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This paper is intended to compare the Naïve bayes classifier for ball bearing fault diagnostic system 
with the back propagation neural network based on the f-folds feature extraction algorithm. The f-folds 
feature extraction algorithm has been used with different number of folders and clusters. The two 
classifiers have shown similar classification accuracies. The Naive bayes classifier has not shown any 
case of false negative or false positive classification. However, the back propagation neural network 
classifier has shown many cases of false positive and false negative classifications. 
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INTRODUCTION 
 
Most moving machinery parts are bedded in supporting 
elements (for example, sliding and rolling ball bearings). 
Rolling contact is a phenomenon that occurs in many 
applications of precision-machined components (for 
example, bearings and shafts) in automotive, aircraft, 
aerospace, and other industries (Guo and Dale, 2005). 
The main task of all types of bearings is to minimize 
energetic loss and ensure maximum lifetime of bedding. 
Lifetime of rolling bearings means the period in which the 
bearing carries its function until it cannot meet the 
requirements of operation and has to be put out of 
service. In practical situations, ball bearing failure or 
damage may occur during manufacturing processes or 
in-service. Contact damage may happen in the bearings, 
which   is   caused  by  cyclically  repeating  processes  in  
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surface layer of material by mutual dynamic load of two 
bodies. Damage of surface layers causes inception of 
micro-cracks in places of maximum sheer stress, by 
progressive separating of damaged surface layers and by 
inception of holes on the surface (Figure 1). In the 
beginning, this fatigue damage results in decrease of 
functional properties of damaged part; however, emerged 
surface hole may gradually create a centre of fatigue 
crack, which successively enlarges to the whole section 
of the part. In some applications (for example, airplanes 
and space shuttles), damages of these bearing elements 
have the potential of growing and leading to considerable 
material loss and particularly it might cause catastrophic 
loss of human life, and economical loss (Kessler et al., 
2002). 

Health monitoring and online damage detection 
engineering materials is of growing importance in many 
fields. With the increasing demand of safe space 
technology, the various structural  systems  that compose  
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Figure 1. Micrographs (Kessler et al., 2002) of short crack in contact fatigue trace cast iron (a) and developed 
pitting in carbon steel (b). 
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Figure 2. A Naïve bayes for damage detection by using some amplitudes of wave. 

 
 
 
air and space vehicles must be monitored for safety and 
reliability. Hence, the current most common methods of 
visual inspection and time-based maintenance will be 
upgraded to online monitoring of the integrity of the 
vehicle and conditioned-based maintenance (D'Souza 
and Epureanu, 2005). 

Classification is a basic task in damage detection that 
requires the construction of a classifier that is a function, 
which assigns a class label to instances described by a 
set of attributes. Numerous approaches to this problem 
are based on various functional representations such as 
neural networks. The automation of damage detection 
needs to be able to take into account the affect of a wide 
range of possible actions on a large number of factors 
that are linked together. The problem is to find a 
technique that can take into account all these factors 
without declining the efficiency of the damage detection. 
One way is to use Naïve bayes, a type of model-based 
decision support system already used successfully in 
many fields, for example, artificial intelligence (D'Souza 
and Epureanu, 2005; Duda and Hart, 1973). 

NAÏVE BAYES CLASSIFIER 
 
Naïve bayes has a strong assumption that all variables in 
the network are independent of the classification variable 
(Figure 2). It is very easy to build a Naïve bayes network 
structure, and it does not require a structured learning 
algorithm. 

The Naïve bayes classifier has several properties that 
makes it surprisingly useful in practice, despite the fact 
that the far-reaching independence assumptions are 
often violated. Like all probabilistic classifier under the 
MAP decision rule, it arrives at the correct classification 
as long as the correct class is more probable than any 
other class, class probabilities do not have to be 
estimated very well. In other words, the overall classifier 
is robust enough to ignore serious deficiencies in its 
underlying naïve probability model.  

The Naïve bayes has two main advantages over other 
classifiers. First, it is easy to construct and no learning 
procedure is required. Secondly, the classification pro-
cess is very efficient since it assumes that all the features 
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Figure 3. Time trace of amplitudes from graphite/epoxy laminates (Kessler et al., 2002).  

 
 
 
are independent of each other. In practical classification 
problems, it is hardly to come across a situation where 
the variables are truly conditionally independent of each 
other. Nevertheless, the Naïve bayes classifier 
outperformed many sophisticated classifiers on data sets 
where the variables are not strongly correlated.  

The Naïve bayes classifier learns from training data the 
conditional probability of each variable Xi given the class 
label C. The classification is then done by applying Bayes 
rule to calculate the probability of C given the particular 
instance of X1,X2,…..Xn, and then predicting the class 
with the highest posterior probability as given. 
 
