
International Journal of Physical Sciences Vol. 7(9), pp. 1482 - 1492, 23 February, 2012
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.081
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Workload management: A technology perspective with
respect to self characteristics

Abdul Mateen1*, Basit Raza1, Muhammad Sher1, M. M. Awais2 and Norwatti Mustapha3

1
Department of Computer Science, International Islamic University, Pakistan.

2
Department of Computer Science, Lahore University of Management Science, Pakistan.

3
Faculty of Computer Science and IT, University Putra Malaysia, Malaysia.

Accepted 19 October, 2011

Rapid growth in data, maximum functionality and changing behavior tends the workload to be more
complex. Organizations have complex type of workloads that is very difficult to manage by the humans
and even in some cases, this management becomes impossible. Human experts take much time to get
sufficient experience so that they can manage workload efficiently. The versatility in workload due to
huge data size and requests (workload) lead us towards new challenges. One of the challenges is the
identification of the problems queries and the decision about these, that is, whether to continue their
execution or stop. The other challenge is how to characterize the workload, as good configuration,
prediction and adoption is fully dependent on characterization of the workload. Correct and timely
characterization leads to managing the workload in an efficient manner and vice versa. In this scenario,
our objective is to produce such workload management strategy or framework that is fully autonomic.
This paper provides some basis and achievements about the tools that exhibit autonomic computing
(AC) in workload management with respect to self-characteristics. We have categorized the workload
tools to these self-characteristics and identified their limitations. Finally the paper presents the
research done in workload management tools with respect to workload type and autonomic computing.

Key words: Autonomic computing, workload, optimization, configuration, prediction, organization, adoption.

INTRODUCTION

The systems, which can execute, adjust and tune
themselves in the presence of workload, are called
autonomic computing (AC) systems. The theme of AC
systems is to focus on what rather than how. The term
autonomic computing was first time introduced by the
IBM in 2001 to describe the systems that can manage
themselves without any human interaction. The
inspiration of the AC is taken from the human nervous
system that performs different activities without conscious
thought. An AC system would control the functioning of
computer applications and systems without or minimal
human intervention, in the same way human autonomic
nervous system regulates body system without conscious

*Corresponding author. E-mail: abdulmateen@fuuastisb.edu.pk
Tel: (+92)3335275393

input from the individual. The basic purpose of the AC is
to create such systems that have the ability to run
themselves with hiding the complexity from the user
(Horn, 2001; Parashar and Hariri, 2005). The concept of
self-management and adoption in computing system is
very old. In the past, most processes are automatic but
afterward it has been realized that the processes should
be autonomic (Huebscher and McCann, 2008; Beg et al.,
2010; Ejaz and Baik, 2011).

Automatic means pre-programmed task execution of a
system, that is, system remains in working until
something goes wrong and human intervention is
necessary for further execution. While autonomic means
self-regulation, here system response is also automatic,
but modulated and system can handle problems itself
with no human intervention (Mateen et al., 2008). AC is
an evolutionary process rather than revolutionary
process. The implications for computing are a network of

organized computing components that give us what we
need, when we need it, without a conscious
mental/physical effort. AC is a self-managing computing
model. The basic purpose of AC is to create such
systems that have the capability to run themselves and
hiding complexity from users.

AUTONOMIC WORKLOAD MANAGEMENT

In workload management, the main functions are
workload frequency patterns, composition, intensity and
required resources. The complexity in DBMSs increases
due to the various functionality demands from the users,
complex data types, diverse workload and data volume
are increasing with the passage of time. All these factors
cause brittleness and unmanageability in DBMS. To
handle this problem, organizations hire number of expert
database administrators (DBAs) and spending lot of
money to get expected improvement, throughput and
response. As shown in Figure 1, usually DBA have to
take care of all the tasks such as making policy for
workload priorities, memory, configuration and other
database management system (DBMS) related tasks.
The cost of hardware is decreasing but the cost of
management is increasing. Performing workload
management activities manually, by hiring experts
causes increase in total cost of ownership (TCO).
Moreover with the advent of distributed systems and data
ware house, it is become difficult and even some cases
impossible for DBA to manually organize, optimize and
configure day to day tasks. To achieve better workload
management, executing queries may be stopped for a
while and later these can be restarted. However, when
queries will be stopped then the executed work will be
lost even that may be about to complete and will be
executed from the scratch if essential.

In workload management, there are three units that are
workload, resources and objectives that are co-related
with each other. The workload uses some resources to
meet the objectives of an organization or we can say
resources are allocated through different approaches to
workload which has some management objective.
Workload has evolved through three phases which are
capacity planning, resource sharing and performance
oriented workload and the style has been changed from
offline to online. In capacity planning workload
management, the main purpose was cost sharing; in
resource oriented the idea was maximum resource
utilization while in case of performance oriented, the
focus is on the business objectives. The style of workload
has been changed from the offline analysis to online
adaptation. The adaptation of workload consists of
workload detection and workload control. Workload is
detected through two methods, one is workload
characterization and other is performance monitoring.
When performance degrades, the characterization

Mateen et al. 1483

Figure 1. Workload management activities.

method is used by tracking the workload changes
proactively while the performance monitoring method is
reactive, which take action when performance has been
degraded. Three techniques are used to derive workload
control plan, which are performance model, heuristic and
threshold technique.

The unmanageability in workload management can be
handled by making the DBMS to self-manage
(Autonomic) that can perform its tasks such as memory,
configuration, storage management and resource
allocation automatically according to the current
environment. The benefit of autonomic computing is to
manage complexity itself according to the set goals and
objectives. Autonomic computing contributes an
important role in managing systems, database
management systems and workload management.
Workload management is a main feature in DBMS and
should be autonomic to improve the efficiency of DBMS.
Different techniques, models and tools have been
developed by different vendors and practitioners to
handle workload autonomically. These tools are about
workload scheduling, multiprogramming, prediction,
adoption and resource allocation. The technology of
autonomic computing in workload management is used to
mange the workload in an efficient and responsive way.
There is need of workload manager that manage
workload without affecting other requests, efficient
resources utilization and handle all other matter related
with workload. The autonomic workload manager will
perform these tasks by collecting information about
workload type, intensity, resource demand etc with
minimal human intervention. This autonomic technology
has a high potential to be incorporated in current DBMSs.

