Full Length Research Paper

Some new classes of analytic functions defined using convolution

Khalida Inayat Noor
Department of Mathematics, COMSATS Institute of Information Technology, Pak Road, Chak Shahzad, Islamabad, Pakistan. E-mail: khalidanoor@hotmail.com.

Mathematics Subject Classification (2000): 30C45, 30C50.
Accepted 16 May, 2011
In this paper, we introduce and study some new subclasses of analytic functions defined in the open unit disc using the convolution technique. Inclusion results, radius problems and several other properties of these classes are discussed.

Key words: Convolution integral operator, functions with positive real part, alpha-starlike, bounded Mocanu variation, univalent.

INTRODUCTION

Let A denote the class of functions $f(z)$ given by:

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $E=\{z:|z|<1\}$. Let $P_{k}(\gamma)$ be the class of functions $p(z)$ defined in E, satisfying the properties $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\gamma}{1-\gamma}\right| d \theta \leq k \pi, \tag{2}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \gamma<1$. When $\gamma=0$, we obtain the class P_{k} defined in Pinchuk (1971) and for $k=2, \gamma=0$, we have the class P of functions with positive real part. We can write Equation 2 as:

$$
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+(1-2 \gamma) z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

where $\mu(t)$ is a function with bounded variation on $[0,2 \pi]$ such that;

$$
\int_{0}^{2 \pi} d \mu(t)=2, \quad \int_{0}^{2 \pi}|d \mu(t)| \leq k
$$

From Equation 2, we can write, for $p \in P_{k}(\gamma)$,

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z), p_{1}, p_{2} \in P_{2}(\gamma)=P(\gamma), \tag{3}
\end{equation*}
$$

where $P(\gamma)$ is the class of functions with positive real part greater than γ.
By S, K, S^{*} and C, we denote the subclasses of A, which consist of univalent, close-to-convex, starlike and convex functions in E, respectively. The class A is closed under the convolution * (or Hadamard product).

$$
(f * g)(z)=\sum_{m=0}^{\infty} a_{m} b_{m} z^{m+1}, \quad f, g \in A
$$

where $f(z)=\sum_{m=0}^{\infty} a_{m} z^{m+1}, \quad g(z)=\sum_{m=0}^{\infty} b_{m} z^{m+1}$.
For $f_{\lambda}(z)=\frac{z}{(1-z)^{\lambda+1}}, \lambda \geq 0$, we have chosen a suitable branch so that $f_{\lambda} \in A$.
Let $f \in A$ be given by Equation 1, with the properties that $a_{m} \neq 0$ for all m and $\lim _{m \rightarrow \infty}\left|a_{m}\right|^{\frac{1}{m}}=1$. Then we can define $f_{\lambda}^{(-1)}$ as the unique and well-defined function in A such that

$$
\begin{equation*}
\left(f_{\lambda} * f_{\lambda}^{(-1)}\right)(z)=\frac{z}{1-z}, \quad z \in E \tag{4}
\end{equation*}
$$

We

$$
I_{\lambda} f(z)=\left(f_{\lambda}^{(-1)} * f\right)(z)=\left[\frac{z}{(1-z)^{\lambda+1}}\right]^{(-1)} * f(z), \quad \lambda \geq 0
$$

$f)=\alpha(\lambda+2)\left[\frac{I_{\lambda+1} f(z)}{I_{2+1} f(z)}-\frac{\lambda+1}{\lambda+2}\right\rceil+(1-\alpha)(\lambda+1)\left\lceil\frac{I_{\lambda} f(z)}{I_{2+1} f(z)}-\frac{\lambda}{\lambda+1}\right\rceil$.

Then $\quad f \in M_{k}^{*}(\alpha, \lambda, \gamma) \quad$ if \quad and only if $J^{*}(\alpha, \lambda, f) \in P_{k}(\gamma)$, for $k \geq 2,0 \leq \gamma<1$ and $z \in E$. As special cases, we note the following:
1.

$$
M_{2}^{*}(0,0,0)=C, M_{2}(0,1,0)=S^{*}, \text { and }
$$

$M_{2}^{*}(\alpha, 1, \gamma) \subset M_{\alpha} \subset S$, where M_{α} is the class of alpha-starlike functions (Goodman, 1983).
2. $M_{k}^{*}(0,1, \gamma)=V_{k}(\gamma) \subset V_{k}$, where V_{k} is the wellknown class of analytic functions with bounded boundary rotation and $M_{k}^{*}(0,0,0)=R_{k}$, consists of the functions with bounded radius rotation (Goodman, 1983).
3. $M_{k}^{*}(\alpha, 0,0)=M_{k}(\alpha)$, represents the class of functions with bounded Mocanu variation (Goodman, 1983).

