Full Length Research Paper

Rarely generalized ideal (g1) continuous functions in ideal topological spaces

M. Khan and Murad Hussain*

Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan.

Accepted 8 August, 2011

In this paper, we introduce and study a new notion of functions in ideal topological spaces known as rarely generalized ideal (gl)- continuous functions and investigate some of their properties. This type of continuity is a generalization of rarely g —continuity.

Key words: Rarely continuous functions, rarely g –continuous functions, rarely generalized ideal (gI)-continuous functions.

INTRODUCTION

Weak continuity was generalized by Popa (1979) as a rare continuity which was further investigated by Long and Herrington (1982), Jafari (1995, 1997). Caldas and Jafari (2005) further generalized rare continuity as rare g —continuity in topological spaces and investigated some of its properties.

In this paper, we introduce and study the concept of rarely gI—continuous functions in ideal topological spaces as a generalization of rare continuity by Popa (1979) and rarely g—continuity by Caldas and Jafari (2005).

PRELIMINARIES

Recall that a rare set is a set R such that $Int(R) = \emptyset$. Let (X, τ) be a topological space with no separation properties assumed. An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties:

1. $A \in I$ and $B \subset A$ implies $B \in I$. 2. $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subseteq X$, $A^*(I, \tau) = \{x \in X | A \cap U \notin I, \forall U \in \tau(X, x)\}$ is called the local function of A with respect to I and τ (Jankovic et al., 1990; Kuratowski, 1933). For a subset $A \subseteq X$, $A_*(I,\tau) = \{x \in X | A \cap U \notin I, \forall U \in SO(X, x)\}$ is called the semi-local function of A with respect to I and τ (Khan and Noiri, 2010), where $SO(X,x) = \{U \in SO(X) | x \in U\}$. We simply write A_* instead of $A_*(I)$ in case there is no ambiguity. For every ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ . For a subset $A \subseteq X$, $Cl^*(A)$ and $Int^*(A)$ will, respectively, denote the closure and interior of A in (X, τ^*) .

Definition 1

Let (X, τ, I) be an ideal topological space and A be a subset of X.

1. *A* is called *g* -closed (Levine, 1963) if $Cl(A) \subset G$ whenever $A \subset G$ and *G* is open in *X*.

2. A is called s^*g – closed (Khan et al., 2008) if

^{*}Corresponding author. E-mail: murad@comsats.edu.pk.

 $Cl(A) \subset U$ whenever $A \subset U$ and U is semi-open in X.

3. *A* is called gI -closed (Khan and Noiri, 2010) if $A_* \subset U$ whenever $A \subset U$ and *U* is open in *X*. The complement of gI -closed set is gI -open in *X*.

Definition 2

A function $f: (X, \tau_X) \to (Y, \tau_Y, I)$ is called:

1. Weakly continuous (Levine, 1961) (respectively weakly-*g*-continuous (Caldas, Jafari and Noiri's preprint)) if for each $x \in X$ and each open set *G* containing f(x), there exists $U \in O(X, x)$ (respectively $U \in GO(X, x)$) such that $f(U) \subset Cl(G)$.

2. g -continuous (Balachandran et al., 1991) if the inverse image of every closed set in Y is g -closed in X. 3. Rarely continuous (Popa, 1979) if for each $x \in X$ and each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and $U \in O(X, x)$ with $f(U) \subset G \cup R_G$.

4. Rarely g -continuous (Caldas and Jafari, 2005) if for each $x \in X$ and each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and $U \in GO(X, x)$ with $f(U) \subset G \cup R_G$.

5. Weakly I -continuous (Jeyanthi et al., 2006) if for each $x \in X$ and each open set V in Y containing f(x), there exists an open set U containing x such that $f(U) \subset Cl^*(V)$.

6. I_g -continuous (Caldas and Jafari, 2005) at $x \in X$ if for each set $G \in O(Y, f(x))$, there exists $U \in GO(X, x)$ such that $Int(f(U)) \subset G$.

