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Electrooculography (EOG) signal is one of the useful electro-physiological signals. The EOG signals 
provide information about eye movements that can be used as a control signal in human-computer 
interface (HCI). Usually, eight-directional movements, including up, down, right, left, up-right, up-left, 
down-right and down-left, are proposed. Development of the EOG signal classification has been shown 
more increasing interest in the last decade; however, the effect of noises on classification system is a 
major problem to degrade the usefulness of EOG-based HCI. A robust classification algorithm of the 
eight movements is proposed, in which this technique can conduct the effect of noises in EOG signal, 
particularly for involuntary movements and eye-blink artifacts. The proposed algorithm was based on 
the onset analysis, feature extraction, the first derivative technique and threshold classification. Eight 
beneficial time domain features were proposed including the peak and the valley amplitude positions, 
and the upper and the lower wavelengths of two EOG channels, vertical and horizontal channels. Based 
on the optimal threshold values and conditions, the results showed that classification accuracy 
reached 100% for three-subject testing. In addition, the first derivative technique was additionally 
implemented in order to avoid the eye-blink artifact and other eight time domain features, that is, peak 
amplitude and area under curve, have been investigated for use in advanced HCI interfaces, notably, 
eye activity and eye writing recognitions. 
 
Key words: Electrooculography signal, eye motions, eye blink artifacts, feature extraction, interference, noises, 
non-pattern recognition, robustness, threshold analysis. 

 
 
INTRODUCTION 
 
Currently, many research studies are underway into 
means of enabling the disabled and elderly to 
communicate effectively with machine or computer. 
Depending on the users’ capabilities, different types of 
interface have been proposed, such as speech 
recognition based on both voice (Raab et al., 2011) and 
surface electromyography (Fraiwan et al., 2011), lip 
movement control system (Shaikh et al., 2011), vision-
based multiple gestures (Reale et al., 2011), sip-and-puff  
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controller (Jones et al., 2008), tooth-click controller 
(Simpson et al., 2008), infrared and ultrasonic non-
contact head controllers (Coyle, 1995; Evans et al., 
2000), multifunction myoelectric control system (MMCS) 
(Phinyomark et al., 2011a) and brain-computer interface 
(BCI) (Panicker et al., 2011). However, due to the 
limitations of each interface, for example, speech 
recognition and vision-based head gesture have a major 
problem in outdoor and noisy environments (Ikuta and 
Orimoto, 2011), infrared and ultrasonic non-contact head 
controllers have a low classification performance, or 
MMCS and BCI have a problem with noise (Phinyomark 
et al., 2011b; Suresh and Puttamadappa, 2008); therefore, 



 
 
 
 
the electrooculography (EOG) signal is one of the 
sufficient candidate signals to be deployed in human-
computer interface (HCI) (Ubeda et al., 2011). This 
interface is very useful for patients with amyotrophic 
lateral sclerosis (ALS). ALS patients may lose the oral 
speaking and hand movements abilities; however, their 
eye movement functions generally remain relatively intact 
and become the last resource for communication (Park et 
al., 2005; Tomita et al., 1996; Tsai and Chen, 2009). 

EOG signal is one of the useful electro-physiological 
signals that provide information about activities of the 
human eye, detecting changes in eye positions. It is 
generated by the potential difference between the cornea 
and the ocular fundus, and it is known as the “cornea-
retinal potential (CRP)” (North, 1965). This potential 
difference comes from large presence of the electrically 
active nerves in the retina equate to the front of the eye 
and can be considered as a steady electrical dipole with 
a positive pole at the cornea and a negative pole at the 
retina (Brown et al., 2006). Because of its relatively large 
signal-to-noise ratio (SNR) as compared to other electro-
physiological signals, its amplitudes range between 15 
and 200 µV, and a linear relationship between its 
amplitude and eye movement angle, the EOG signal may 
look like an ideal candidate for eye movement 
classification system. 