For different values of parameters k, α and λ, we obtain several other subclasses of analytic functions (Noor, 1995, 1999, 2007; Noor and Noor., 2003).

PRELIMINARY RESULTS

Lemma 1

Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and $\psi(u, v)$ be a complex-valued function satisfying the conditions (Miller, 1975):

1. $\psi(u, v)$ is continuous in a domain $D \subset C^{2}$,
2. $(1,0) \in D$ and $\psi(1,0)>0$,
3. $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$ whenever $\left(i u_{2}, v_{1}\right) \in D$, and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$

If $h(z)=1+\sum_{m=1}^{\infty} c_{m} z^{m}$ is a function, analytic in E such that
$\operatorname{Re}\left\{\psi\left(h(z), z h^{\prime}(z)\right)\right\}>0 \quad$ for $\quad z \in E, \quad$ then $\operatorname{Re} h(z)>0$ in E.

Lemma 2

Let $\beta>0, \beta+\delta>0$ and $\gamma \in\left[\gamma_{0}, 1\right.$), (Miller et al., 2000) where $\quad \gamma_{0}=\operatorname{Max}\left\{\frac{\beta-\delta-n}{2 \beta},-\frac{\delta}{\beta}\right\}$. If $\left\{p(z)+\frac{n z p^{\prime}(z)}{\beta p(z)+\delta}\right\} \in P(\gamma), \quad(z \in E)$, then $\quad p \in P\left(\gamma_{1}\right)$, where $\gamma_{1}=\frac{(\beta+\delta)}{\left\{F_{21}\left(\frac{2 \beta}{n}(1-\gamma) ; 1 ; \frac{\beta+\delta+1}{n} ; \frac{1}{2}\right)\right\} \beta}-\frac{\delta}{\beta}$.
The value of γ_{1} is best possible.

Lemma 3

Let $h(z)$ be analytic function in E with $h(0)=1$ and $\operatorname{Re} h(z)>0$ in E. Then, for $|z|=r, z \in E:$

1. $\frac{1-r}{1+r} \leq \operatorname{Re} h(z) \leq|h(z)| \leq \frac{1+r}{1-r}$,
2. $\left|h^{\prime}(z)\right| \leq \frac{2 \operatorname{Re} h(z)}{1-r^{2}}$.

This result is well-known (Goodman, 1983).

Lemma 4

Let $h(z)$ be an analytic function in E with $h(0)=1$ and $\operatorname{Re} h(z)>0$ in E. Then, for $s>0$ and $v \neq-1$ (complex), $\quad \operatorname{Re}\left\{h(z)+\frac{s z h^{\prime}(z)}{h(z)+v}\right\}>0 \quad$ for $|z|<r_{0}$, where r_{0} is given by:
$r_{0}=\frac{|v+1|}{\sqrt{A+\left(A^{2}+\left|V^{2}-1\right|^{2}\right)^{\frac{1}{2}}}}, \quad A=2(s+1)^{2}+|V|^{2}-1$,
and this result is best possible (Ruscheweyh and Singh, 1976).

Lemma 5

Let $f \in A$ with $\frac{f(z) f^{\prime}(z)}{z} \neq 0$ in E. Then $f(z)$ is univalent (Bazilevic) in E if and only if, for $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi$ and $0<r<1$, we have
$\int_{\theta_{Q}}^{\theta}\left[\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\beta-1) \frac{z f^{\prime}(z)}{f(z)}\right\}-\alpha \operatorname{Im} \frac{z f^{\prime}(z)}{f(z)}\right] d \theta>-\pi, \quad z=r e^{i \theta}, \beta>0$
and α is real (Shiel-Small, 1972).

Lemma 6

If ϕ is prestarlike of order $\beta \leq 1, g \in S^{*}$, then for each analytic function $h, \frac{\phi * h g}{\phi * g}(E) \subset \bar{C}_{0} h(E)$, where $\bar{C}_{0} h(E)$ denotes the closed convex hull of $h(E)$ (Ruscheweyh, 1982).