Rarely gI - continuous functions

Here, we will introduce Rarely gI —continuous functions in ideal topological spaces and give some characterizations.

Definition 3

A function $f:(X,\tau_X,I) \to (Y,\tau_Y)$ is known as rarely

gI --continuous if for each $x \in X$ and each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and gI --open set U in X containing x with $f(U) \subset G \cup R_G$.

Note that, every weakly I -continuous function is weakly continuous, every weakly continuous function is rarely continuous, every rarely continuous function is rarely g -continuous and every rarely g -continuous function is rarely gI -continuous.

The following diagram depicts the inter relation between various continuities in topological and ideal topological spaces.

weakly
$$I - \text{cont.} \rightarrow \text{weakly cont.} \rightarrow \text{rarely cont.} \rightarrow \text{rarely} - g - \text{cont.} \rightarrow l_g - \text{cont.}$$

rarely $-g - \text{cont.} \rightarrow \text{rarely} - gI - \text{cont.}$

Remark

1. A rarely gI —continuous function need not be continuous (I —continuous).

2. Rarely gl -continuous function need not be I_a -continuous.

3. Rarely gl -continuous function need not be rarely continuous.

Example

Let
$$X = \{a, b, c, d\}$$
 with
 $\tau_X = \{\emptyset, \{a, b, c\}, \{b, c\}, \{a\}, X\}$ and
 $I = \{\emptyset, \{a\}, \{a, b\}, \{b\}\}$. Let $Y = \{1, 2, 3, 4\}$ with
 $\tau_Y = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, Y\}$. Let
 $f: (X, \tau_X, I) \rightarrow (Y, \tau_Y)$ be defined by $f(a) = 2$,
 $f(b) = 1, f(c) = 3, f(d) = 4$. Then f is rarely
 gI -continuous but not continuous because for an open
set $U = \{1\}$ in $Y, f^{-1}(U) = \{b\}$ is not open in X .

Theorem 1

The following statements are equivalent for a function $f: (X, \tau_X, I) \rightarrow (Y, \tau_Y)$:

- (1) The function f is rarely gI —continuous at $x \in X$.
- (2) For each set $G \in O(Y, f(x))$, there exists a gI -
- open set U in X containing x such that

 $Int[f(U) \cap (Y - G)] = \emptyset.$

(3) For each set $G \in O(Y, f(x))$, there exists a gl-open set U in X containing x such that $Int[f(U)] \subset Cl(G)$.

Proof

 $(i) \Rightarrow (ii)$. Let $G \in O(Y, f(x)).$ By $f(x) \in G \subset Int(Cl(G))$ and the fact that $Int(Cl(G)) \in O(Y, f(x))$, there exists a rare set R_G with $Int(Cl(G)) \cap Cl(R_G) = \emptyset$ and a gl -open set $U \subset X$ containing x such that $f(U) \subset Int(Cl(G)) \cup R_c$. We have $Int[f(U) \cap (Y - G)] \subset [Int(Cl(G)) \cup R_{c}] \cap (Y - Cl(G)) = [Int(Cl(G)) \cap (Y - Cl(G))] \cup [R_{c} \cap (Y$ $(Y - Cl(G))] = \emptyset \cup [R_c \cap (Y - Cl(G))] = R_c \cap (Y - Cl(G))$ $Int[f(U) \cap (Y - Cl(G))] = \emptyset.$ $(ii) \Rightarrow (iii)$. It is straightforward. $(iii) \Rightarrow (i)$. Let $x \in X$ and $G \in O(Y, f(x))$, then by (*iii*) there exists a gI -open set U in X containing x $Int[f(U)] \subset Cl(G).$ such that We have $f(U) = [f(U) - Int[f(U)]] \cup Int[f(U)] \subset [f(U) - Int[f(U)]] \cup Cl(G) = [f($ $[G \cup (Cl(G) - G)] = [f(U) - Int[f(U)]] \cap (Y - G) \cup G \cup (Cl(G) - G)$ Let $R_1 = [f(U) - Int[f(U)]] \cap (Y - G)$ and $R_2 = Cl(G) - G$. Then R_1 and R_2 are rare sets. Moreover $R_G = R_1 \cup R_2$ is a rare set such that $Cl(R_G) \cap G = \emptyset$. This proves that $f(U) \subset G \cup R_G$. Hence f is rarely gI -continuous. This completes the

Definition 5

proof.