P(Ci|X) = P(Ci)P(X|Ci)/P(X) = P(Ci)�N

j=1 P(xj|Ci)/�
k=1

K 
P(Ck) )�

N
j=1 P(xj|Ck) 

 
Where K is the number of classes, J is the number of 
variables, and P(xj|Ck) is the conditional probability for the 
observed value of variable j given the class Ck. The 
product of conditional probabilities comes from the 
assumption that variables are independent given the 
class, which greatly simplifies the computation of the 
class scores and eases the induction process. After 
calculating P(Ci|X) for each class, the algorithm assigns 
the instance to the class with the highest overall score or 
probability. 

Although the aforeseen formulation of Naïve bayes is 
the traditional one, we can express the score for each 

class in another form that is more tractable for analytical 
purpose. The basic idea is that, if we are concerned only 
with predictive accuracy, we can invoke any monotonic 
transformation that does not affect the ordering on class 
scores. One transformation involves removing the 
denominator, which is the same for each class, and 
another involves taking the logarithm for the numerator. 
Together, these produced a new formula as: 
 
Sc = log P(C) + � log P(xj|C) 
 
The amplitudes shown in Figure 3 represent voltage 
amplitudes of Lamb-waves produced and collected by 
piezoelectric transducer (P ZT )  sensors and actuators 
mounted on the surface of quasi-isotropic graphite/epoxy 
laminates. The first specimen is a control unit (laminate 
without damage), and the rest of the specimen contain 
artificial damages. These damages are delimitation, 
crack, and hole. The figure shows sound waves behave 
differently when passing through the laminate without and 
with damage, and every damage produce different 
amplitudes. Amplitudes with many cases and different 
kind of damages can be used to learn the conditional 
probability tables of variables (P  (Amp l i t ude  |  
D a m a g e ) )  in the network. Ultimately, the model can be 
used to predict the damages in laminated composite 
materials with the highest posterior probability. The 
probabilities of the damages  are  determined  by  entering  
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the new evidence obtained from the amplitudes of the new 
case to the network. 

The amplitudes shown in Figure 3 were generated 
using a constant interval of time (microseconds). For 
every laminate a set of 60 0  amplitudes were collected. If 
all of these amplitudes were used as variables on the 
damage detection model, the model would be 
overwhelmed, complicated, and its accuracy might 
slightly be decreased. Different techniques have been 
adopted for feature subset selections to decrease the 
size of the data and increase the accuracy. 

These methods can be divided into two types, feature 
selection and feature extraction. In feature selection, the 
integrity of the original features is preserved. But it costs 
a great degree of time complexity for an exhaustive 
comparison if a large number of features is to be 
selected. In contrast, feature extraction is considered as 
a process to generate a new and smaller feature set by 
combining the original features. There are various feature 
extractions available like Principal component analysis 
(PCA), Independent component analysis (ICA), zone 
based hybrid feature extraction, etc., they have wide 
range of applications in different types of classifications, 
such as text classification, DNA micro-array data 
analysis, image recognition, image retrieval and so on. 

Some of these techniques extract the peaks of the 
amplitudes as feature subsets, but it is very difficult to be 
sure whether these peaks can be representative to the 
whole wave. The rest of the techniques have different 
kinds of limitations and disadvantages. So as to overcome 
some of these limitations and tackle some of these 
disadvantages, the f-folds feature subset extraction 
algorithm (f-FFE) has been developed. By introducing 
this feature extraction algorithm, selecting a suitable tool 
for the classifiers, implementing and evaluating the 
extracted features in the classifier. The f-FFE method is 
implemented on the data set to extract features (form 
new data set), believed to minimize the data set and 
increase the accuracy of the Naïve bayes classifier.  
 
 
f – FOLDS FEATURE EXTRACTION ALGORITHM (f-
FFE) 
 
In Figure 3, the amplitudes formed using a constant 
interval of time (microseconds). A different data set might 
be acquired, if the interval value had been changed. If it 
had been assumed that the interval was increased 10 
times more than the original one, then the original 
amplitudes would be divided into 60 folds (10 amplitudes 
in each fold). In this case 10 different data sets would be 
formed each with 60 amplitudes. The amplitudes included 
in each set depend on the first amplitude selected from the 
first fold, if the first amplitude was the first to be included, 
then the first amplitudes in other folds would be included to 
the data set, if the second one was the first one to be 
included, then the  seconds  in  all  other  folds  would  be  

 
 
 
 
included in the data set etc. This has been used as a base 
to formalize the k-folds feature subset selection algorithm 
shown subsequently. 
 
 
Algorithm 1 (f - folds feature selection algorithm) 
Input: 
 
Amps = amp1, amp2,… , ampn (Amplitudes to be 
clustered). k (number of clusters), f (number of folds). 
 
