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This research investigates relationships between resistances with heat and work. It is completely 
proven that the ratio of work to temperature for the realistic process is no less than that for the 
reversible process. The equalities and inequalities on the heat, work and ratio of work to temperature 
could be applied to the gravitational field and chemical reactions. The relationships between path 
functions and state functions are studied in the chemical reactions. Some criteria for spontaneous 
directions have been suggested such as the equalities and inequalities on the heat, work, and ratio of 
work to temperature, except the Clausius inequality and must be ordinarily obeyed in the spontaneous 
process. 
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INTRODUCTION 
 
The first law of thermodynamics was as a result of 
applying the conservation of energy to thermodynamics 
(Sandler and Woodcock, 2010). The Carnot theorem 
could be proven by the second law of thermodynamics. 
The Clausius inequality was derived from the Carnot 
theorem (Atkins and Paula, 2014; Nieto et al., 2011; Lee 
et al., 2015). In the gravitational field and chemical 
reactions, relations between the entropy or free energy 
with the kinetic, gravitational potential, and electrical 
energy was studied (DeVoe, 2013; Gislason and Craig, 
2013; de Abreu and Guerra, 2012). The equalities and 
inequalities in regard to the work and ratio of work to 
temperature between the reversible process and 
irreversible process are  entirely  denied  and  neglected  

in  the   fundamental theory; hence, they are seldom 
researched yet. The motion path of solids and liquids is 
only affected by external force, which is different from the 
gas. The application of the scopes of Clausius inequality 
will be enhanced by the equalities and inequalities on the 
work and the ratio of work to temperature. 

In a reversible process, the first law of thermodynamics 
is given by: 
 

)A(W)A(Q)A(dU rrr   or )A(W)A(Q)A(U rrr             (1) 

 

Where Ur, Qr and Wr are the internal energy, heat, and 
work in a reversible path (A), respectively.  

In  an  irreversible  process,  the  resistances   including
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frictions or internal resistances must be considered. The 
first law of thermodynamics is given by: 
 

)B(W)B(Q)B(dU realrealreal   or )B(W)B(Q)B(U realrealreal      (2) 

 
where Qreal and Wreal are the heat and work in a realistic 
path (B), respectively. Qresist and Wresist are the heat and 
work generated by resistance in an irreversible path (B), 
respectively. The realistic process or path includes the 
reversible and irreversible process or path. The 
resistances are equal to zero in any reversible process. A 
process may have unlimited paths.  

The heat and work are taken as positive if energy is 
transferred into the system and negative if energy is 
transferred out of the system. The heat and work are the 
path functions in a realistic process. U is the state 
function. “d” and “δ” are total differential symbols to the 
state function and path function, respectively. “Δ” 
expresses a change of quantity value.  

In a reversible isothermal process, STQr  , where T 

is the thermodynamic temperature, ΔS expresses the 
entropy change (state function). So that, in a reversible 
isothermal process, both Qr and Wr are state functions 
(the temperature must be kept constant). In a reversible 
adiabatic process, Wr is the state function (the system 
must be kept adiabatic). In an isochoric process, Qr is the 
state function (the volume must be kept constant). In a 
reversible isobaric process, Qr and Wr are all the state 
functions (the pressure must be kept constant). 
 
 
EQUALITIES AND INEQUALITIES OF HEAT, WORK, 
AND RATIO OF WORK TO TEMPERATURE 
 
Equalities and inequalities of heat and work 
 
In a process, we assume: 
 

)B(Q)B(Q)B(Q resistrreal  ,             (3) 

 

)B(W)B(W)B(W resistrreal  .           (4) 

 
In a spontaneous process, the following equations must 
be obeyed (Jin, 2016): 

 

)B(Q)A(Q realr  ,             (5) 

 

)B(W)A(W realr  ,             (6) 

 
where the equality sign is the same for a reversible or 

irreversible process in which 0)B(Wresist  , whereas the 

sign of inequality is for an irreversible process. In a 

process   or   cycle,   realr UU  ,   on   the   basis   of  

 
 
 
 

Equations 1 to 4, )B(W)B(Q resistresist   for a realistic 

path (B). According to Equations 5 and 6, 

)B(Q)B(Q realr   and )B(W)B(W realr   are also 

right; as such we could obtain: 
 

0)B(Q)B(W resistresist             (7) 

 

where the sign of equality is the same for a reversible or 

irreversible process in which 0)B(Wresist  , while the 

sign of inequality is for an irreversible process. 
Equations 5 and 6 were derived from the Clausius 

inequality and the Carnot theorem. Any reversible cycle 
could be simulated by the infinitesimal reversible Carnot 
cycles. When the area of infinitesimal reversible Carnot 
cycles is equal to that of the simulated reversible cycle, 
then they are the same work. Because their ΔUr are all 
zero in arbitrary cycle, then they are also the same heat. 
Therefore, Equations 5 and 6 can be extended and 
applied to any reversible cycle. 

