academicJournals

Vol. 12(17), pp. 205-210, 16 September, 2017
DOI: 10.5897/1JPS2017.4624

Artficle Number: B22288166018

ISSN 1992 - 1950

Copyright ©2017

Author(s) retain the copyright of this arficle
http://www.academicjournals.org/1JPS

International Journal of Physical
Sciences

Full Length Research Paper

Studies on equalities and inequalities of heat, work and
ratio of work to temperature

Chengshu Jin

School of Food and Pharmaceutical Engineering, Suihua University, Suihua, Heilongjiang Province 152061, China.

Received 4 April, 2017; Accepted 22 August, 2017

This research investigates relationships between resistances with heat and work. It is completely
proven that the ratio of work to temperature for the realistic process is no less than that for the
reversible process. The equalities and inequalities on the heat, work and ratio of work to temperature
could be applied to the gravitational field and chemical reactions. The relationships between path
functions and state functions are studied in the chemical reactions. Some criteria for spontaneous
directions have been suggested such as the equalities and inequalities on the heat, work, and ratio of
work to temperature, except the Clausius inequality and must be ordinarily obeyed in the spontaneous

process.
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INTRODUCTION

The first law of thermodynamics was as a result of
applying the conservation of energy to thermodynamics
(Sandler and Woodcock, 2010). The Carnot theorem
could be proven by the second law of thermodynamics.
The Clausius inequality was derived from the Carnot
theorem (Atkins and Paula, 2014; Nieto et al., 2011; Lee
et al.,, 2015). In the gravitational field and chemical
reactions, relations between the entropy or free energy
with the kinetic, gravitational potential, and electrical
energy was studied (DeVoe, 2013; Gislason and Craig,
2013; de Abreu and Guerra, 2012). The equalities and
inequalities in regard to the work and ratio of work to
temperature between the reversible process and
irreversible process are entirely denied and neglected

in the fundamental theory; hence, they are seldom
researched yet. The motion path of solids and liquids is
only affected by external force, which is different from the
gas. The application of the scopes of Clausius inequality
will be enhanced by the equalities and inequalities on the
work and the ratio of work to temperature.

In a reversible process, the first law of thermodynamics
is given by:

du, (A) =3Q, (A) +dW. (A) or AU, (A)=Q,(A)+W.(A) 1)

Where U,, Q, and W, are the internal energy, heat, and
work in a reversible path (A), respectively.
In an irreversible process, the resistances including
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frictions or internal resistances must be considered. The
first law of thermodynamics is given by:

dU real (B) = 6Qreal (B) t 6Wre.all (B) or AU real (B) = Qreal (B) + Wreal (B) (2)

where Qea and W, are the heat and work in a realistic
path (B), respectively. Qesist and W is: are the heat and
work generated by resistance in an irreversible path (B),
respectively. The realistic process or path includes the
reversible and irreversible process or path. The
resistances are equal to zero in any reversible process. A
process may have unlimited paths.

The heat and work are taken as positive if energy is
transferred into the system and negative if energy is
transferred out of the system. The heat and work are the
path functions in a realistic process. U is the state
function. “d” and “®” are total differential symbols to the
state function and path function, respectively. “A”
expresses a change of quantity value.

In a reversible isothermal process, Q, = TAS, where T

is the thermodynamic temperature, AS expresses the
entropy change (state function). So that, in a reversible
isothermal process, both Q, and W, are state functions
(the temperature must be kept constant). In a reversible
adiabatic process, W, is the state function (the system
must be kept adiabatic). In an isochoric process, Q, is the
state function (the volume must be kept constant). In a
reversible isobaric process, Q, and W, are all the state
functions (the pressure must be kept constant).

EQUALITIES AND INEQUALITIES OF HEAT, WORK,
AND RATIO OF WORK TO TEMPERATURE

Equalities and inequalities of heat and work

In a process, we assume:
QreaI(B) = Qr (B)+Qresist(B)' (3)
Wreal (B) = Wr (B) + Wresist(B) ' (4)

In a spontaneous process, the following equations must
be obeyed (Jin, 2016):

Qr (A) 2 Qreal (B) ’ (5)
Wr (A) < Wreal (B) ' (6)

where the equality sign is the same for a reversible or
irreversible process in which W, (B) =0, whereas the
sign of inequality is for an irreversible process. In a

process or cycle, AU, =AU, on the basis of

Equations 1 to 4, Qi (B) =—W, 4 (B) for a realistic

path (B). According to Equations 5 and 6,
Q. (B)=2Q,,(B) and W,(B)<W,,(B) are also
right; as such we could obtain:

Wresist(B) = _Qresist(B) >0 (1)

where the sign of equality is the same for a reversible or

irreversible process in which W, (B) =0, while the

sign of inequality is for an irreversible process.