1484 Int. J. Phys. Sci.

SELF-MANAGEMENT IN AWM

Autonomic workload management should have self-
optimization, self-configuration, self-inspection, self-
prediction, self-organization and self-adoption features.
Self-optimization in workload management exhibits that
all task related with workload must be executed in an
efficient manner. In order to achieve efficiency in
workload management, configuration of different
components should be performed in self-manage and
appropriate way. Self-inspection in autonomic workload
management supports better decisions making by using
the knowledge of its resources, limits, intensity etc. Self-
prediction in workload management helps to forecast the
different aspects such as resource demand, workload
frequency and memory requirements etc for the future.
Self-organization in autonomic workload management
allows reorganizing and restructuring the layout of data
and indexes in order to make improvements. Self-
adoption allows adopting the changes in workload
according to the available resources and environment.
Autonomic workload management has the following
characteristics:

Self-optimization

Self-optimization is the characteristic that is responsible
to execute the task or utility in an efficient manner. In
case of DB workload, self-optimization is the way to
execute the DB workload in an efficient and organized
way according to the available resources and
environment. Much of the research has been done in the
context of workload management with respect to self-
optimization. In the next paragraph, available workload
optimization techniques in DBMSs and DWs would be
discussed.

Oracle database resource manager (ODRM) (Rhee et
al., 2001) allows the DBA to logically divide the workload
into distinct units and allocates CPU resources to these
units without extra overhead. During peak hours OLTP
workload should be given preference over DSS queries
and vice versa. ODRM has scheduling mechanism that is
used for fixed time interval and controls the number of
active sessions executing at a time. When the available
slots for active sessions are filled with new sessions, the
remaining sessions will be queued until some slot is
available. Through ODRM, administrator can define and
set the scheduling policies for workload based on the
predicted execution time of a query. The major
components of ODRM are Resource Consumer Group,
Resource Plan and Resource Plan directive.

The research (Mumtaz et al., 2003, 2008, 2009)
discussed the impact of query interaction over the
workload and introduced a framework named as Query
Shuffler (QShuffler) and shown in Figure 2. The proposed
framework schedules the workload by considering the

Figure 2. Query Shuffler [Mumtaz et al., 2009].

impact of queries. Requests are given by the users in the
form of queries; the QShuffler classifies these queries
according to their type and arranges them in an efficient
way. The QShuffler adopts the non-preemptive
scheduling technique and minimize the dropping requests
using shortest remaining time first scheduling technique.
It is evaluated with TPC-H workload in DB2.

BI Batch manager (Mehta et al., 2008)) is introduced
for enterprise data ware house that take queries in the
form of batches. It consists of three components which
are admission control, scheduler and execution control.
Admission control works on the basis of memory
requirement in the form of batches. A batch consists of
those queries whose memory requirement is equal to the
available memory of the system. For scheduling, the
authors proposed that the query with maximum memory
requirement will have the highest priority. The manager
uses Priority Gradient Multiprogramming (PGM) to
prevent under load and over load problems. Finally some
experimental results are discussed to evaluate
performance of BI batch manager.

In Oracle, the automatic SQL tuning is performed
through query optimizer and SQL tuning advisor
(Dageville et al., 2004). Query optimization has great
importance especially in case of complex workload. The
SQL Tuning Advisor is an interface between optimizer
and user. It generates tuning recommendations for SQL
statements (workload). These recommendations are
provided to user, who either select or reject. When user
selects recommendations, it will be stored in SQL profile
that is further utilized by Oracle query optimizer for
generation of best query execution plans. SQL Tuning
Advisor makes different decisions on basis of information
that is provided by the query optimizer, Automatic
Database Diagnostic Monitor (ADDM) and Automatic
Workload Repository (AWR).

Mehta et al. (2009) define the design criteria that make
a Mixed Workload Scheduler (MWS) and use it to design
rFEED, that is, MWS that is fair, effective, efficient, and
differentiated. They proposed a non-preemptive approach
for scheduling as for them it is expensive to preempt
small queries that make the bulk of a BI workload. The
approach uses optimizer’s estimated execution cost as
an approximation as authors thought that approximation
is sufficient and no need to use precise value. Moreover,
a single queue for scheduler and multiple queues for
execution are used. They also assumed that all queries
have same normalized service level. The authors
simulated real workloads and compare it with models of
the current best of breed commercial systems.

Surajit et al. (2007) proposed a framework to stop and
restart the queries during their execution to manage the
workload efficiently. The restart approach re-executes the
stopped query from the position where it was stopped.
This technique does not save all the executed information
but save only the selected information from the past
execution to reduce memory overhead. This method also
reduces the running time of re-executed queries. The
proposed technique is validated by making experiment
over real and benchmark data (TPC-H).

A technique for query suspension and resumption
(Chandramouli et al., 2007) with minimum overhead is
discussed where the author proposed induction of
asynchronous checkpoints for each cardinality in a query.
Authors proposed an optimized plan for suspension
which dumps the current state to disc and going back to
previous checkpoint. The optimized plan performs its
tasks (suspension or resumption) with less overhead by
observing the time constraint during suspension. The
proposed approach is implemented in PREDATOR tool.
The technique in Query Suspension and Resumption has
proven experimentally for simple and heavy workload and
it is observed that it meets suspend time constraint and
thereby reducing the overhead. The technique uses
hybrid approach for query suspension where suspend
time overheads are negligible and due to this, better
results can be seen. The memory wastage is higher in
previous techniques due to switching points and shows
worse results for unexpected suspend.