Assuming that a realistic path (B) and its reversible path 
(A) with another reversible path (C) constitute both a 
realistic and a reversible cycle (Figure 1), then we can 

gain )C(Q)B(Q)C(Q)A(Q rrealrr   and 

)C(W)B(W)C(W)A(W rrealrr  . Thus, 

)B(Q)A(Q realr   and )B(W)A(W realr   in a 

process. Therefore, Equations 5 and 6 can be extended 
and applied to arbitrary process. 
 
 
Complete derivation of the inequality on the ratio of 
work to temperature from the Clausius inequality 
 
The Clausius inequality can be rewritten as follow: 
 

0
T

)B(Q

T

)A(Q i

j
i

real
i

j

r 





 ,            (8) 

 
where the sign of equality is for a reversible process and 
the sign of inequality is for an irreversible process. “∫” is 

integral symbol. The entropy change 
i

j

r

T

)A(Q
 is the 

ratio of heat to temperature in a reversible path (A). 


i

j
i

real

T

)B(Q
 is the ratio of heat to temperature in a 

realistic path (B). In a process, the state “j” expresses the 
initial state, the state “i” expresses the final state, Tj and 
Ti are the initial and final states thermodynamic 
temperature of the surroundings or reservoirs, 
respectively. If a complex process has many processes, 
Ti should include thermodynamic temperatures of many 
surroundings or reservoirs. T varies from Tj to Ti, which is  
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Figure 1. The reversible cycle “jAiCj” and realistic cycle “jBiCj”. 

 
 
 
different from the contact temperature (Muschik, 2014). In 
the reversible process, Ti and Qreal(B) will be replaced by 
T and Qr(B) in Equation 8. 

From Equations 1 and 2, we can obtain 
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)B(dU . Thus, the following 

equation is given by: 
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)B(dU
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)A(dU ,  (9) 

 

where 
i

j

r

T

)A(dU
 or 

i

j
i

real

T

)B(dU
 are the ratio of 

internal energy change to temperature in a reversible 

path (A) or in a realistic path (B), respectively. 
i

j

r

T

)A(W
 

or 
i

j
i

real

T

)B(W
 are the ratio of work to temperature in a 

reversible path (A) or in a realistic path (B), respectively. 

If 0
T

)B(dU

T

)A(dU i

j
i

real
i

j

r    and 

0
T

)B(W

T

)A(W i

j
i

real
i

j

r 





 , in accordance with 

Equation 9, we have 
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)B(W
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(
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, 

where )
T

)B(W

T

)A(W
(

i

j
i

real
i

j

r







  is negative value 

which violates the Clausius inequality. This is impossible. 
So that, the equality and inequality on the ratio of work 

to temperature can be written as follow: 
 

0
T

)B(W

T

)A(W i

j
i

real
i

j

r 





 .          (10) 

 

If 0
T

)B(dU

T

)A(dU i

j
i

real
i

j

r   , on the basis of 

Equations 9 and 10, we can obtain: 
 

0)
T

)B(W

T

)A(W
(

T

)B(Q

T

)A(Q i

j
i

real
i

j

r
i

j
i

real
i

j

r 











 , 

 
This confirms the Clausius inequality. Therefore, 
Equation 10 is right in any case. Where the sign of 
equality should belong to the reversible process, the sign 
of inequality should belong to the irreversible process; 
otherwise, Equation 10 will be incorrect. 