In this study, we are promoting the usefulness of EOG 
signal to be used as an efficient hand-free control 
interface. Non-pattern recognition algorithm based on 
threshold analysis and time domain features to classify 
eight-directional eye movements has been investigated. 
The robustness of EOG-based HCI has been considered 
in developing classification algorithm (Bulling et al., 2008; 
Kim et al., 2007; Yagi, 2010). This technique can be used 
in noisy environment and can be availably implemented 
for a real-time application. The preliminary result of this 
algorithm is presented in Aungsakun et al. (2011). This 
study presented an extensive review of EOG applications 
and classification algorithms, after which the proposed 
EOG time domain features used for classification 
algorithm was described. This was followed by a report 
given on the results and discussion. Finally, summary 
and concluding remarks were given. 
 
 
PREVIOUS RESEARCH 
 

The EOG signals have been successfully and widely 
used in biomedical and rehabilitation engineering 
applications, particularly in HCIs. Many efficient HCIs 
have been developed in the last two decades, such as 
computer cursor control (Septanto et al., 2009), computer 
animation application (Krupiński and Mazurek, 2009), 
home automation (Harun and Mansor, 2009), multitask 
gadget control (Gandhi et al., 2010), electrical wheelchair 
control (Barea et al., 2002), mobile robot control (Kim et 
al., 2007), hospital alarm system (Venkataramanan et al., 
2005),   activity   recognition   based   on  eye  movement  
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analysis (Bulling et al., 2011), visual improvement system 
for the elderly (Yu et al., 2005) and eye writing 
recognition (Tsai et al., 2008). In order to develop all of 
these HCIs, various techniques have been proposed, 
which can be divided into two main types: pattern 
recognition and non-pattern recognition. 

In pattern recognition, features extracted are 
discriminated by a suitable classifier (Brunner et al., 
2007). Time-domain features that have been frequently 
used are mean value, peak duration, peak polarity and 
slope (Kherlopain et al., 2006). In addition, spectral 
analysis has been deployed as the useful features for eye 
movement classification (Bukhari et al., 2010; Lv et al., 
2010). All of these features are usually implemented with 
two classifier types, that is, neural networks (Barea et al., 
2000; Güven and Kara, 2006; Kikuchi and Fukushima, 
2000; Lee and Lee, 1993) and support vector machine 
(Bulling et al., 2011; Shuyan and Gangtie, 2009). 
However, computational times and implementation 
complexity become a major limitation of algorithm based 
on pattern recognition, particularly for implementing in 
microcontroller devices. Several research studies have 
established better performance of EOG signal 
classification based on non-pattern recognition (Deng et 
al., 2010; Gandhi et al., 2010). This technique has a 
simple structure. The classifier module of pattern 
recognition algorithm has been degraded to a simple 
threshold comparison module. In this study, non-pattern 
recognition algorithm has been implemented in order to 
be used in microcontroller devices. 

Eight-directional eye movements: up, down, right, left, 
up-right, up-left, down-right and down-left, are the basic 
movements for most of the HCIs (Yamagishi et al., 2006), 
especially the first four directions (Barea et al., 2002; 
Güven and Kara, 2006; Kim et al., 2007; Shuyan and 
Gangtie, 2009). The eight types of directional movements 
can be used as basis of various advanced movements, 
that is, eye activity and eye writing recognitions (Bulling 
et al., 2011; Tsai et al., 2008), thus the classification of 
these movements has become a challenge for many 
advanced EOG-based HCIs in the near future. 

 
 
EXPERIMENTS AND DATA ACQUISITION 

 
Two channel EOG signals, horizontal and vertical signals, have 
been commonly used to acquire information from human eye 
movements. Independent measurements can be obtained from 
both eyes. However, in vertical directional movements, two eyes 
move in conjunction, thus only one right eye was deployed. The 
procedure of recorded EOG signals is presented in the following. 
Five surface electrodes were placed around the eyes. All positions 
are as shown in Figure 1. Vertical-channel electrodes were placed 
above and below the right eye (Ch.V+ and Ch.V-) and horizontal-
channel electrodes were placed on the right and left of the outer 
canthi (Ch.H+ and Ch.H-). Additionally, a reference electrode was 
placed on the forehead (G). 

Recordings of all EOG signals were carried out using a 
commercial wireless system (Mobi6-6b, TMS International BV, 
Netherlands). The amplifier, with a gain of 19.5 and a band-pass
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Figure 1. Five electrode positions: vertical channel (Ch.V+ and Ch.V-), horizontal channel (Ch.H+ and Ch.H-) and 
reference channel (G) (Aungsakun et al., 2011). 