Schroeder et al. (2006) proposed external scheduling
technique for OLTP workload. To select the appropriate
MPL, they identified main parameters and used feedback
controller to select the MPL automatically that is based
on queuing theoretic model and Markov chain. Priorities
are used for external scheduling. The technique is
validated through experiments and observed that external
scheduling can be equally effective to internal scheduling
when suitable MPL is selected.

QShuffler (Mumtaz et al., 2003, 2008, 2009) considers
the impact of queries over each other as it has vital role
in performance and proposed an experimental technique
to handle query interaction problem. QShuffler gives
optimal solution for scheduling of workload as it is based

Mateen et al. 1485

on linear programming. It gives four times performance
over the FCFS scheduler of database systems. However
in QShuffler, the large jobs have to wait for a long time
even these are of higher priority as it uses SJF algorithm
for scheduling. The average execution time is larger as
QShuffler uses non-preemptive SJF approach. Moreover
this approach can be improved if the service level
objectives (SLOs) are incorporated with scheduling
algorithm. BI Batch Manager (Mehta et al., 2008)
executes the workload in the form of batches to avoid
thrashing and provides the optimal solution for all types of
workload. This approach do not require any changes in
the internals of DBMS to manage small and heavy
workload .The manager gets benefit of the added
predictability of queries; stabilize the system and less
sensitive to estimation errors. It uses feedforward loop
that stabilizes the system (from underload or overload)
with maximum ability to tolerant the prediction errors. In
Feedback control, technique samples the performance
metric and controls the incoming request optimally. When
performance metric exceeds from the threshold, the rate
of admitting requests reduces and vice versa. It gives
high throughput for commercial and enterprise class
DBMS; however it has no ability to handle interactive and
ad-hoc queries. Dynamic approach should be adopted as
the workload varies from time to time. The sub-batches
are created on the basis of memory only. As the query
with largest memory gets higher priority so the queries
with small memory will wait for a long time. Due to this
reason, throughput decreases and starvation occurred.
As the PGM executes the first query which requires the
largest memory, the same problem seen with LMP will
also occur in PGM. The suggested methodology in Mehta
et al. (2009) uses non-preemptive scheduling scheme
that gives very poor results for time critical systems due
to its poor responsiveness and ultimately there is a
chance of starvation and hanging. Authors used the
approximate values that never give the actual results.
Optimizer’s estimated execution cost is used but in real
life approximate values never give the actual results.
Single queue is maintained for scheduling, so global
optimization cannot be achieved. The proposed
methodology assumes the same service level but in real
life, the workload or queries do not have the same
service level. The approach set the MPL statically and
does not consider the interaction among different queries.
SQL Tuning Advisor (Dageville et al., 2004) improves the
execution plans through SQL Profiling concept; and on
the basis of cost-based access paths and what-if
analysis, it generates tuning recommendations for the
incoming workload. It has a very strong analysis
capability where it performs a number of analyses such
as estimate, access, parameter setting, statistical and
SQL structure analysis. Whenever query optimizer fails
due to heavy or complex workload; it assists by
stabilizing the system and generating the query execution
plans. The discussed approach in Chaudhuri et al. (2007)

1486 Int. J. Phys. Sci.

is limited to handle single query execution plan (QEP)
and does not consider parallel QEPs. There is no
dynamic way in proposed technique to maintain the
restart plan during the modification of source records
(past executed records). The technique proposed in
Chandramouli et al. (2007) solves the optimization
problem by using mixed-integer programming; however
after query resumption, the technique does not re-
optimize the given query. As compared to the previous
approaches, this technique allows the suspension of the
whole query, due to this memory wastage is less as
compared to previous techniques. Schroeder et al. (2006)
provided a mechanism that selects the right MPL value
on the basis of only two parameters, that is, disc and
CPU. The technique does not consider the impact of
queries on each other. The low priority transactions are
executed only when there are no high priority
transactions. Moreover, the paper does not provide a
mechanism to give priorities to different transactions. The
technique improves the high priority transactions by the
factor of 12.1 while the low priority average suffer is
about 16%.

Self configuration

Database tuning advisor (DTA) (Agrawal et al., 2004) is
an automated offline physical database design tool in
SQL Server 2005. DTA provides physical design for a
given workload and recommends horizontal partitioning,
materialized views (MVs) and indexes. It produces script
for the implementation of recommended physical design.
Whenever DTA encounter any workload, it provides the
recommendation by performing four steps. First,
workload is parsed and compressed. After that each
query is selected from a given workload and by using
cost based model it provides suitable candidate
configuration. Then in merging best step, one physical
design structure is selected among the candidates
configuration created in the previous step. In last step,
enumeration is done by taking the union of the
candidates as produced in last two steps and at the end it
provides the final physical database design using Greedy
(M, K) search scheme.

In Oracle, Index tuning wizard enhanced as SQL
Access Advisor (SAA) (Oracle Corporation, 2007) as
shown in Figure 3. On the basis of current workload, SAA
recommends the indexes (including bitmap, function
based and B-tree indexes), MVs and partitioning of
tables, indexes, partitions, and materialized views. It has
found that in a very short time and effort, the already
tuned system can be tuned through SAA. It takes the
contents from SQL cache and after analysis selects the
appropriate indexes and MVs with possible benefits. It
also performs a quick tune using a single SQL statement
and how to make/ change materialized views.

DB2 Design Advisor (Zilio et al., 2004) is a tool that

Figure 3. SQL Access Advisor [Oracle Corp., 2007].

automatically recommends physical design features for
any provided workload that consists of set of SQL
statements, which may include queries like updates,
insert and delete etc. These physical design features may
include selection of indexes, materialized views, shared-
nothing database partitioning and multi-dimensional
clustering of tables; only the DB2 Design Advisor
recommends these four features. It provides a set of
recommendations for selected features that reduces the
total cost of workload within given disk space. Design
Advisor provides candidate solutions and evaluates these
solutions by making use of DB2 optimizer. Design
Advisor has built in compression feature for scalability.
Due to this feature, even the size of workload grows, the
execution time does not increase exponentially unlike
Index Advisor. The compression is performed only when
heavy workload is encountered and Design Advisor feels
that its analysis cannot be performed in finite time.