A function $f: X \to Y$ is gI -continuous at $x \in X$ if for each set $G \in O(Y, f(x))$, there exists agI -open set U in X containing x such that $Int[f(U)] \subset G$. If f has this property at each point $x \in X$, then we say that f is gI -continuous on X.

Note that, every I_g -continuous function is gI -continuous and every gI -continuous function is rarely gI -continuous.

Theorem 2

Let (X, τ_X) be a space and (Y, τ_Y) be a regular space. A function $f: X \to Y$ is rarely gI -continuous, if and only if f is gI -continuous.

Proof

We prove the necessity only since sufficiency is evident Let $x \in X$ and $f(x) \in G$ where G is an open set in Y. By regularity of Y, there exists a set $G_1 \in O(Y, f(x))$ that $Cl(G_1) \subset G$. Since f is rarely such gI -continuous, by theorem 6, there exists a gI -open set U in Х containing xsuch that $Int[f(U)] \subset Cl(G_1) \subset G.$ This implies $Int[f(U)] \subset G$. This proves that f is gI -continuous.

Lemma 1

If $g: Y \rightarrow Z$ is continuous and one-to-one, then g preserves rare sets (Long and Herrington, 1982).

Theorem 3

If $f: X \to Y$ is rarely gI -continuous and $g: Y \to Z$ is a continuous surjection, then $g \circ f: X \to Z$ is rarely gI -continuous.

Proof

Suppose $x \in X$ and $(g \circ f)(x) \in V$, where V is an open set in Z. By hypothesis, g is continuous, therefore $G = g^{-1}(V)$ is an open set in Y containing f(x) such that $g(G) \subset V$. Since f is rarely gI -continuous, there exists a rare set R_c with $G \cap Cl(R_c) = \emptyset$ and a gI open set U containing x such that $f(U) \subset G \cup R_G$. By Lemma 1, $g(R_G)$ is a rare set in Z. Since R_G is a subset of <u>Y</u> – G and *g* is injective, we have $Cl(g(R_c)) \cap V = \emptyset.$ This implies that $(g \circ f)(U) \subset V \cup g(R_G)$. This completes the proof.

Definition 6

A function $f: X \to Y$ is gI -open if f(U) is gI - open in Y for every gI -open set U in X.

Theorem 4

Let $f: X \to Y$ be a gI -open surjection and $g: Y \to Z$ be a function such that $g \circ f: X \to Z$ is rarely gI -continuous. Then g is rarely gI -continuous.

Proof

Let $y \in Y$ and $x \in X$ such that f(x) = y. Let $G \in O(Z, (g \circ f)(x))$. Since $g \circ f$ is rarely gI -continuous, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and U a gI -open in X containing x such that $(g \circ f)(U) \subset G \cup R_G$. But $f(U)(\operatorname{say} V)$ is a gI -open set containing f(x). Therefore, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and a gI -open set V in Y containing y such that $g(V) \subset G \cup R_G$. This proves that g is rarely gI -continuous.

Theorem 5

If $f: (X, \tau_X) \to (Y, \tau_Y, I)$ is rarely gI -continuous function, then the graph function $g: X \to X \times Y$, defined by g(x) = (x, f(x)) for every x in X, is rarely gI -continuous.

Proof

Suppose that $x \in X$ and W is any open set containing g(x). It follows that there exist open sets Uand V in X and Y, respectively, such that $(x, f(x)) \in U \times V \subset W$. Since f is rarely gI-continuous, there exists gI-open set Gcontaining $x \in X$ such that $Int[f(G)] \subset Cl(V)$. Let $E = U \cap G$. By Theorem 3 (Khan and Noiri, 2010), E is gI- open set in X containing x and we have $Int[g(E)] \subset Int(U \times f(G)) \subset U \times Cl(V) \subset Cl(W)$. Therefore, g is rarely gl -continuous.