MAIN RESULTS

Theorem

For

$$
\begin{aligned}
& \alpha>0,0 \leq \gamma<1, \lambda \geq 0, k \geq 2, \gamma=\max \left[\frac{1-\lambda-\alpha}{2},-\lambda\right] \\
& M_{k}^{*}(\alpha, \lambda, \gamma) \subset M_{k}^{*}\left(0, \lambda, \gamma_{1}\right)=R_{k}\left(\lambda, \gamma \gamma_{1}\right) \\
& \text { where }
\end{aligned}
$$

$$
\begin{equation*}
\gamma_{1}=\left[\frac{(1+\lambda)}{{ }_{2} F_{1}\left(\frac{2}{\alpha}(1-\gamma) ; 1 ; \frac{1+\alpha+\lambda}{\alpha} ; \frac{1}{2}\right)}-\lambda\right] \tag{9}
\end{equation*}
$$

The value of γ_{1} is best possible.

Proof

Let $J^{*}(\alpha, \lambda, f)$ be defined by Equation 7. Then, using the identity of Equation 6, we have:

$$
\begin{equation*}
J^{*}(\alpha, \lambda, f)=\alpha \frac{z\left(I_{\lambda+1} f(z)\right)^{\prime}}{I_{\lambda+1} f(z)}+(1-\alpha) \frac{z\left(I_{\lambda} f(z)\right)^{\prime}}{I_{\lambda} f(z)} \tag{10}
\end{equation*}
$$

Set

$$
\begin{equation*}
z \frac{\left(I_{\lambda} f(z)\right)^{\prime}}{I_{\lambda} f(z)}=H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) H_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) H_{2}(z) . \tag{11}
\end{equation*}
$$

We note that $H(z)$ is analytic in E and $H(0)=1$. We want to show that $H \in P_{k}\left(\gamma_{1}\right)$ in E. Now, from Equations 6 and 10 , we have:
$J^{*}(\alpha, \lambda, f(z))=H(z)+\alpha \frac{z H^{\prime}(z)}{H(z)+\lambda}$.
Define
$\phi_{\alpha, \lambda}(z)=\alpha \frac{z}{(1-z)^{\lambda+2}}+(1-\alpha) \frac{z}{(1-z)^{\lambda+1}}$
Using convolution techniques, it follows that $\left(H * \frac{\phi_{\alpha, \lambda}}{z}\right)(z)=H(z)+\alpha \frac{z H^{\prime}(z)}{H(z)+\lambda}$,
and so, from Equations 11 and 13 we have:

$$
\begin{align*}
J^{*}(\alpha, \lambda, f(z)) & =H(z)+\alpha \frac{z H^{\prime}(z)}{H(z)+\lambda} \tag{14}\\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(H_{1}(z)+\alpha \frac{z H_{1}^{\prime}(z)}{H_{1}(z)+\lambda}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(H_{2}(z)+\alpha \frac{z H_{2}^{\prime}(z)}{H_{2}(z)+\lambda}\right)
\end{align*}
$$

Since $\quad f \in M_{k}{ }^{*}(\alpha, \lambda, \gamma)$ it follows that

$$
\left[H_{i}(z)+\alpha \frac{z H_{i}^{\prime}(z)}{H_{i}(z)+\lambda}\right] \in P(\gamma), i=1,2, z \in E .
$$

Thus, from Lemma 2, it follows that $H_{i} \in P\left(\gamma_{1}\right)$ and consequently $H \in P_{k}\left(\gamma_{1}\right)$ in E where γ_{1} is given by Equation 9 . This completes the proof.

Theorem 2

Let $f \in M_{k}{ }^{*}(\alpha, \lambda, \gamma)$. Then $I_{\lambda} f$ is univalent, if $k \leq \frac{2(\alpha-\gamma+1)}{1-\gamma}, \alpha>0,0 \leq \gamma<1$.