QUIET: Continuous Query-Driven Index Tuning (Sattler
et al., 2003, 2007) is an online and predictive approach to
handle workload. It selects the effective indexes that are
already defined or appear to be beneficial. It predicts the
benefit of each candidate index and selects the top
beneficial index set. QUIET tracks the most recent
queries that can be affected due to the candidate
indexes. After selection of best indexes, if the benefit of
new index set is greater than the pre-defined threshold
then the older indexes are replaced with new ones.
QUIET reduces the overhead of index creation by
performing index creation and query execution at a time.

Continuous On-Line Tuning (COLT) (Schnaitter et al.,
2007, 2006) is a framework that continuously examines
the workload (incoming queries) and proposes the
indexes to make physical design more valuable. COLT
perform index selection in three stages, first builds a

model of current workload, second calculates the
estimation of each candidate index and finally selects the
best one. COLT collects statistics and allocates the
profiling resources where these are required and reduces
the overhead of online tuning. It performs extensively
when workload change and slows down when workload
is already well tuned. It regulates itself on the basis of
heuristics. COLT is a separate component, which works
parallel to the query optimizer. The proposed framework
is implemented in PostgreSQL and found very effective to
build indexes.

DTA (Agrawal et al., 2004) provides the integrated
physical design recommendations for indexes, MVs and
horizontal partitioning. DTA is scalable to large databases
and can manage heavy workload using workload
compression and reduced statistics creation techniques.
It also allows DBA to specify his/her own manageability
requirements with performance. For I/O, it provides
maximum scriptability and customization through XML
schema. However, DTA sometime generates bad results
like when there are more than half of the columns in a
table are multiple indexes. DTA provides the facility to
DBA for iterative tuning and recommendations. So he can
modify the previous recommendations and configurations
for a certain workload until he is satisfied. DB2 Design
Advisor (Zilio et al., 2004) is used to recommend the
indexes, MVs, shared-nothing partitioning and
multidimensional clustering of tables and over a
benchmark baseline it has improves the performance of
the workload. It has a built in module to reduce the
current workload thereby enhancing the scalability. When
the workload is compressed to maximum then there will
be performance degradation; however design advisor
reduces the maximum execution time with medium
compression level. It has been proven experimentally that
Design Advisor enhanced the performance up to 100%.
SQL Access Advisor accepts the workload and provides
the recommendations for indexes and Mvs that are
beneficial for data access. The aforementioned tools are
used for the physical database design only; such type of
improvement and enhancements can also be made for
logical design. Unlike DB2 Design Advisor, there is no
such provision of clustering of tables in DTA and SQL
Access Advisor. COLT (Schnaitter et al., 2007, 2006) is a
predictive workload management approach where the
benefit is calculated for individual indexes. The
effectiveness of the index is calculated by subtracting the
materialization cost from the predicting benefit. COLT has
some overheads such as when selecting the best
indexes for a given workload; it performs the what-if calls
to query optimizer. However, COLT up to somehow
reduces this cost by enforcing the limits on what-if calls.
This limit can be increased or decreased according to the
current workload. COLT claims to be online but it sets
many parameters offline. Another major drawback in
COLT is that it is limited to index and has no ability to
suggests other physical design features such as

Mateen et al. 1487

materialized views, partitioning etc. Moreover, it suggests
the single attribute indexes without considering the index
correlation. While in real cases, multiple attribute indexes
have much more benefits over the single attribute
indexes.

Self-inspection

Query progress indicators are used to provide the step-
by-step status of a query execution. Single Progress
Query Indicator (Chaudhuri et al., 2005) is proposed with
a graphical interface for relational DBMS that keep the
track of work completion and estimate the remaining
execution time. It starts its working by taking estimated
cost from the query optimizer and calculates the
remaining query execution time using statistics. It also
monitors the query execution speed continuously and the
remaining query execution time is estimated by dividing
the estimated remaining query cost over the query
execution speed. This indicator proposed a technique for
single query and do not consider the impact of one query
over the others one. So during the estimation of
remaining time, this technique considers the load and
query progress in isolation.

A multi-query progress indicator (Luo et al., 2006) has
been proposed which represents the progress of running
queries and considers the impact of queries on each
other as oppose to the previous techniques of single
query progress indicators. The technique of Multi-query
PI works by considering the remaining execution time of
concurrent queries with available statistics and predicts
the future execution speed of incoming queries. On the
basis of estimation, it can also predict the future queries;
it has the ability to manage the current workload
efficiently. The indicator not only provides the
visualization of the running queries but helpful to manage
workload efficiently. This technique takes workload
management problems as input and provides their
solution through the information as provided by Multi-
query PI. The proposed technique for multi-query
progress indicator is implemented in POSTGRE SQL and
examined with remaining query execution time and
workload management.

DB2 Query Patroller (QP) (IBM Corporation, 2003,
Lightstone et al., 2002) is a management tool, which is
used to streamline the requests according to available
resources and workload. It is responsible to accept
workload from user and analyze it. On the basis of
analysis, it prioritizes and schedules the workload
according to different query classes. A class is build by
considering cost range and Multi Programming Level
(MPL) threshold. Cost range is provided by the query
optimizer that calculates the resource demands. MPL
threshold is the maximum number of requests in a class
that can execute in one time. Remaining queries are
placed in a queue when the threshold level is reached

1488 Int. J. Phys. Sci.

and are placed for execution in a class when threshold
level falls. It also gives information to user about the
status of the tasks. QP provides sufficient resources for
given workload and by using profile (that is created by
administrator) saturations for long terms queries can be
avoided. QP controls the flow of requests proactively. It
provides the information about the completion of request
and finds trends of queries, workload of users as well as
the frequently used indexes and tables. QP enhances
performance by monitoring the system utilization,
canceling or rescheduling the queries and identifying the
trends of database usage. Query submitter uses QP to
monitor submitted queries, store query result for future
perspective and query submission customization.
Submitter assigns higher priorities to some user so that in
the class, their queries run with less delay. QP suspends
high load queries so that they can be cancelled or
scheduled to run after peak hours and track the query
process. By performing these steps, the smaller queries
may not stick and system recourses are used properly.
QP is based on client and server architecture and
consisting of three components. These components are
Query Patroller server, Query Patroller Center and Query
Patroller command line support. DBA uses QP to assign
privileges of resources at user and system level.