 
Outputs: 
 
Means = {m(c1), m(c2), … , m(ck) } 
Maxs = {max(c1), max(c2), …, max(ck) } 
Mins = {min(c1), min(c2), …, min(ck)} 
 
 
Procedure clustering 
 
1. Divide Amps into f folds (fold(1), fold(2),… , fold(f)), 
where 
2. |fold(1)| = |fold(2) | = … = | fold(f)|, fold(i) = 
{fold(j)1, fold(j)2,…, fold(j)m}, m = n / f and 1 � j � f. 
3. Create a new data set NewAmp ={ nAmp(1) , 
nAmp(2) ,… , nAmp(m)}  where ∀A = fold(k) i , 
A∈nAmp(i) ,  1  �  i  �  m,  1 �  k � f (the number of 
elements in each fold is m = n / f). 
4. Implement a clustering algorithm (for example, k-
means) on NewAmp, to return k clusters. 
5. Return the mean, maximum, and minimum values of 
the clusters. 
 
The input to the f-folds feature subset selection algorithm 
(Algorithm 1) is a set of n amplitudes (Amps = a m p 1,  
a m p 2, …  ,  a m p n) .  In step 1 the algorithm divides the 
data set into f folds. All folds contain the same number of 
m amplitudes where m = n/f. In step 2 and 3 the algorithm 
forms a new set of data containing m records by assigning 
the amplitudes with the same index in all folds to the data 
set as one record (for example, the first amplitudes in all 
folds form the first record and so on). This creates the data 
set NewAmp = {nAmp(1) , nAmp(2) ,… , nAmp(m)} .  
The number of variables in each record is f (the number of 
folds). In step 4 the algorithm implements a clustering 
algorithm (for example, k-means algorithm) on 
N e w A m p  to divide their instances into k clusters. Since 
each record has f variables, the algorithm returns f mean 
values, f maximum values, and f minimum values of each 
cluster. These values would be considered as 
representatives to the clusters and when combined 
together they can replace the original data set. For 
example, if there are 100 instances in the cluster, only 3 
instances are used (means, maximums, and minimums). 
The total number of the variables (t) in each damage type 
would be reduced to 3 × f × k, when the means, maximums, 
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Table 1. Confusion matrix of Naïve bayes for 4 folders and 2 clusters. 
 

Correctly classified 51 (91.0714%) 
a b c d e �Classifies as 

11 0 0 0 0 A 
0 6 3 0 0 B 
0 0 11 1 0 C 
0 0 0 11 1 D 
0 0 0 0 12 E 

 
 
 
and minimums of the clusters are considered. Finally, it 
will be reduced to f× k, if only the means are considered. 
The values of f and k must be determined by the user 
such that t << n, which believed to decrease the number 
of variables to an optimum number that highly increase 
the accuracy of the model and simplify it. 
 
 
EXPERIMENTS SETUP 
 
Experimental data were recorded by Worden and Lane (2001). Two 
data sets are used for testing as part of the methodology. The first 
set represents voltage amplitudes of Lamb-waves produced and 
collected from quasi-isotropic laminates. The second set is a 
vibration data from a type of ball bearing operating under different 
five fault conditions. The ball bearing is of the type 6204 with a steel 
cage. The raw measurement data took the form of an acceleration 
signal recorded on the outer casing for the bearing in five states. 
  
1. New ball bearing (a). 
2. Outer race completely broken (b). 
3. Broken cage with one loose element (c). 
4. Damaged cage, four loose elements (d). 
5. No evident damage, badly worn ball bearing (e). 
 
The rotational frequency was 24.5625 Hz and a tacho-signal was 
used for the measurement. The sampling frequency for the time 
data was 16384 Hz and the acquisition system was a Bruuel and 
Kjaer spectrum analyzer. The points were recorded in 56 instances 
of 2048 samples, where 11 instances for case 1, 9 for case 2, 12 
for each case of 3, 4 and 5. 

The pre-processing was kept to a minimum. Each signal was 
divided into overlapping 64 point intervals each offset by eight 
points from its predecessor. Each set was Fourier transformed and 
the magnitude of each spectral line was recorded. This yielded a 
sequence of 32 component vectors for classification (Jensen, 
2001). 

The f-FFE Algorithm is implemented by writing two software 
programs. The software used for the implementation is Java 
programming. To validate the results of the classifiers, it has been 
decided to compare the results of BN classifier to the results of NN 
classifiers implemented in WEKA 

The first Java program will implement step 1 and 2 of the f-FFE 
algorithm. Every instance in the data set was divided by the 
program into different number of folders (4, 6, 8, 10 and 12). As 
mentioned previously, the number of samples in every instance is 
2048. 