Proof

Since $\quad f \in M_{k}{ }^{*}(\alpha, \lambda, \gamma)$, it follows that $J^{*}(\alpha, \lambda, f) \in P_{k}(\gamma), z \in E . \quad$ Therefore, with $z=r e^{i \theta}, k \geq 2$
$\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{J^{*}(\alpha, \lambda, f)-\gamma}{1-\gamma}\right| d \theta \leq k \pi, \quad \int_{0}^{2 \pi}\left|\operatorname{Re} \frac{J^{*}(\alpha, \lambda, f)-\gamma}{1-\gamma}\right| d \theta=2 \pi$,
and these together imply
$\int_{\theta_{1}}^{\theta} \operatorname{Re} J^{*}(\alpha, \lambda, f) d \theta>-\left\{\frac{(1-\gamma) k+2(\gamma-1)}{2}\right\} \pi, \quad 0 \leq \theta_{1}<\theta_{2} \leq 2 \pi, \quad 0 \leq \gamma<1$.
This is equivalent to
$\int_{\theta_{1}}^{\theta} \operatorname{Re}\left\{\frac{z\left(I_{\lambda+1} f(z)\right)^{\prime}}{I_{\lambda+1} f(z)}+\left(\frac{1}{\alpha}-1\right) \frac{z\left(I_{\lambda} f(z)\right)^{\prime}}{I_{\lambda} f(z)}\right\} d \theta>-\left\{\frac{(1-\gamma) k+2(\gamma-1)}{2}\right\} \pi$,
now, the required result follows by using Lemma 5 .

Theorem 3

$$
\begin{aligned}
& \text { Let } \quad-1<\lambda_{1}<\lambda_{2} . \\
& M_{k}^{*}\left(\alpha, \lambda_{2}, 0\right) \subset M_{k}^{*}\left(\alpha, \lambda_{1}, 0\right) .
\end{aligned}
$$

Proof

Define

$\phi(z)=z+\sum_{m=2}^{\infty} \frac{\left(\lambda_{1}+1\right)\left(\lambda_{1}+2\right) \cdots\left(\lambda_{1}+m-1\right)}{\left(\lambda_{2}+1\right)\left(\lambda_{2}+2\right) \cdots\left(\lambda_{2}+m-1\right)} z^{m}, \quad z \in E$.
Then $\phi \in A$ and, for $z \in E$,
$\frac{z}{(1-z)^{\lambda_{2}+1}} * \phi(z)=\frac{z}{(1-z)^{\lambda_{1}+1}}\left(-1<\lambda_{1}<\lambda_{2}\right)$
This implies $\frac{z}{(1-z)^{\lambda_{2}+1}} * \phi(z) \in S^{*}\left(\frac{1-\lambda_{1}}{2}\right) \subset C^{*}\left(\frac{1-\lambda_{2}}{2}\right)$, and therefore, $\phi(z)$ is prestarlike of order $\left(\frac{1-\lambda_{2}}{2}\right)$. Now let $\quad f \in M_{k}{ }^{*}\left(\alpha, \lambda_{2}, 0\right), z \in E . \quad$ Writing $H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) H_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) H_{2}(z)$, we have

$$
\begin{aligned}
J^{*}\left(\alpha, \lambda_{1}, f(z)\right) & =\left\{\frac{\phi(z)}{z}\right\} * J^{*}\left(\alpha, \lambda_{2}, f(z)\right) \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(\frac{\phi(z)}{z} * H_{1}(z)\right) \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left(\frac{\phi(z)}{z} * H_{2}(z)\right), \quad H_{i} \in P, \quad i=1,2, \quad z \in E .
\end{aligned}
$$

Since $H_{i} \in P, H_{i}(0)=1$ and H_{i} is analytic in E for $i=1,2$, there exist $s_{i} \in S *$ such that $H_{i}(z)=\frac{z s_{i}^{\prime}(z)}{s_{i}(z)}$. Therefore,

$$
\begin{aligned}
z\left(\frac{\phi}{z} * H_{i}\right)= & z\left(\frac{\phi}{z} * \frac{z s_{i}^{\prime}}{s_{i}}\right) \\
& =\frac{\phi * \frac{z s_{i}^{\prime}}{s_{i}} s_{i}}{\phi * s_{i}} \\
& =\frac{\phi * H_{i} s_{i}}{\phi * s_{i}}, \quad s_{i} \in S *
\end{aligned}
$$

Using Lemma 6, we note that $\left(\phi * H_{i}\right) \in P$, and this implies that $\phi * J^{*}\left(\alpha, \lambda_{2}, f\right)=J^{*}\left(\alpha, \lambda_{1}, f\right) \in P_{k}$ for $z \in E, \quad$ and \quad therefore $\quad f \in M_{k}{ }^{*}\left(\alpha, \lambda_{1}, 0\right)$ in E. This completes the proof.