REDWAR (RElational Database Workload AnalyzeR)
(Yu et al., 1992) is an offline tool for DB2 environment,
which is used for the characterization of SQL trace,
provides structural information and statistics of the query
under execution. REDWAR analyzes and classifies the
data. During analysis, it uses statistical summaries
(correlation, distribution, variation etc) and runtime
behavior of the workload. The report generated by
REDWAR can be used to plan the physical design and
build benchmark workload. However REDWAR has no
functionality to recommend physical design. It increases
the efficiency of database system by identifying the
criteria for a query.

A single-query progress indicator (PI) (Luo et al., 2004)
often provides bad and wrong estimates. As in most of
the concurrent queries execution, one query can
significantly slow down the progress of other query. In
single query PIs, greedy algorithm is used to speed up
the process, where an optimal victim query is selected
and the next optimal victim query is chosen. The process
continues up to get all the victim queries. The technique
in Luo et al. (2006) is the first proposal of a multi-query
progress indicator. As compare to single query PIs, the
Multi-query Progress Indicator considers the impact of
concurrent queries over each other and predicts the
incoming queries with priority and cost. The information
provided by these indicators is helpful for workload
management tools to take more intelligent decisions. The
indicator is able to predict the accurate future queries
even when initial estimates are wrong by detecting and
correcting their estimates. It monitors the system at all
times and manages the workload more dynamically.

Multi-query PI is adoptive as it revises its decisions when
it found some significant change as compared to
predicted results. This adaptive behavior of Multi PI
shows the consistency with the trends of automatic and
autonomic computing. Query Patroller (IBM Corporation,
2003; Lightstone et al., 2002) monitors the given
workload; perform analysis and prioritize it schedules for
the incoming requests from the users. It limits the flow of
long running queries to avoid saturation and ensures
better resource utilization on the basis of profile (created
by the administrator). REDWAR (Yu et al., 1992) is
characterization tool for DB2 environment and assists the
physical database design process. However, it does not
provide the recommendations for physical design. Table
3 represents the techniques and model for workload self-
inspection with other attributes.

Self-organization

Self-organization is the characteristic of DBMS to
reorganize and restructure the layout of data and indexes
dynamically. Research in the area of self-organization of
workload management has been carried out by a number
of researchers. Here, we are discussing some of these.

A tool Disk Array Designer (DAD) (Anderson et al.,
2005) is used to configure the storage system. It is used
to assist administrator in taking the decisions (using
device model) about the physical design and design
automation process. The algorithm used by DAD selects
the best design among possible design choices using
best-fit bin packing heuristic with randomization
technique. This designer not only defines the array but
also performs its configuration and storage for application
data. DAD is evaluated by performing experiments over
mix workload and found that it has the ability to handle
critical configuration (low or high level) tasks. Moreover, it
also produces near-optimal plan for the design of the
storage system with speed and precision.

An adaptive QoS management technique is discussed
by Krompass et al. (2008) where they used economic
model that is used to handle individual request of BI and
OLTP workload proactively. They provide a systematic
way to arrange different requests by dividing these into
different classes based on cost and time limit. They also
proposed a model which calculates the cost of a request
by differentiating underachieving and marginal gains of a
Service Level Objective (SLO) threshold. The
effectiveness of framework is determined by performing
experiments on different workloads.

A Priority Adaptation Query Resource Scheduling
(PAQRS) Algorithm (Pang an adaptive QoS management
technique, 1995) is based on Priority Memory
Management (PMM) Algorithm and deals with multi-class
query workload. This algorithm reduces the missed
deadlines according to the miss distribution defined by
the administrator. The algorithm works by allocating

memory and assign priorities by considering resource
usage, workload characteristics and performance
experienced. Whenever the workload change, new
multiprogramming level is calculated, memory
reallocation and priority adjustment is done accordingly.
Two techniques a miss ratio projection and resource
utilization heuristics are used to calculate new MPL. In
case of miss ratio projection method, previous MPL and
miss ratio are used as parameters.

DAD (Anderson et al., 2005) searches the best design
by using the best-fit bin packing heuristic with
randomization and backtracking techniques; and
estimates the performance of storage system through
device models. Administrators can get the optimal
solution by comparing their own storage system design to
DAD design. Administrator may make changes in some
storage part by DAD solution through answering the
“what-if” questions. DAD provides the near optimal
solution, as the storage design process is NP-hard
problem. DAD provides the automatic adoption as well as
designs to administrator. The DAD algorithm is limited to
the design of storage system and can handle only 1-tier
architecture. The framework provided for QoS in
workload management (Krompass et al., 2008) is
beneficial for OLTP and BI workload. The framework is
scalable as it can implement the new workload
management concepts with already previously
implemented policies. The framework uses economic
model with two economic cost functions (Opportunity
Cost, Marginal Gains), where penalty information is
added with the queries. The penalty information is used
to make the efficient order of pending query execution.
The scheduling policy used for OLTP workload in this
framework is enhanced by considering the combine effect
of priorities and service level objectives rather than
considering merely priority. PAQRS (Pang et al., 1995) is
used to schedule the complex type of workload and
reduces the number of missed deadline thereby making
the efficient use of system resources. It has bias control
mechanism, which regulate the distribution of missed
deadlines among different query classes. The MPL and
memory is allocated on the basis of regular and reserve
group quota. The priority of regular queries is higher than
reserve queries. By doing this, PAQRS make
adjustments between the miss ratio and the target
distribution. PAQRS cannot handle transactions and is
limited to workload consisting of mix queries. Its’
performance degrades with the increased workload
fluctuations. So the adoption mechanism of PAQRS is
not up to the mark and need to be improved.