Equations 5 and 6 were derived from the Clausius
inequality and the Carnot theorem. Any reversible cycle
could be simulated by the infinitesimal reversible Carnot
cycles. When the area of infinitesimal reversible Carnot
cycles is equal to that of the simulated reversible cycle,
then they are the same work. Because their AU, are all
zero in arbitrary cycle, then they are also the same heat.
Therefore, Equations 5 and 6 can be extended and
applied to any reversible cycle.

Assuming that a realistic path (B) and its reversible path
(A) with another reversible path (C) constitute both a
realistic and a reversible cycle (Figure 1), then we can

gan  Q,(A)-Q,(0)2Q,,(B)-Q,(C)  and
W, (A) - W, (C) < W, (B) - W, (C). Thus,
Q(A)2Q.u(B) and W, (A)SW,,(B) in a

process. Therefore, Equations 5 and 6 can be extended
and applied to arbitrary process.

Complete derivation of the inequality on the ratio of
work to temperature from the Clausius inequality

The Clausius inequality can be rewritten as follow:

3Q,(A)  19Q e (B)
=l T

®)

]

where the sign of equality is for a reversible process and
the sign of inequality is for an irreversible process. “|” is
J’iSQr (A)
T

integral symbol. The entropy change is the

ratio of heat to temperature in a reversible path (A).
i0 B
IQe—“() is the ratio of heat to temperature in a
j :
|
realistic path (B). In a process, the state “j” expresses the
initial state, the state “i” expresses the final state, T; and
T; are the initial and final states thermodynamic
temperature of the surroundings or reservoirs,
respectively. If a complex process has many processes,
T; should include thermodynamic temperatures of many
surroundings or reservoirs. T varies from T; to T;, which is
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Figure 1. The reversible cycle “JAiCj” and realistic cycle “BiCj".

different from the contact temperature (Muschik, 2014). In
the reversible process, T; and Q.4 (B) will be replaced by
T and Q,(B) in Equation 8.

From Equations 1 and 2, we can obtain

idU, (A) i6Q,(A) idW, (A)
Ij T :-E T +.[,- T and

J'idU real (B) =J'i6Qreal(B) +J'i6Wreal(B)_ Thus, the fo||owing
i Ti i Ti i T
equation is given by:

10U, (A)  (10U,(B) _ (18Q,(A)  (18Quu(B)  i8W,(A) (i8W,.,(B), (9)

[ [ OP [20E, [RE) [e®

idU, (A idu (B

'y, (A) or .r&() are the ratio of
T ] T,

internal energy change to temperature in a reversible

_ - . BW, (A)
path (A) or in a realistic path (B), respectively. I _—
j

T
or J'j' 8Wreal (B)

where I
j

are the ratio of work to temperature in a

reversible path (A) or in a realistic path (B), respectively.

If J..i dUr(A) _J..i dU reaI(B) ZO and
i T j Ti
J' 1BW, (A) J' ' 8Wieq (B) >0, in accordance with
j T j T
Equation 9, we have

) SQ,T(A) - SQWE.(B) -, svv,T(A) N Swr;. N

]

where _(IiSWr(A)_J'iSWrea'(B)) is negative value
i T i T

J

which violates the Clausius inequality. This is impossible.
So that, the equality and inequality on the ratio of work
to temperature can be written as follow:

IiSW,. (A) _ J‘iSWreal (B) <0. (10)
T T

If J'idUr(A)_J'idUrea'(B)Zo, on the basis of
T i,

Equations 9 and 10, we can obtain:

j T

EEON, SQmTa.(E» S UGN, sw,%a.(B)) -0
This confirms the Clausius inequality. Therefore,
Equation 10 is right in any case. Where the sign of
equality should belong to the reversible process, the sign
of inequality should belong to the irreversible process;
otherwise, Equation 10 will be incorrect.

According to Equations 9 and 10, the inequality

J'i du, (A) —_[i dU e (B) _  violates the Clausius
T T

inequality. Therefore, J'i du, (A) —.[i AU . (B) >0 is
i T i Ti
correct in any case.