Theorem 4

Let $\quad f \in M_{k}{ }^{*}(0, \lambda, \gamma)$ for $z \in E$. Then, $f \in M_{k}{ }^{*}(\alpha, \lambda, \gamma)$ for $|z|<r_{0}$, where r_{0} is given by Equation

8
with $v=\frac{\lambda+\gamma}{1-\gamma}, s=\frac{\alpha}{1-\gamma}$ and $A=2(s+1)^{2}+|v|^{2}-1, \quad$ and this radius is exact.

Proof

Let $H(z)$ be an analytic function as defined by Equation 11. Since $f \in M_{k}{ }^{*}(0, \lambda, \gamma)$, it follows that $H_{i} \in P(\gamma), i=1,2 . \quad$ Therefore, with $H_{i}(z)=(1-\gamma) h_{i}(z)+\gamma, h_{i} \in P, i=1,2$, we have for $z \in E$,

$$
\begin{aligned}
\frac{1}{1-\gamma}\left[J^{*}(\alpha, \lambda, f)-\gamma\right] & =\left(\frac{k}{4}+\frac{1}{2}\right)\left(h_{1}(z)+\frac{\alpha z h_{1}^{\prime}(z)}{(1-\gamma) h_{1}(z)+\lambda+\gamma}\right) \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left(h_{2}(z)+\frac{\alpha z h_{2}^{\prime}(z)}{(1-\gamma) h_{2}(z)+\lambda+\gamma}\right)
\end{aligned}
$$

Now

> using

Lemma2.4
with
$v=\frac{\lambda+\gamma}{1-\gamma}(\gamma \neq-1), s=\frac{\alpha}{1-\gamma}>0$, we can see that $\left(h_{i}+\frac{\alpha z h_{i}^{\prime}}{(1-\gamma) h_{i}+\lambda+\gamma}\right) \in P, \quad i=1,2, \quad$ for $\quad|z|<r_{0} \quad$ and consequently $f \in M_{k}{ }^{*}(\alpha, \lambda, \gamma)$, for $|z|<r_{0}$ where r_{0} is given by Equation 8.

As a special case, we note that with $\alpha=1, \gamma=0$ and $\lambda=0$, we have $f \in R_{k}$. Then, from Theorem 4, it follows that $f \in V_{k}$ for $|z|<r_{0}=\frac{1}{\sqrt{7+\sqrt{48}}} \approx 0.268 \approx 2-\sqrt{3}$. When we choose $k=2$, it gives us the radius of convexity for starlike functions.

Theorem 5

For $0 \leq \alpha_{2}<\alpha_{0}, M_{k}^{*}\left(\alpha_{1}, \lambda, \gamma\right) M_{k}^{*}\left(\alpha_{2}, \lambda, \gamma\right)$.

Proof

For $\alpha_{2}=0$, the proof is immediate from Theorem 1. Therefore we let $\alpha_{2}>0$ and $f \in M_{k}{ }^{*}\left(\alpha_{1}, \lambda, \gamma\right)$. Then we can write,
$J^{*}\left(\alpha_{2}, \lambda, f_{1}(z)\right)=\frac{\alpha_{2}}{\alpha_{1}} J^{*}\left(\alpha_{1}, \lambda, f(z)\right)+\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) \frac{z\left(I_{\lambda} f(z)\right)^{\prime}}{I_{\lambda} f(z)}$
$=\frac{\alpha_{2}}{\alpha_{1}} H(z)+\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) p(z)$,
where $H \in P_{k}(\gamma), \quad$ since $\quad f \in M_{k}^{*}\left(\alpha_{1}, \lambda, \gamma\right)$ and $p \in P_{k}(\gamma)$, by Theorem 1.
It is known (Noor, 1992), that $P_{k}(\gamma)$ is a convex set and this implies that $J^{*}\left(\alpha_{2}, \lambda, f(z)\right) \in P_{k}(\gamma), z \in E$. This completes the proof.