Self-prediction

DB Resource Advisor (Narayanan et al., 2005) is used to
predict the response time and throughput dynamically.
The advisor predicts the workload using what-if model
without using configuration description. This will help

Mateen et al. 1489

advisor to guess about the status of the resources. The
detailed architecture of Resource Advisor is shown in
Figure 6. The authors identified the components required
for self-prediction which are low level instrumentation,
end to end transaction tracing and parameterized models
of hardware resources. It provides accurate trends of
response time in transactional tracing. They performed
experiments on OLTP workload and observed that the
Resource Advisor accurately predict the changes in
workload.

The research devised a QoS controller for E-commerce
applications (Menasce et al., 1999, 2003) that has the
ability to manage work load by adjusting different
configuration parameters. The adjustments are done
through the QoS Controller by considering three
performance goals such as average response time,
average throughput and probability of rejection. Menasce
et al. (1999) introduces a technique for characterization
and generates workload models for E-commerce
environment. They introduced a CBMG (Customer
Behavior Model Graph) or state transition graph. This
model graph represents similar navigational pattern for
group of customers who perform same activities. Then
the workload model and its parameters are identified and
presents clustering algorithm for workload
characterization. At the end, this technique is evaluated
with different experiments. Menasce et al. (2001)
improves the QoS level in E-commerce application by
dynamically monitoring and tuning. This technique
identifies best configuration parameters by combining hill
climbing technique with analytical queuing model. They
perform experiments to evaluate their technique by
making comparison of QoS levels. In paper (Menasce et
al., 2003), authors have design controllers that use
analytic performance models with combinatorial search
techniques. This modeling technique is used to identify
the best configuration for the given workload. Their model
is used to predict QoS parameters of workload. They
show effectiveness of their technique through simulation
and experiments.

The Resource Advisor (Narayanan et al., 2005)) is
presented with a modular architecture in which CPU,
buffer and storage models are integrated to predict the
response time and throughput by identifying the required
key components. Authors have taken the advantage of
end-to-end tracing technique in visualization and
understanding performance of the system. Resources are
properly allocated on the basis of continuous monitoring.
As compare to the resource advisor, current DBMSs lack
of CPU, buffer and disk models. By using these models,
Resource Advisor provides an accurate prediction and
best performance results. When the size of buffer pool is
lower then the Resource Advisor has high overheads per
transaction. Due to continuous monitoring, the CPU
overhead is 6.2% for online and 1.2% for offline
execution. This overhead can be reduced by using some
other appropriate techniques. Finally, the tool is evaluated
through a prototype implementation in SQL Server however

1490 Int. J. Phys. Sci.

it has the ability to incorporate with some other DBMS.
There will be maximum session drops in the
characterization technique (Menasce et al., 1999) when
there are huge sessions or maximum load. Moreover the
technique has no mechanism to manage or recover these
drop sessions. The technique for QoS of E-commerce
(Menasce et al., 2001) workload can handle dynamic
workload and short-term fluctuations. The technique uses
heuristic optimization with predictive queuing model and
provides better results. It uses reactive approach rather
than proactive. The techniques uses hill climbing
technique for searching but when it stuck, the sub-optimal
solution will be achieved. The QoS Controller maximizes
the throughput up to 88% on average. When control
interval level is less than or equal to 11, QoS controller
do not exhibit any performance; however when control
interval exceeds 11, performance increases up to 95%.

Self-adoption

Self-adoption or adaptation is the characteristic of
ADBMS that is used to adopt the new changes according
to the available resources and environment. In case of
workload, self-adaptation is the way to adopt the given
workload in an efficient and responsive way according to
available resources and environment. Number of
researchers studied workload adoption in DBMSs. The
literature that fall in self- adoption category is discussed
subsequently.

Resource Governor (Microsoft Corporation, 2007) is
introduced in SQL Server 2008 that has the ability to
manage workload and resources with business
intelligence features. It provides a consistent, balanced
and predictable response to users by imposing limits on
resource consumption. It provides performance for
concurrent workload by using a profile created by DBA.
This profile contains the information about the resource
limits and priorities for different workload groups.
Resource governor allows setting timeout for certain
queries and suggesting priorities without changing server
settings. Resources are allocated by the resource
governor as per requirements and priorities of different
sub-department within the organization. So sub-
department with high priority and requirements will get
the large share of resources. The basic steps performed
by the Resource Governor are to create resource pools,
workload groups, classifier function, monitoring and
adoption.

A framework is proposed (Bruno and Chaudhuri, 2007)
for online tuning that examines current workload at all the
time and then changes the physical design accordingly.
When a workload is processed, their framework collects
the information of the query execution plan (QEP),
calculates its associated cost and then selects best QEP
to alter the physical design. During the process, it uses
query optimizer for acquiring the QEP. This framework
also considers the index correlation during the process

Figure 4. Teradata ASM Elements [Ballinger et al., 2002].

and by doing this it avoids the physical design oscillation.

In Teradata’s ASM (Ballinger, 2002; Brown et al., 2008)
workload is defined as a group that further consists of
classification rule, MPL, exception and service level
goals. Main elements of the ASM are shown in Figure 4.
Classification rules are defined as attributes of the
request that qualify the query to run under the workload
definition. MPL is the number of queries that can be run
in parallel under the workload definition. When limit
exceeds, incoming requests are placed in the delay
queue. Exception is used to control actions and produces
when some abnormal behavior is found in the workload.
The objectives of the workload are described in Service
Level Goals (SLGs). ASM uses a preventive approach to
workload change. The exceptions defined in the workload
definition react with admission control of ASM. It cannot
predict the resource demand required by each
performance class, however maps the performance class
with allocation group. The architecture of Teredata ASM
consists of four phases, which are:

1. Queries are divided into classes by analyzing log and
suggestions are made for workload definition.
2. Workload definitions are maintained by adjusting
criteria, goals, and performance mappings.
3. On the basis of workload definition workload flow and
priorities are regulated.
4. Examines the workload execution and improve the
performance with respect to the goals. When sub-optimal
performance is observed during the workload execution,
four methods are used to improve performance. These
methods are workload management, performance tuning,
capacity planning and performance monitoring.