The ideal gas equation of state is pv = nRT . By this

(Borgnakke and Sonntag, 2014; Jacobs, 2013), we know
that:
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du, =C,dT + H@) - p}dv =C,dT,
ot ),

nRTdV

W =-—pdV =—
¢ =P v
where p is the pressure, V is the volume, R is the gas
constant, and n is the amount of substance. Because
§dUr :fc\,dT ~0 and §8Wr :_ifpdv :_§anV -0,
T T T T vV
they are all state functions in the reversible process for
ideal gas. It should be noted that the van der Waals
equation of state is an approximate for the real gases and
could not prove the aforementioned results. “9” is partial
differential symbol.

APPLICATIONS OF EQUALITIES AND INEQUALITIES
ON HEAT AND WORK

Applications to the chemical reactions
The non-expansion work does not exist

If the chemical reactions could happen, Equations 5 to 8
and 10 must be obeyed. In the isothermal and isobaric

process, we know that W, =W_,  —pAV and
W, =W,_, —PAV, where pAV is the volume expansion

work, Woner €Xpresses the non-expansion work (namely
that the other work) in the realistic process except W esist,
while W, .« expresses other work in the reversible
process. In the isothermal and isobaric process,

AG=AH-TAS, AH =AU+ pAV; where G is the

free energy, H is the enthalpy. It should be noted that AU
and AS are state functions in any process. AH is the state
function in any isobaric process. In any isothermal and
isobaric process, AG is the state functions.

If the non-expansion work does not exist in the
chemical reactions, in the isothermal and isobaric

reversible path (A), we can gain W.(A) =—pAV(A),
AH = Qr (A) = TAS* Wresist(A) =0 !
W.(A) = AU-Q, (A) = AU—-TAS = —pAV(A),

namely AG(A) =0. Attention, the temperature must be
kept constant in the isothermal and isobaric reversible
path (A). In the isothermal and isobaric irreversible path
(B), W, (B) =—pAV(B) . According to Equation 4, we have
Wreal (B) = Wr (B) + Wresist(B) =AU- Qr (B) + Wresist(B) = _pAV(B) '

SO’ Qr (B) =AU+ pAV(B) + Wresist(B) = AH(B) + Wresist(B) *

On the basis of Equations 3 and 7, we obtain
Q.ea (B) =Q,(B) + Q,i(B) =AH(B) . In the isothermal
and isobaric process, Equation 5 can become

Q,(A)=TAS>AH(B) or —AG(B) >0.
In the isothermal and isobaric process, Equation 6 will
vary:

W, (A) = AU-Q, (A) < W, (B) =—pAV(B) or AG(B)<0.

While the non-expansion work does not exist in the
chemical reactions, Q,.,(B) =AH(B) and AG(B)<0

are consistent with the actual facts. Equations 5 and 6
are confirmed.

The non-expansion work exist

If the other work exists in the chemical reactions, we can
obtain W (C) =AU -Q, (C) =AU -TAS =W, (C) — pAV(C)
in the isothermal and isobaric reversible path (C), thus,
AG(C)=W,_, (C). In the isothermal and isobaric

irreversible path (D), according to Equation 4, we will gain

Wreal (D) = Wr (D) + Wresist(D) =AU- Qr (D) + Wresist(D) =W, (D) - pAV(D)

— YVother
namely that' Wother(D) :AH(D)_Qr(D)+Wresist(D) : According to
Equations 3 and 7, we obtain
Qreal (D) = Qr (D) + Qresist(D) = AH(D) - Wother(D) :

In the isothermal and isobaric process, according to
Equation 5, we have

Q,(C)=TAS>Q,., (D) =AH(D) -W,_,. (D), then
—-AG(D) >-W,,. (D). In isothermal and
process, Equation 6 can be converted into
W (C)=AU-Q,(C) < W, (D) =W, (D)-pAV(D), that
is, AG(D) W, ..(D) .

In the meantime, if the paths (C) and (D) exists, the
result is AG =AG(C) =AG(D) =W, (C). When the

path (B) with the paths (C) and (D) exists in the
meantime, the following equation will be given by:

isobaric

AG = AG(B) = AG(C) = AG(D) = W.__, (C).