Definition 6

Let $A = \{G_i\}$ be a class of subsets of *X*. By rarely union sets (Jafari, 1997) of *A* we mean $\{G_i \cup R_{G_i}\}$, where each R_{G_i} is rare set such that each of $G_i \cap Cl(R_{G_i})$ is empty.

Definition 7

A subset *B* of *X* is said to be rarely almost compact relative to *X* (Jafari, 1997) if every cover of *B* by open sets of *X*, there exists a finite subfamily whose rarely union sets cover *B*. A topological space *X* is said to be rarely almost compact if the set *X* is rarely almost compact relative to *X*.

Definition 8

A subset *K* of a space *X* is said to be gI -compact relative to *X* if every cover of *K* by gI -open sets in *X* has a finite subcover. A space *X* is said to be gI -compact if *X* is gI -compact relative to *X*.

Theorem 6

Let $f: X \to Y$ be rarely gI -continuous and K be gI -compact relative to X. Then f(K) is rarely almost compact relative to Y.

Proof

Suppose that Ω is an open cover of f(K). Let B be the set of all V in Ω such that $V \cap f(K) \neq \emptyset$. Then B is an open cover of f(K). Hence for each $k \in K$, there is some $V_k \in B$ such that $f(k) \in V_k$. Since f is rarely gI—continuous, there exists a rare set R_{V_k} with $V_k \cap Cl(R_{V_k}) = \emptyset$ and a gI—open set U_k containing k such that $f(U_k) \subseteq V_k \cap R_{V_k}$. Hence there is a finite subfamily $\{U_k\}_{k \in \Delta}$ which covers K, where Δ is a finite subset of K. The family

 $\{V_k \cup R_{V_k}\}_{k \in \Delta}$ also covers f(K). This proves that f(K)

is rarely almost compact relative to Y.

Conclusion

Rarely gl -continuity is a generalization of rarely

g —continuity.

REFERENCES

- Balachandran K, Sundaran P, Maki H (1991). On generalized continuous maps in topological spaces, Memoirs of the Faculty of Science Kochi University Series, 12: 5-13.
- Caldas M, Jafari S (2005). On rarely *g* —continuous functions. Glas. Mat. Ser., 40(60): 317-322.
- Jafari S (1995). A note on rarely continuous functions, Univ. Bacau. Stud. Cerc. St. Ser. Mat., 5 : 29-34.
- Jafari S (1997). On some properties of rarely continuous functions, Univ. Bacau. Stud. Cerc. St. Mat.ser., 7: 65-73.
- Jankovic D, Hamlett TR (1990). New topologies from old via ideals, Am. Math. Mon. 97(4): 295-310.
- Jeyanthi V, Renuka V, Devi SD (2006). Weakly *I* —continuous functions. Acta Math. Hungar. 113(4): 319-324.
- Khan M, Noiri T (2010). Semi-local functions in ideal topological spaces. J. Adv. Res. Pure Math., 2(1): 36-42.
- Khan M, Noiri T (2010). On *gI* —closed sets in Ideal topological spaces. J. Adv. Stud. Topol., 29(1): 33.

- Khan M, Noiri T, MuradHussain (2008). On s*g-closed sets and s*normal spaces. J. Nat. Sci. Math., 48(1-2): 31-41.
- Kuratowski K (1933). Topology I, Monogr. Mat. 3 (Warszawa-Lw6w), pp. X+ 285.
- Levine N (1961). A decomposition of continuity in topological spaces, Am. Math. Mon., 68: 44-46.
- Levine N (1963). Semi-open sets and semi-continuity in topological spaces, Am. Math. Mon., 70 (1): 36-41.
- Long PE, Herrington LL (1982). Properties of rarely continuous functions. Glas. Mat., 37 (17): 229-236.
- Popa V (1979). Sur certain decomposition de la continuitedans les espacestopologiques, Glas. Mat. Ser. III., 14(34): 359-362.