( )]T

NX t x t x t x t  
 is an N-dimensional 

observing signal, and 1 2( ) [ ( ), ( ), , ( )]T

MS t s t s t s t  
 stands 

for a group of mutual independence source signals that may 
generate the observing signals. Besides, the observing signal X (t) 
can be generated from the source signal S (t) by multiplying an 

unknown matrix A: 
( ) ( )X t AS t



. As the matrix A and S(x) are 
both unknown, we want to find a linear transformation separation 
matrix W with which we can achieve the following equation: 

( ) ( ) ( )U t W X t W AS t 
 

 in order to use U (t) approximately 
represent S (t) under the assumption that X (t) and S (t) are mutual 
independent. Thus, the signal of different channels of EEG can be 

separated from each other. 

 
LZC (Lempel-Ziv complexity): LZC is a one-dimensional reflection 

of time series. As a non-linear measure who has an independent 
model, LZC represents the rate of the emergence of new patterns in 
a time series. The higher the LZC, the higher the rate of the 
emergence of new patterns and the more complex the dynamics 
activity is. Specific to LZC calculation, Kaspar and Schuster gave a 
computer based method in 1987. They selected two ways of 
generating (0,1) sequence, known as copy and insert, and take the 
number of inserting times when generating the whole sequence as 
complexity. Since EEG is by no means a binary sequence, we need  
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Figure 6. Comparison of spectral maps and brain maps under different task difficulty; (a) idle period, (b) single 

task, (c) multitasks. 

 
 
 
to at first transform EEG by comparing each point with its median. 

Then we may carry out the LZC calculation. 
 
 
Procedure 

  
Pre-processing must be done before analyzing with ICA. The pre-
processing is carried out in NUEROSCAN analysis module. Set the 
filter range 0.1 to 45 Hz and the sampling frequency 500 Hz in 

order to filter the data. As data is recorded using unipolar lead, 
merging EOG signals in the data is necessary, which will merge 
HEOR (Horizontal Electro Oculogram Right) and HEOL (Horizontal 
Electro Oculogram Left) into HEOG (Horizontal Electro Oculogram) 
and VEOU (Vertical Electro Oculogram Up) and VEOL (Vertical 
Electro Oculogram Low) into VEOG (Vertical Electro Oculogram). 
Then DC offset correction was carried out so as to regain the 
amplitude of EEG data to its default state. At last, all the EEG data 
are previewed and severe drift parts are removed. 

In the signal acquisition process, EOG (like eye blinking) may 
have an obvious influence on EEG data recorded by other 
channels, so ocular artifact reduction is also necessary. Select the 
average of at least 20 eye blinking segments as benchmark set the 
threshold as 10 and finish ocular artifact reduction. Then save the 
data by means of task difficulty as calm, single-task and multitask. 
After pre-processing, the data is imported into Matlab and analyzed 
using spectral maps, ICA and LZC calculation. 
 

 

RESULTS 
 
Comparison of spectrums under different tasks 
  
Spectrums of different tasks are significantly different in 
the distribution of power value; the spectral value of idle 
period is in a more disordered manner, while that of 
single-task and multitask is more orderly as well as 
higher. Brain wave can be divided as δ wave (1 to 3 c/s), 
θ wave (4 to 7 c/s), α wave (8 to 13c/s), β wave (14 to 25 
c/s), γ wave (>25 c/s). Select a certain frequency from the 
aforementioned wave segments and find out its spectral 
map. We may see that the motivated area of brain differ a 
lot when comparing spectral maps of different tasks and 
the more difficult the task is, the more motivated it is 
insome areas (Figure 6). 

ICA 
 
Channel of HEOG and VEOG 

 
The comparison of spectral maps of channel HEOG and 
VEOG under three different task difficulties is shown in 
Figure 7. 