The second Jave program implements step 3 of the f-FFE 
algorithm. This program was run on all files created by the first 
program. This program creates the mean, maximum and minimum 
values of the clusters after dividing them into subsets. The number 

of the subsets and the number of elements in each subsets are 
dependent on the number of folders and clusters. 
 
 
EXPERIMENTAL RESULTS, ANALYSIS AND 
DISCUSSION 
 
The Naïve bayes and the back-propagation NN 
classifiers found in WEKA (Witten and Frank, 2005) were 
implemented on the features extracted by the f-FFE. 
Labeling the instances in these files involve applying a 
previously learned classifier to an unlabeled data set to 
predict instance labels. The classifiers were firstly tested 
using the mean, maximum, and minimum features, 
secondly using the mean and maximum features, thirdly 
using the mean features only, and lastly using the 
maximum features only. The classification of the two 
classifiers was done for a number of clusters ranging 
from 2 to 8 and a number of folders, which is 4, 6, 8, and 
10. The percentages of the correctly classified instances 
together with the confusion matrices for the classification 
results for each case were recorded. 

Table 1 shows the confusion matrix of the classification 
results of the Naïve bayes for 4 folders and 2 clusters, 
when using the mean, maximum, and minimum features. 
In the table, the number of correctly classified instances 
is 51 out of 56 (91: 0714%). 

Table 2 shows the confusion matrix of the classification 
results for the BP NN classifier for 10 folders and 2 
clusters, when using all features. In the table, the number 
of correctly classified instances is 51 (91: 0714%). The 
table shows false positive and false positive 
classifications. 

The best classification accuracies in most cases were 
obtained when the combination of mean and maximum 
features has been used. For that reason comparison 
between the two classifiers is limited only to the 
combination of mean and maximum features. 

In all classifiers, the best classification accuracies were 
obtained when the combination of mean and maximum 
features and mean features only with 6 folders and 4 
clusters were used. In this case the number of the 
features will be decreased for each instance from 2048 to 
48. It has also shown that using the maximum features 
alone for classification will highly decrease the accuracies  
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Table 2. Confusion matrix of BP NN for 10 folders and 2 clusters. 
 

Correctly classified 51 (91.0714%) 
a b c d e � Classifies as 
9 0 0 2 0 A 
1 7 1 0 0 B 
0 0 11 1 0 C 
0 0 0 11 1 D 
0 0 0 0 12 E 

 
 
 

 
 
Figure 4. Classification accuracies of the classifiers when the number of folders is 4. 

 
 
 
of the classifiers but the mean features alone have shown 
very good accuracies when compared to the maximum 
features, but less better than the combination of mean 
and maximum. 

The BP NN classifier has shown many cases of false 
positive and false negative classifications. This is due to 
the nature of the data used in damage detection, where 
their attributes are conditionally independent given the 
damage attribute, which can be represented very well by 
Naïve bayes networks. 

It has also shown that using the maximum features 
alone for classification is highly decreasing the 
accuracies of the classifiers but the mean features alone 
is showing very good accuracies when compared to the 
maximum features, but less better than the combination 
of mean and maximum. 

Figure 4 shows the classification accuracies of the two 
classifiers when the number of folders is 4. It is clear the 
accuracy of the two classifiers is almost the same with 
very small variations. 

Figure 5 shows the claasification accuracies, when 6 
folders have been used.  

The Naïve bayes classifier has not shown any case of 
false negative or false positive Figure 6 shows the 
classification accuracies of the classifiers when the 
number of folders is 10. The classification accuracies of 
the BP NN is a bit higher than the Naïve bayes classifier 
when the number of clusters is small but when the 
number increases the accuracies temp to be the same. 
 
 
CONCLUSIONS 
 
The research has shown the efficiency of Naive bayes 
and the back propagation neural network when using the 
f- folds feature extraction algorithm for damage detection 
ball bearings. In all classifiers, the best classification 
accuracies were obtained when the combination of mean 
and maximum features and mean features only with 6 
folders and  4  clusters  were  used.  The  number  of  the  
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Figure 5. Classification accuracies of the classifiers when the number of folders is 6. 

 
 
 

 
 
Figure 6. Classification accuracies of the classifiers when the number of folders is 10. 

 
 
 
features was decreased from 2048 to 48. It has also 
shown that using the maximum features alone for 
classification will highly decrease the accuracies of the 
classifiers but the mean features alone have shown very 

good accuracies when compared to the maximum 
features, but a less better than the combination of mean 
and maximum. The Naive bayes classifier has not shown 
any case of false negative or false positive classification. 
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However, the back propagation neural network classifier 
has shown many cases of false positive and false 
negative classifications. This is might be due to the 
nature of the data used in damage detection, where their 
attributes are conditionally independent given the 
damage attribute, which match with the assumption 
based on the Naïve bayes classifier. 
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