According to Equations 9 and 10, the inequality 

0
T

)B(dU

T

)A(dU i

j
i

real
i

j

r    violates the Clausius  

inequality. Therefore, 0
T

)B(dU

T

)A(dU i

j
i

real
i

j

r    is 

correct in any case. 
The ideal gas equation of state is nRTpV  . By this 

(Borgnakke and Sonntag, 2014; Jacobs, 2013), we know 
that: 
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dTCdVp
T

p
TdTCdU V

V

Vr 




















 , 

 

V

nRTdV
pdVWr  , 

 
where p is the pressure, V is the volume, R is the gas 
constant, and n is the amount of substance. Because 

0
T

dTC

T

dU Vr    and 0
V

nRdV

T

pdV

T

Wr 


 , 

they are all state functions in the reversible process for 
ideal gas. It should be noted that the van der Waals 
equation of state is an approximate for the real gases and 
could not prove the aforementioned results. “∂” is partial 
differential symbol. 
 
 
APPLICATIONS OF EQUALITIES AND INEQUALITIES 
ON HEAT AND WORK 
 

Applications to the chemical reactions 
 

The non-expansion work does not exist 
 

If the chemical reactions could happen, Equations 5 to 8 
and 10 must be obeyed. In the isothermal and isobaric 

process, we know that VpWW otherreal   and 

VpWW maxr  , where pΔV is the volume expansion 

work, Wother expresses the non-expansion work (namely 
that the other work) in the realistic process except Wresist, 
while Wmax expresses other work in the reversible 
process. In the isothermal and isobaric process, 

STHG  , VpUH  ; where G is the 

free energy, H is the enthalpy. It should be noted that ΔU 
and ΔS are state functions in any process. ΔH is the state 
function in any isobaric process. In any isothermal and 
isobaric process, ΔG is the state functions.  

If the non-expansion work does not exist in the 
chemical reactions, in the isothermal and isobaric 

reversible path (A), we can gain )A(Vp)A(Wr  , 

ST)A(QH r  , 0)A(Wresist  , 

)A(VpSTU)A(QU)A(W rr  , 

namely 0)A(G  . Attention, the temperature must be 

kept constant in the isothermal and isobaric reversible 
path (A).  In the isothermal and isobaric irreversible path 
(B), )B(Vp)B(Wreal  . According to Equation 4, we have 

)B(Vp)B(W)B(QU)B(W)B(W)B(W resistrresistrreal  . 

So, )B(W)B(H)B(W)B(VpU)B(Q resistresistr  . 

On the basis of Equations 3 and 7, we obtain 

)B(H)B(Q)B(Q)B(Q resistrreal  . In the isothermal 

and    isobaric    process,    Equation    5    can     become  

 
 
 
 

)B(HST)A(Qr   or 0)B(G  . 

In the isothermal and isobaric process, Equation 6 will 
vary: 
  

)B(Vp)B(W)A(QU)A(W realrr   or 0)B(G  . 

 
While the non-expansion work does not exist in the 

chemical reactions, )B(H)B(Qreal   and 0)B(G   

are consistent with the actual facts. Equations 5 and 6 
are confirmed. 
 
 
The non-expansion work exist 
 
If the other work exists in the chemical reactions, we can 
obtain )C(Vp)C(WSTU)C(QU)C(W maxrr   

in the isothermal and isobaric reversible path (C), thus, 

)C(W)C(G max . In the isothermal and isobaric 

irreversible path (D), according to Equation 4, we will gain 
)D(Vp)D(W)D(W)D(QU)D(W)D(W)D(W otherresistrresistrreal 

namely that, )D(W)D(Q)D(H)D(W resistrother  . According to 

Equations 3 and 7, we obtain 

)D(W)D(H)D(Q)D(Q)D(Q otherresistrreal  . 

In the isothermal and isobaric process, according to 
Equation 5, we have 

)D(W)D(H)D(QST)C(Q otherrealr  , then 

)D(W)D(G other . In isothermal and isobaric 

process, Equation 6 can be converted into 

)D(Vp)D(W)D(W)C(QU)C(W otherrealrr  , that 

is, )D(W)D(G other . 

In the meantime, if the paths (C) and (D) exists, the 

result is )C(W)D(G)C(GG max . When the 

path (B) with the paths (C) and (D) exists in the 
meantime, the following equation will be given by: 
 

)C(W)D(G)C(G)B(GG max . 

 
If the paths (B), (C), and (D) with the path (A) exists in the 
meantime, we have 

0)D(G)C(G)B(G)A(GG  . 

For electrochemical reaction, 

elemax nFV)C(WG  , where n is the number of 

electrons transferred per mole in cell reaction, F is the 
Faraday constant, Vele is the cell potential when the 
electric current approaches zero namely Wresist(C)=0. 