Theorem 6

$M_{k}^{*}(0, n, 0) \subset M_{k}^{*}(0, n+1, \sigma), n \in N_{0}=\{0,1,2, \cdots\}$ and σ is given as:

$$
\begin{equation*}
\sigma=\sigma_{n}=\frac{2}{(2 n+1)+\sqrt{4 n^{2}+4 n+9}} \tag{16}
\end{equation*}
$$

Proof

$$
\text { Set } \begin{align*}
z \frac{\left(I_{n+1} f(z)\right)^{\prime}}{I_{n+1} f(z)}=h(z) & =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(1-\sigma) h_{1}(z)+\sigma\right\} \tag{17}\\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(1-\sigma) h_{2}(z)+\sigma\right\}
\end{align*}
$$

where $h(z)$ is analytic in E and $h(0)=1$. From Equation 17 and identity of Equation 6 with $\lambda=n$, we have:

$$
z \frac{\left(I_{n} f(z)\right)^{\prime}}{I_{n} f(z)}=\left\{h(z)+\frac{z h^{\prime}(z)}{h(z)+n}\right\} \in P_{k}(n), \quad z \in E
$$

with $\quad \phi_{n}(z)=\frac{1}{2}\left[\frac{z}{(1-z)^{n+1}}+\frac{z}{(1-z)^{n+2}}\right], \quad$ and using convolution technique, we note that

$$
\begin{equation*}
\left(h * \frac{\phi_{n}}{z}\right)(z)=h(z)+\frac{z h^{\prime}(z)}{h(z)+n} . \tag{18}
\end{equation*}
$$

Therefore, from Equations 17 and 18, it follows that, $\left[(1-\sigma) h_{i}(z)+\sigma+\frac{(1-\sigma) z h_{i}^{\prime}(z)}{(1-\sigma) h_{i}(z)+\sigma+n}\right] \in P, \quad i=1,2, \quad z \in E$.
We form the functional $\psi(u, v)$ by choosing $u=h_{i}(z), v=z h_{i}^{\prime}(z)$.
$\psi(u, v)=(1-\sigma) u+\sigma+\frac{(1-\sigma) v}{(1-\sigma) u+(\sigma+n)}$.
The first two conditions of Lemma 1 are clearly satisfied. We verify the condition 3 as follows:

$$
\begin{aligned}
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) & =\sigma+\frac{(1-\sigma)(\sigma+n) v_{1}}{(\sigma+n)^{2}+(1-\sigma)^{2} u_{2}^{2}} \\
& \leq \sigma-\frac{(1-\sigma)(\sigma+n)\left(1+u_{2}^{2}\right)}{2\left[(\sigma+n)^{2}+(1-\sigma)^{2} u_{2}^{2}\right]}, \quad v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right) \\
& =\frac{A_{1}+B_{1} u_{2}^{2}}{2 C},
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{1}=2 \sigma(\sigma+n)^{2}-(1-\sigma)(\sigma+n), \\
& B_{1}=2 \sigma(1-\sigma)^{2}-(1-\sigma)(\sigma+n), \\
& C=(\sigma+n)^{2}+(1-\sigma)^{2} u_{2}^{2}>0
\end{aligned}
$$

We note that $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if $A_{1} \leq 0$ and $B_{1} \leq 0$. From $A_{1} \leq 0$, we obtain $\sigma=\sigma_{n}$ as given by Equation 16 and $B_{1} \leq 0$ gives us $0<\sigma_{n}<1$. Thus, applying Lemma 1 , we have $h_{i} \in P$ for $z \in E$, and
consequently $h \in P_{k}(\sigma)$ in E where σ is given by Equation 16. This completes the proof.
For $n=0$, we have a result proved in Noor et al. (2009) that $f \in V_{k} \Rightarrow f \in R_{k}\left(\frac{1}{2}\right)$ in E. The case, $n=0$, and $k=2$, gives us a well-known result that every convex function is starlike function of order $\frac{1}{2}$.