A framework for workload adaptation (NIU et al., 2006)
has been proposed that has two components that are
workload detection and workload control. The workload

detection finds the changes and provides information of
the workload. The framework has also four functional
components, namely workload characterization,
performance modeling, system monitoring and workload
control. The authors prove the effectiveness of their
framework by implementing query scheduler and perform
different experiments. Query scheduler can directly
handle OLAP workload where as OLTP workload cannot
be handled directly. They proposed a technique by using
indirect control of OLTP through directly controlling OLAP
workload. So due to this enhancement in query scheduler
both workload can be handled to achieve performance
goals. Authors improve the performance prediction
process using Kalman filter as performance prediction
plays vital role in workload adaptation. Kalman filter is
very powerful filter and is used to make estimation of
past, present and future states. This filter provides
optimal solution for linear processes and sub-optimal
solutions for non-linear processes. Through experiments,
they obtained more accurate prediction results and
observed less unpredicted SLO violations. In short, the
research contribute by designing a general framework for
performance oriented workload adaptation, prototype
implementation of framework (Query Scheduler), a cost-
based performance model for workload control plans and
improves the accuracy of prediction through Kalman filter.

Resource governor (Microsoft Corporation, 2007) with
BI features is used to manage workload in SQL Server
2008. It manages the given workload according to the
profile created by the DBA. The profile contains the
different information about the users such as their
requirements, priorities etc. ASM (Ballinger, 2002; Brown
et al., 2008) automate the workload up to significant level
and focuses over ease of use with the help of monitoring
and analysis. ASM is workload-centric as compares to
other tools that mostly are system-centric. ASM changes
the order of workload by using a preventive approach.
ASM maps the performance class with allocation group
and has no ability to predict the resource demand for
each performance class. The experiment in Query
Scheduler (NIU et al., 2006) is performed on stable
workload, which is not suitable for dynamic environment
where the workload changes rapidly such as in OLTP or
OLAP. During the experiment, total cost of a query
instead of detailed cost is used as a parameter that may
generates wrong results. Moreover, it is confined to linear
workload; however, in a real environment, most of the
time workload is non-linear.

DISCUSSION

Previously, we have discussed the tools that are used to
handle workload in different DBMSs and DWHs. Among
these tools some are internal while the others are
external that do not change the internals of DBMSs and
DWHs. We have divided the entire work into workload
type and autonomic perspectives. The workload type

Mateen et al. 1491

perspective reveals how much work is done in different
types of workload while the autonomic perspective shows
work in each autonomic characteristic.

Workload type perspective

Table 7 summarizes the research work done on workload
management in database management systems and data
warehouses by different researchers and vendors. The
previous work on workload management is related with
eight different workload types.

Autonomic perspective

Table 8 summarizes the research work done on the
workload management in database management
systems and data warehouses with respect to the
autonomic characteristics by different researchers,
practitioners and vendors.

CONCLUSION AND FUTURE WORK

The paper presents different aspects of autonomic
computing such as its architecture, elements,
characteristics and levels, autonomic DBMS, motivation
towards autonomic DBMSs and autonomic workload
management. To observe the current autonomic level in
workload management, we have divided the available
literature of workload management tools to self-*
characteristics of AC. Tables 1 to 6 summarize the
workload management with respect to autonomic
characteristics on the basis of different parameters. This
analysis shows the effectiveness of different available
tools for workload management. Some advances on
workload management in the context of autonomic
computing have been done. However more efforts and
improvements are essential on current as well as new
workload management techniques and tools. In the
future, we are planning to develop a framework for
autonomic workload management that have the ability to
handle all the tasks proactively.

REFERENCES

Agrawal S, Chaudhuri S, Kollar L, Marathe A, Narasayya, Syamala M

(2004). Database Tuning Advisor for Microsoft SQL Server 2005.
Proceedings of the 30th International Conference on Very Large Data
Bases, pp. 1110–1121.

Anderson E, Spence S, Swaminathan R, Kallahalla M, Wang Q (2005).
Quickly finding near-optimal storage designs. ACM Trans. Comp.
Syst., 23(4): 337–374.

Ballinger C (2002). Introduction to Teradata’s Priority Scheduler.
http://www.teradatalibrary.com/pdf/eb3092.pdf.

Beg S, Naru U, Ashraf M, Mohsin S (2010). Feasibility of Intrusion
Detection System with High Performance Computing: A Survey. Int.
J. Adv. Comp. Sci., 1(1): 26-35.

1492 Int. J. Phys. Sci.

Brown DP, Richards A, Zeehandelaar R, Galeazzi D (2008). Teradata

Active System Management.

http://www.teradata.com/t/page/145613/index.html.
Bruno N, Chaudhuri S (2007). An online approach to physical design

tuning. Proceedings of the 23rd International Conference on Data
Engineering, pp. 826–835.

Chaudhuri S, Kaushik R, Ramamurthy R (2005). When Can We Trust
Progress Estimators for SQL Queries? Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 575–
586.

Chaudhuri S, Kaushik R, Ramamurthy R, Pol A (2007). Stop-and-
Restart Style Execution for Long Running Decision Support Queries.
VLDB, pp. 735-745.

Chandramouli B, Bond CN, Babu S, Yang J (2007). Query Suspend and
Resume. Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 557-568.

Dageville B, Das D, Dias K, Yagoub K, Zait M, Ziauddin M (2004).
Automatic SQL tuning in Oracle 10 g. Proceedings of the 30

th

International VLDB Conference on very large databases, pp. 1098–
1109.