 
 
 
filter of 1 to 500 Hz bandwidth were set for the recording system. 

The sampling rate was set at 1024 Hz for analog-to-digital 
conversion. However, the energy frequency bands of EOG signal 
are in range of direct current (DC) to 15 Hz, thus the sampling rate 
was reduced to 128 Hz in pre-processing stage. The EOG data 
were recorded from three normal subjects with 8 directional eye 
movements: eyes move -down (M1), –up (M2), -left (M3), -right 
(M4), -down and left (M5), -down and right (M6), -up and left (M7) 
and -up and right (M8). Each movement was held for 2 s and it was 
performed five times throughout a trial. In total, fifteen data sets 
were obtained from each directional movement. 
 
 
Eye movement classification algorithm 
 
To discriminate the aforementioned eight directional eye 
movements, the simple and effective non-pattern recognition 
algorithm based on threshold analysis and time domain features 
was proposed. Two main advantages of the proposed algorithm are 
that it can be availably implemented for a real-time system and can 
also be used in noisy environment. Procedures of the proposed 
algorithm are as follows: 

1. Onset analysis was used to detect simultaneously starting 
point of eye movement, point-by-point, from both EOG signals, 
Ch.V and Ch.H, with a suitable threshold level THRON. Based on a 
preliminary result (Aungsakun et al., 2011), the value of THRON was 
set to 50 μV. It is  approximately  25%  of  the  maximum  amplitude  

value, which is approximately 200 μV. This threshold is 
implemented in order to avoid background noise and small 
involuntary EOG movements. Further, THRON is implemented for 
both positive and negative values to detect either up/right or 
down/left movement, examples of the threshold levels can be 
observed as shown in Figures 2 to 4. 

2. Firstly, eight types of time domain features were calculated: 
peak and valley amplitude values (PAV and VAV), peak and valley 
amplitude positions (PAP and VAP), upper and lower wavelengths 
(UWL and LWL) and area under upper and lower curves (AUC and 
ALC) for both EOG channels, vertical (V) and horizontal (H), are as 
shown in Figures 2 to 5, respectively. In total, sixteen features from 
two-channel EOG signals were obtained. Subsequently, eight 
features were selected to be used in the classification algorithm for 
eight-directional movements. There were PAPV, PAPH, VAPV, 
VAPH, UWLV, UWLH, LWLV and LWLH. The remaining features were 
deployed to be used in future classification algorithms which can 
classify other advanced movements. 

3. Avoiding eye-blink artifact, the first derivative of UWLV feature 
was implemented and then the artifact index (AI) was calculated 
with a pre-defined threshold, THRSF. If the logical value of AI was 
defined as true, it means that more than one burst signals were 
found. In other words, the eye-blink artifact or involuntary eye 
movement was established. Then, step 1 will be repeated. 
Procedure of noise avoiding technique is as shown in Figure 6. 

4. Suitable conditions were proposed in Table 1 in order to 
discriminate the eight movements from the eight  features  selected. 
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Figure 2. Peak and valley amplitude value (PAVV, VAVV, PAVH and VAVH) features. 
 
 
 

 
 

Figure 3. Peak and valley amplitude position (PAPV, VAPV, PAPH and VAPH) features. 
 
 
 

 
 

Figure 4. Upper and lower wavelength (UWLV, LWLV, UWLH and LWLH) features. 
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Figure 5. Area under upper and lower curve (AUCV, ALCV, AUCH and ALCH) features. 
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Figure 6. Procedure of the noise avoiding technique. The case example of only eye movement in feature length shown in the left 
panel, whereas on the right panel, it showed a case example of one blinking and one eye movement in feature length. The posit ions 
of point A to F are shown with point G to L in the middle panel, respectively. In addition, the value of M is the derivative of J-K. 
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Table 1. Discrimination rules. 
 