Theorem 7

$$
\begin{aligned}
& \text { Let } \quad \phi \in C \quad \text { and } \\
& f \in M_{2}^{*}(0, \lambda, \gamma) \text {.Then }(\phi * f) \in M_{2}^{*}(0, \lambda, \gamma) \text { for } z \in E \text {. }
\end{aligned}
$$

Proof

Since $I_{\lambda}(\phi * f)=\phi *\left(I_{\lambda} f\right)$, we have,

$$
\begin{aligned}
\frac{z\left[I_{\lambda}(\phi * f)\right]^{\prime}}{\left[I_{\lambda}(\phi * f)\right]} & =\frac{\phi^{*} z\left(I_{\lambda} f\right)^{\prime}}{\phi^{*}\left(I_{\lambda} f\right)}=\frac{\phi^{*} \frac{z\left(I_{\lambda} f\right)^{\prime}}{I_{\lambda} f} I_{\lambda} f}{\phi^{*}\left(I_{\lambda} f\right)} \\
& =\frac{\phi^{*} F\left(I_{\lambda} f\right)}{\phi^{*}\left(I_{\lambda} f\right)}, \quad F \in P(\gamma), \quad z \in E
\end{aligned}
$$

We use Lemma 6 to obtain $z \frac{\left[I_{\lambda}\left(\phi^{*} f\right)\right]^{\prime}}{\left[I_{\lambda}(\phi * f)\right]} \in P(\gamma)$ in E and this implies that $(\phi * f) \in M_{2}^{*}(0, \lambda, \gamma), \quad z \in E$.
We give some applications of Theorem 7 as follows:

Corollary 1: The classes $M_{\alpha}{ }^{*}(0, \lambda, \gamma)$ are invariant under the following integral operators:
(i) $f_{1}(z)=\int_{0}^{z} f(t) d$,
(ii) $f_{2}(z)=\int_{z_{0}^{2}}^{2} f(t) d$, (Iibardsquator)
(iii) $f_{3}(z)=\int_{0}^{2} \frac{f(t)-f(x)}{t-x t} d, x \leq \leq, x \neq 1$,
(iv) $f_{4}(z)=\frac{1+c^{2}}{z^{2}} \int_{0}^{4-1} f(t) d, \operatorname{Rec}>0$

Proof

Let,
$\begin{array}{ll}\phi_{1}(z)=-\log (1-z), & \phi_{2}(z)=-2 \frac{[z+\log (1-z)]}{z} \\ \phi_{3}(z)=\frac{1}{1-x} \log \left(\frac{1-x z}{1-z}\right), & \phi_{4}(z)=\sum_{m=1}^{\infty} \frac{1+c}{m+c} z^{m}, \operatorname{Re} c>0 .\end{array}$
It can easily be verified that ϕ_{i} is convex for each $i=1,2,3,4$. Now the proof follows immediately since we can write $f_{i}=f * \phi_{i}, i=1,2,3,4$.
Definition for $n \in N_{0}$,

$$
\begin{align*}
L_{n}(f) & =\frac{n+1}{z^{n}} \int_{0}^{z} t^{n-1} f(t) d t, \\
& =\left(z+\sum_{m=0}^{\infty} \frac{n+1}{n+m+1} z^{m}\right) * f(z) \\
& =\left(z F_{21}(1, n+1 ; n+2, z)\right) * f(z) \tag{19}\\
& =\frac{z}{(1-z)^{n+1}} *\left[\frac{z}{(1-z)^{n+2}}\right]^{(-1)} * f(z) \\
& =f_{n}(z)^{*}\left(f_{n+1}(z)\right)^{(-1)} * f(z) .
\end{align*}
$$

This shows that,

$$
\begin{equation*}
I_{n} L_{n}(f)=I_{n+1}(f) \tag{20}
\end{equation*}
$$

From Equations 19 and 20, we have the Theorem 8.

Theorem 8

Let
$f \in M_{k}^{*}(\alpha, n+1, \gamma), n \in N_{0}$. Then $L_{n}(f) \in M_{k}^{*}(\alpha, n, \gamma)$ for $z \in E$. We now prove the following radius problems as Theorem 9.

Theorem 9

Let $\quad f \in M_{k}^{*}(0, n+1,0), n \in N_{0}$. Then $f \in M_{k}{ }^{*}(0, n, 0)$, for $|z|<r_{n}$, where,

$$
\begin{equation*}
r_{n}=\frac{(n+1)}{2+\sqrt{n^{2}+3}} \tag{21}
\end{equation*}
$$

This result is sharp.