Ejaz N, Baik SW (2011). Weighting low level frame difference features
for key frame extraction using Fuzzy comprehensive evaluation and
indirect feedback relevance mechanism. Int. J. Phys. Sci., 6(14):
3377–3388.

Horn (2001). Autonomic Computing: IBM’s Perspective on the State of
Information Technology. IBM J. Paper, pp. 1-38.
http://researchweb.watson.ibm.com/autonomic.

Huebscher MC, McCann JA (2008). A survey of Autonomic
Computing—Degrees, Models, and Applications. ACM 0360-
0300/2008/08-ART7.

IBM Corporation (2003). DB2 Query Patroller Guide: Installation,
Administration, and Usage.

Lightstone SS, Lohman G, Zilio D (2002). Toward Autonomic
Computing with DB2 Universal Database. SIGMOD, 31(3): 55-61.

Luo G, Naughton JF, Ellmann CJ (2004). Toward a Progress Indicator
for Database Queries. SIGMOD, pp. 791-802.

Luo G, Naughton JF, Yu PS (2006). Multi-query SQL Progress
Indicators. Proceeding of the 10th International Conference on
Extending Database Technology (EDBT), pp. 921–941.

Krompass S, Scholz A, Albutiu MC, Kuno H, Wiener J, Dayal U,
Kemper A (2008). Quality of Service Enabled Management of
Database Workload. IEEE Database Engineering Bulletin – DEBU,
31(1): 20-27.

Mateen A, Raza B, Hussain T, Awais MM (2008). Autonomic computing
in SQL Server. 7th International Conference on Computer and
Information Science, pp. 113-118.

Mehta A, Gupta C, Dayal U (2008). BI Batch Manager: A system for
managing batch workloads on enterprise data warehouses. EDBT,
640-651.

Mehta A, Gupta C, Wang S, Dayal U (2009). rFEED: A Mixed Workload
Scheduler for Enterprise Data Warehouses. ICDE, pp. 1455-1458.

Menasce DA, Almeida VAF, Fonseca R, Mendes MA (1999). A
Methodology for Workload Characterization of E-commerce Sites.
Proceedings of the First ACM Conference on Electronic Commerce,
pp. 19–128.

Menasce DA, Barbara D, Dodge R (2001). Preserving QoS of E-
commerce Sites through Self-Tuning: A Performance Model
Approach. Proceedings of the 3rd ACM conference on Electronic
Commerce, pp. 224–234.

Menasce DA, Bennani MN (2003). On the Use of Performance Models

to Design Self-Managing Computer Systems. Proceedings of
Computer Measurement Group Conf., pp. 1–9.

Microsoft Corporation (2007). Microsoft SQL Server 2005 Books Online.
http://msdn2.microsoft.com/en-us/library/ms190419.aspx

Mumtaz A, Ashraf A, Shivnath B (2003). Modeling and Exploiting Query
Interactions in Database Systems. CIKM2008, pp. 183–192.

Mumtaz A, Ashraf A, Shivnath B, Munagala K (2008). QShuffler: Getting
the Query Mix Right. ICDE, pp. 1415-1417.

Mumtaz A, Ashraf A, Shivnath B (2009). Query interactions in database
workloads. Proceedings of the Second International Workshop on
Testing Database Systems (DBTest), USA.

Narayanan D, Thereska E, Ailamaki A (2005). Continuous resource
monitoring for self-predicting DBMS. In International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 239–248.

Niu B, Martin P, Powwley W, Horman R, Bird P (2006). Workload
adaptation in autonomic DBMSs. Proceedings of the 2006
Conference of the Center for Advanced Studies on Collaborative
Research (CASCON’06). ACM Press, p. 13.

Oracle Corporation (2007). Oracle Database Performance Tuning
Guide 11g. Release, 1(11.1).

Pang HH, Carey MJ, Livny M (1995). Multiclass Query Scheduling in
Real-Time Database Systems. IEEE Trans. Knowl. Data Eng., 7(4):
533-551.

Parashar M, Hariri S (2005). Autonomic Computing: An Overview.
Springer-Verlag Berlin Heidelberg, pp. 247–259.

Rhee A, Chatterjee S, Lahiri T (2001). The Oracle Database Resource
Manager: Scheduling CPU Resources at the Application. High Perf.
Trans. Syst. Workshop, p. 1.

Sattler K, Geist I, Schallehn E (2003). QUIET: Continuous Query-driven
Index tuning. Proceedings of the 29th Very Large Database, pp.
1129-1132.

Sattler K, Luhring M, Schmidt K, Schallehn E (2007). Autonomous
Management of Soft Indexes. Proceedings of the International
Workshop on Self-Managing Database Systems, pp. 450-458.

Schnaitter K, Abiteboul S, Milo T, Polyzotis N (2007). On-line index
selection for shifting workloads. Proceedings of the ICDE Workshops
(SMDB), pp. 459–468.

Schnaitter K, Abiteboul S, Milo T, Polyzotis N (2006). COLT:
Continuous On-Line Database Tuning. Proceedings of ACM
SIGMOD, pp. 793–795.

Yu PS, Chen M, Heiss H, Lee S (1992). On workload characterization of
relational database environments. Softw. Eng., 18(4): 347–355.

Zilio DC, Zuzarte C, Lightstone S, Ma W, Lohman GM, Cochrane R,
Pirahesh H, Colby LS, Gryz J, Alton E, Liang D, Valentin G (2004).
Recommending materialized views and indexes with IBM DB2
Design Advisor. Proceedings of International Conference on
Autonomic Computing, pp. 180–188.

Zilio DC, Rao J, Lightstone S, Fadden S (2004). DB2 Design Advisor:
Integrated Automatic Physical Database Design. Proceedings of 30th
International Conference on Very Large Data Bases, pp. 1087–1097.

http://www.teradata.com/t/page/145613/index.html