If the paths (B), (C), and (D) with the path (A) exists in the

meantime, we have
AG = AG(A) = AG(B) = AG(C) = AG(D) =0.
For electrochemical reaction,

AG=W,_, (C)=-nFV,,, where n is the number of
electrons transferred per mole in cell reaction, F is the
Faraday constant, Vg is the cell potential when the

electric current approaches zero namely Wis;(C)=0.

ele’

Applications to the gravitational field

In the gravitational field, mgAh is the gravitational



potential energy change, m is the mass, g is the
acceleration of gravity, and Ah is the elevation change. In

the reversible process (W .. =0), according to the

resist
conservation of energy, we can obtain

i
AU, +AE, + [pdV + A, + mgAh + AE,;, = 0.

j
Where p is not the internal pressure (Marcus, 2013).
AE., is the heat energy change of calorimeter in the
reversible process, Qr :—AEca,. AE.. and AE,, are

electrical energy change and kinetic energy change in the
reversible process, respectively. When compared with

Equation 1, if I_IpdV and AE are neglected, we find:
j

W, =—-mgAh—-AE,,,. (11)

In the realistic process, on the basis of the conservation
of energy, we can gain

AU, +AE, + J'_ipdV +AE,, +mgAh+AE,;, =0
]

! !

, where AE,, and AE,, are electrical energy change
and kinetic energy change in the realistic process,

respectively, Q,, =—-AE., . When compared with

!

i
Equation 2, if I_pdV and AE,, are neglected, we find:
J

!
W, = —mgAh —AE,; . (12)
The gravitational potential energy change is identical in
the irreversible and reversible process. In accordance

with Equation 6, we gain:

AE, >AE,. . (13)

kin =

The falling matter and flowing river water have to obey
Equation 13. Equation 13 is an approximate formula.
When the mechanical energy want to keep the

i
conservation, the changes of AU,, AE,, J‘.pdV, and
j

AEg. are equal to zero or could be neglected.

Applications to free expansive ideal gas

The ideal gas in the adiabatic isochoric container was
freely expanding to the adiabatic isochoric vacuum
container; the temperature will be without any change. In

the irreversible path (B), W,,(B)=Q,.,(B)=0 and
AU = 0. The reversible process is isothermal expansion
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in the path (A); the result is
inRTdV V,

A)=-W, (A) = =nRTIh—>0, Wwhere
Q(A)=-W,(A) = [ vi

J
V; > V,. Therefore, Equations 5 to 7 are all obeyed. It

should be noted that according to Equations 3, 4 and 7,
we have Q,(B)=—0Q,«(B)>0 and

Wr (B) = _Wresist(B) <0.

Conclusion

If the work does not exist, Q, =Q,,. the difference in

temperature would cause the heat to be transferred. For
example, the temperature either rises or falls in isochoric
gas; Equations 6 and 10 are disobeyed, but Equation 8 is
obeyed.

Wa is approximately equal to W, in the He(ll)

superfluid, namely, that W, ® 0. So the difference in

temperature would cause the motion of the He(ll)
superfluid, but Equation 10 will be obeyed. If the He(ll)
superfluid is heated it will flow from low temperature to

high temperature; on the basis of Equation 10

W, =W, <0 (namely,
!’

—AE,;,, —mgAh =~ —AE,,. —mgAh <0 or

AE,,, =~ AE,,, >mgAh). Therefore, if Ah<O,

!

AE, ~AE, >0.1f AE, ~AE, <0, Ah>0.

The aforementioned conclusion could not be obtained
from other fluids.

. f 8Qr(A)_Ii8Qrea.(B) — X, X>0, where X is the
i T T

entropy generation with ASy (Grazzini et al., 2013). We

will gain A5=X+QrL(B):AS +Qr%(8), as the ratio

1 1
of heat to temperature Qe (B) is entropy flow.
i
Equation 8 is the criteria for a spontaneous process
and must be obeyed by the spontaneous process.
Equations 5 to 7 are always the criteria for a spontaneous
process except W, = 0. Equation 10 is always criteria

spontaneous process except
=W__.=0. Equations 3 and 4 are well

resist

for a
\/\/r = \/\/real
reasonable presumptions. Because the resistance exists,
AG will change to zero when the chemical reaction
reaches balance state in the isothermal and isobaric
realistic path. The resistance should have relation to the
rate and activation energy in the chemical reactions. In
Equations 5, 6, and 13, the reversible process could not
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be arbitrarily invented or fabricated. The reversible and
irreversible paths generally have a distinction for gas.
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