 
 
Applications to the gravitational field 

 
In  the   gravitational   field,   mgΔh   is   the   gravitational  



 
 
 
 
potential energy change, m is the mass, g is the 
acceleration of gravity, and Δh is the elevation change. In 

the reversible process ( 0Wresist  ), according to the 

conservation of energy, we can obtain 

0EhmgEpdVEU kinele

i

j
calr   . 

Where p is not the internal pressure (Marcus, 2013). 
ΔEcal is the heat energy change of calorimeter in the 

reversible process, calr EQ  . ΔEele and ΔEkin are 

electrical energy change and kinetic energy change in the 
reversible process, respectively. When compared with 

Equation 1, if 
i

j
pdV  and ΔEele are neglected, we find: 

 

kinr EhmgW  .                                          (11) 

 
In the realistic process, on the basis of the conservation 
of energy, we can gain 

0EhmgEpdVEU kinele

i

j
calreal 








 

, where 


 eleE  and 


 kinE  are electrical energy change 

and kinetic energy change in the realistic process, 

respectively, 


 calreal EQ . When compared with 

Equation 2, if 
i

j
pdV  and 


 eleE  are neglected, we find: 

 


 kinreal EhmgW .                                (12) 

 
The gravitational potential energy change is identical in 
the irreversible and reversible process. In accordance 
with Equation 6, we gain: 
 


 kinkin EE .                                            (13) 

 
The falling matter and flowing river water have to obey 
Equation 13. Equation 13 is an approximate formula. 
When the mechanical energy want to keep the 

conservation, the changes of ΔUr, ΔEcal, 
i

j
pdV , and 

ΔEele are equal to zero or could be neglected. 
 
 
Applications to free expansive ideal gas  
 
The ideal gas in the adiabatic isochoric container was 
freely expanding to the adiabatic isochoric vacuum 
container; the temperature will be without any change. In 

the irreversible path (B), 0)B(Q)B(W realreal   and 

0U  . The reversible process is isothermal  expansion  
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in the path (A); the result is 

0
V

V
lnnRT

V

nRTdV
)A(W)A(Q

j

i
i

j
rr   , where 

ji VV  . Therefore, Equations 5 to 7 are all obeyed. It 

should be noted that according to Equations 3, 4 and 7, 

we have 0)B(Q)B(Q resistr   and 

0)B(W)B(W resistr  . 

 
 
Conclusion 
 

If the work does not exist, realr QQ  , the difference in 

temperature would cause the heat to be transferred. For 
example, the temperature either rises or falls in isochoric 
gas; Equations 6 and 10 are disobeyed, but Equation 8 is 
obeyed. 

Wreal is approximately equal to Wr in the He(II) 

superfluid, namely, that 0Wresist  . So the difference in 

temperature would cause the motion of the He(II) 
superfluid, but Equation 10 will be obeyed. If the He(II) 
superfluid is heated it will flow from low temperature to 
high temperature; on the basis of Equation 10 

0WW rreal   (namely,   

0hmgEhmgE kinkin 


  or 

hmgEE kinkin 


 ). Therefore, if 0h  , 

0EE kinkin 


 . If 0EE kinkin 


 , 0h  . 

The aforementioned conclusion could not be obtained 
from other fluids. 

If X
T

)B(Q

T

)A(Q i

j
i

real
i

j

r 





 , 0X  , where X is the 

entropy generation with ΔSg (Grazzini et al., 2013). We 

will gain 

i

real

g

i

real

T

)B(Q
S

T

)B(Q
XS  , as the ratio 

of heat to temperature 

i

real

T

)B(Q  is entropy flow. 

Equation 8 is the criteria for a spontaneous process 
and must be obeyed by the spontaneous process. 
Equations 5 to 7 are always the criteria for a spontaneous 

process except 0Wresist  . Equation 10 is always criteria 

for a spontaneous process except 

0=W=W=W resistrealr . Equations 3 and 4 are well 

reasonable presumptions. Because the resistance exists, 
ΔG will change to zero when the chemical reaction 
reaches balance state in the isothermal and isobaric 
realistic path. The resistance should have relation to the 
rate and activation energy in the chemical reactions. In 
Equations 5, 6, and 13, the reversible  process  could  not  
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be arbitrarily invented or fabricated. The reversible and 
irreversible paths generally have a distinction for gas. 
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