During idle period, EOG appeared to be averagely 
distributed in each frequency segment; this may be 
caused by scatter of eye focus position when there is no 
specific task. When the tasks begin, β brain wave gets an 
excitation as task difficulty increases, which may reflect 
that subjects are more excited and mental workload 
increase.  

 
 
Channel of O1 and O2 

 
The spectral maps of channel O1 and O2 corresponding 
with occipital lobe are shown in Figure 8. 

In contrast with EOG, EEG signal of occipital lobe 
reflects that mental workload of this area is low as a 
result of scatter of eye focus position. The signal is 
obviously excited at θ wave, α wave and β wave under 
single-task and multitasks, which means that if more area 
is in excitation, mental workload increases. 

 
 
Channel of FZ, CZ and PZ 

 
The spectral maps of channel FZ, CZ and PZ 
corresponding with parietal lobe are shown in Figure 9. 
On channel FZ, the power of spectral map during idle 
period is obviously lower while that of multitasks is 
significantly higher than both idle period and single-task; 
besides, θ wave and β wave under multitasks are most 
excited. We may get similar results from spectral maps of 
channel CZ and PZ; the difference is θ wave and α wave 
are the most significantly excited wave segments. 
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Figure 7. Comparison of spectral maps of EOG signal, (a) idle period EOG, (b) single task EOG, (c) multitasks 

EOG. 

 
 
 

LZC calculation 
 

Figure 10 shows the average value of LZC under different 
tasks. It explains that the value of LZC under different 
tasks made a small difference except some channels 
such as FT7, FT8, TP7 and TP8. On the other hand, the 
variation trend of all three curves is similar to each other. 
As the difficulty increases, LZC value tends to decrease. 
When viewing the curve of a certain difficulty, the value of 
certain channel like FP1, FP2 and FT7 are significantly 
lower than others. 
 
 

DISCUSSION 
 

The results showed that the active area and active 
degree  differ  a  lot;  the   increase   of   difficult   level   is 

compared by spectrum power and excitement rise (Zhang 
and Zhang, 2008). In our research, occipital lobe and 
parietal lobe are more active when task difficulty 
increases, which was registered as stronger power on 
spectral maps. This is consistent with past researches, 
and the difference reflected in the experiment results is 
much bigger when a comparison is made between the 
single-task and idle period and the multitask and idle 
period. This means that the increase of task difficulty may 
lead to great promotion of mental workload. Besides, we 
deduced that as long as mental workload is under a 
certain threshold, the brain tends to be more active and 
disciplined. 

The difficulty of different tasks may cause difference in 
brain wave excitation. Banding together with the results of 
ICA, α, θ and β, the brain  waves  of  the  single-task  and 
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Figure 8. Comparison of spectral maps of channel O1 and O2; (a) idle period, (b) single task, (c) multitasks. 

 
 
 
multitasks periods are more motivated when compared 
with those of the idle period. On the parietal lobe, α and θ 
wave play the leading role, while on occipital lobe, β 
wave play the leading role. Relevant research showed 
that θ wave is closely connected with oscitancy or 
incautious state, α wave is connected with the relaxed 
state or low level of caution, while β wave means that the 
cautious level has increased and humans may feel 
excited. Dong and Ma (1997) points out in their research 
that wave amplitude reflects the percentage of brain 
source put into the stimulus causing the change in wave 
amplitude. So we may draw a similar conclusion to that of 
spectral maps, which goes that brain tends to be more 
active as task difficulty increases, especially on occipital 
lobe relating to visual information. Additionally, we found 
that spectrum power has to be lower on some channels 
of occipital lobe and parietal lobe under multi-tasks 
compared   with  single  task.  Researchers  showed  that 

EEG signal changes as cautious level decrease (Dement 
and Kleitman, 1957; Matousek and Petersen, 1983): 
Increasing activities in low frequency range lead to 
decrease of amplitude of relating electric potentials. 
Pfurtsheller and Aranibar (1977) first proposed the 
concept of desynchronization: When people are under 
the highest cautious level, some rhythm (for instance, α 
rhythm) will be weakened. This is consistent with the 
increase of task difficulty level which leads to taking more 
precaution. Makeig and Inlow (1993) and Torsvall and 
Akerstedt (1987) in their research said high level of 
cautious means high mental workload. 