Proof

Let $z \frac{\left(I_{n+1} f(z)\right)^{\prime}}{I_{n+1} f(z)}=H(z)$. Then $H \in P_{k}$ in E. Using identity of Equation 6 with $\lambda=n$, we have:
$(n+1) \frac{I_{n} f(z)}{I_{n+1} f(z)}=H(z)+n$
Differentiating Equation 22 logarithmically and writing $H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) H_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) H_{2}(z)$, we have:
$z \frac{\left(I_{n} f(z)\right)^{\prime}}{I_{n} f(z)}=H(z)+\frac{z H^{\prime}(z)}{H(z)+n}$
$=\left(\frac{k}{4}+\frac{1}{2}\right)\left(H_{1}(z)+\frac{z H_{1}^{\prime}(z)}{H_{1}(z)+n}\right)$ $-\left(\frac{k}{4}-\frac{1}{2}\right)\left(H_{2}(z)+\frac{z H_{2}^{\prime}(z)}{H_{2}(z)+n}\right)$.

For $i=1,2$ and $H_{i} \in P$ in E, we have:

$$
\begin{align*}
\operatorname{Re}\left\{H_{i}(z)+\frac{z H_{i}^{\prime}(z)}{H_{i}(z)+n}\right\} & \geq \operatorname{Re} H_{i}(z)\left\{1-\frac{2 r}{1-r^{2}} \cdot \frac{1}{\frac{1-r}{1+r}+n}\right\} \tag{24}\\
& =\operatorname{Re} H_{i}(z)\left\{\frac{(1+n)-4 r+(1-n) r^{2}}{(1-r)^{2}+n\left(1-r^{2}\right)}\right\},
\end{align*}
$$

where we have used Lemma 3. The right hand side of Equation 24 is positive for $|z|<r_{n}$, and r_{n} is given by Equation 21. By taking $H_{i}(z)=\frac{1+z}{1-z}$, we see that value of r_{n} is exact. Hence, from Equation 23 and 24, it follows that $z \frac{\left(I_{n} f(z)\right)^{\prime}}{I_{n} f(z)} \in P_{k}$ for $|z|<r_{n}$ and this completes the proof.

Conclusion

In this paper, we have used the convolution technique to introduce some new subclasses of analytic functions in the unit disc. We have obtained several results such as inclusions results and radius problems for these classes
of analytic functions. We have also discussed some special cases of our results. These results may stimulate further research in this field.

ACKNOWLEDGEMENT

The authors are grateful to Dr. S. M. Junaid Zaidi, Rector, COMSATS Institute of Information Technology, Pakistan, for providing the excellent research facilities

REFERENCES

Goodman AW (1983). Univalent functions, Vol. I, II, Washington, N. J., Polygonal Publishing House, USA.
Miller SS (1975). Differential inequalities and Caratheodory functions, Bull. Am. Math. Soc., 81: 79-81.
Miller SS, Mocanu PT (2000). Differential Subordinations: Theory and Applications, Marcel Dekker, New York and Basel, pp. 339-348
Noor KI (1999). On new classes of Integral Operators. J. Natural Geom., 16: 71-80.
Noor KI (2007). On some analytic functions defined by a multiplier transformation, Int. J. Math. Math. Sci., (2007): 1-9.
Noor KI (1995). Classes of analytic functions defined by the Hadamard product, Newzeland. J. Math., 24: 53-64.
Noor KI (2006). On certain classes of meromorphic functions involving integral operators, J. Inequality Pure Appl. Math., 7 (4): 1-8.
Noor KI (1992). On subclasses of close-to-convex functions of higher order, Int. J. Math. Math. Sci., 15: 279-290.

Noor KI, Noor MA (2003).On certain classes of analytic functions defined by Noor integral operators, J. Math. Appl., 281: 244-252.
Noor KI, Ul-Haq W, Arif M, Mustafa S(2009) On bounded boundary and bounded radius rotation. J. Inequal. Appl., (I D 813687, 12 pages).
Pinchuk B (1971). Functions with bounded boundary rotation, Isr. J. Math., 10: 7-16.
Ruscheweyh S (1982). Convolutions in Geometric Function Theory: Les Presses de L'Universite De Montreal, Canada.
Ruscheweyh S, Singh V (1976). On certain extremal problems for functions with positive real part. Proc. Am.. Math. Soc., 61: 329-334.
Shiel-Small T (1972). On Bazilevic functions. Q. J. Math., 23:135-142.