The model-independent LZC is a nonlinear dynamical 
measure indicating the rate of appearance of the new 
patterns in a time series. A larger LZC value means a 
higher rate of new symbol appearance or emergence of 
more complex activities whereas, the system is neither 
chaotic nor stochastic, only  those  symbols  affecting  the 
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Figure 9. Comparison of spectral maps of channel FZ, CZ and PZ; (a) idle period, (b) single task, (c) multitasks. 

 
 
 

 
 

Figure 10. LZC distribution under three kinds of task difficulty, idle period, single task and multitasks. 



 
 
 
 
system will be taken into consideration in LZC calculation. 
According to Abásolo et al. (2006) and Freeman (2000), it 
is proper to employ LZC as analyzing method. In general, 
brain activity under different circumstance correspond to 
different neural network complexity (Li et al., 2008), and 
LZC can differentiate subjects’ mental work difference 
under different task difficulty. This follows exactly the post 
proposed conclusion that three-symbol transformation 
can describe system’s dynamic symbols. 

According to the results, we noticed that the LZC value 
of occipital lobe and parietal lobe is higher than that of 
other brain areas under the same task difficulty. Parietal 
lobe functions major in connecting and feeling while 
occipital lobe functions major in visual transportation. The 
recently mentioned areas are mostly used in our research 
and their excitements have been proved in spectral 
analysis and ICA. So we implied that LZC calculation can 
be used as a standard of determining brain excitement. 
Furthermore, perhaps brain excitement and mental 
workload may improve as LZC value increases. But, the 
result is opposite to Daniel Abásolo’s conclusion that LZC 
has little to do with external conditions like noise and 
need to be explored in further research. 

The cognitive experiment program in this study needs 
subjects to make judgment using only their brain; this is a 
complex cognitive process. According to the results of 
LZC calculation, LZC value of almost all channels reduce 
upon the increase of task difficulty, especially of channels 
of FP1 and FP2 on frontal lobe. The result is opposite of 
our expectation and why is that? Some researcher used 
to propose a theory that amplitude synchronous may 
cause the activation of internal concentration (Li et al., 
2008). The so-called internal concentration means a state 
in which thalamencephalon cortex cell path is activated 
and cause the cortex been isolated from the environment 
(Fernández et al., 1995). So we infer that, proper 
increase on difficulty level lead to a more regular activity 
of brain and this kind of regularity causes brain work in a 
more harmonious state which at last leads to LZC 
reduction. Besides, according to Liao’s (1995) research, 
as mental workload arose to a high level, humans may 
distribute their attention automatically to lower mental 
workload; as such, whether or not the reduction in LZC 
value has relation with the phenomenon mentioned in 
Liao’s research need to be questioned in future study. 
 

 
Conclusion 
 
In this study, we established multitasks visual cognitive 
experimental programs in GL Studio, which is a software 
used to design visual meters, and record subjects’ EEG 
signals while executing tasks. Then we wipe off the noise 
and ocular artifacts in recorded signals, and carry out 
independent component analysis, draw spectral maps 
and calculated LZC value. We found in our study that 
occipital lobe and parietal lobe tend to be more active by 
the increase of task difficulty in spectral analysis and ICA. 
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Particularly, this kind of activation became more obvious 
on α and β segments of brain wave. We also considered 
that LZC calculation can be employed as a powerful 
mean in analyzing brain wave signal. In conclusion, the 
increase of task difficulty may lead to a more regular 
behavior of brain and increase of mental workload. 
Though some questions are yet to be discussed in our 
research, we proposed a referable experimental idea and 
analyzed the method of EEG recording in mental 
workload analysis after all. 
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