If  PAPV > VAPV 

and UWLV <= THRUV or LWLV <= THRLV 

and UWLH >= THRUH, 

and LWLH >= THRLH, 

then OUT = M1 

If PAPV > VAPV, PAPH > VAPH 

and UWLV <= THRUV, LWLV <= THRLV 

and UWLH <= THRUH, 

and LWLH <= THRLH, 

then OUT = M5 

  

If  PAPV < VAPV 

and UWLV <= THRUV, LWLV <= THRLV 

and UWLH >= THRUH, 

and LWLH >= THRLH, 

then OUT = M2 

If PAPV > VAPV, PAPH < VAPH 

and UWLV <= THRUV, LWLV <= THRLV 

and UWLH <= THRUH, 

and LWLH <= THRLH, 

then OUT = M6 

  

If  PAPH > VAPH  

and UWLV >= THRUV, LWLV >= THRLV  

and UWLH <= THRUH,  

and LWLH <= THRLH,  

then OUT = M3 

If PAPV < VAPV, PAPH > VAPH  

and UWLV <= THRUV, LWLV <= THRLV  

and UWLH <= THRUH,  

and LWLH <= THRLH,  

then OUT = M7 

  

If  PAPH < VAPH  

and UWLV >= THRUV, LWLV >= THRLV  

and UWLH <= THRUH,  

and LWLH <= THRLH,  

then OUT = M4 

If  PAPV < VAPV, PAPH < VAPH  

and UWLV <= THRUV, LWLV <= THRLV 

and UWLH <= THRUH,  

and LWLH <= THRLH,  

then OUT = M8 

Otherwise OUT = M0 

 
 
 
The PAP and VAP features were used to detect the arrival of the 
positive and negative amplitudes. If the positive amplitude has 
occurred before, the output is expected to be up or right. On the 
other hand, the output is expected to be down or left if the positive 
amplitude occurred after. Discrimination between up and right or 
down and left can be conducted by information from two channels. 
In addition, up and down are vertical movements and right and left 
are horizontal movements. The other four directional movements 
can be seen as a combination of four basic movements. In order to 
avoid classifying uninterested and involuntary eye movements, four 
threshold values have been proposed, including THRUV, THRLV, 
THRUH and THRLH. These thresholds were implemented for 
application with the UWL and LWL features. Throughout the 
experiments, optimal values of all thresholds were defined. 

5. As a result, eight movement classes (M1 to M8) were 
examined for the output parameter (OUT). In addition, if resting and 
other movements were detected, output OUT is set to M0. The 
procedure of the proposed algorithm is as shown in Figure 7. Note 
that in this figure, {x(i)} is EOG signal time series and i is the 
position of time samples. 
 
 
RESULTS AND DISCUSSION 
 
Generally, when the eyes move to the left, the positive 
cornea moves closer to the left electrode which becomes 
more positive with zero potential at the right electrode, 
and vice versa. As a result, eye movement will generate 
voltage in horizontal direction. This finding can also be 
observed from up and down movements in vertical 

channel. From this knowledge and amplitude shape 
observed, the detection algorithm was designed as 
presented in the study’s results and discussion. 

Throughout the experiments, THRON as 50 μV was 
optimized for both detecting the starting point of 
movement and avoiding the background noise. 
Afterwards, all features were calculated for two EOG 
channels. The features calculated were presented as 
shown in Tables 2 to 4 with their mean and standard 
deviation values. All subjects showed that values of the 
selected eight features, PAPV, PAPH, VAPV, VAPH, 
UWLV, UWLH, LWLV and LWLH, are useful enough for 
discriminating eight-directional movements. Based on the 
results obtained, the suitable thresholds of THRUV, 
THRLV, THRUH and THRLH were defined, and the optimal 
threshold values were dependent on each subject. To be 
easily used, however, universal threshold can be defined. 
Approximately, 10% of the window size features was 
recommended, that is, in this study, the feature length 
was set at 256 samples. Interestingly, the resting eight 
features, PAVV, PAVH, VAVV, VAVH, AUCV, AUCH, ALCV 
and ALCH are useful for discriminating other advanced 
eye movements. For instance, peak and valley amplitude 
values can distinguish the movement associated with 
EOG signals at different angles (10, 20 and 30°) as 
shown in Figure 8. Note that its behaviour is practically 
linear for gaze-movement angles of ±30°. 
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Figure 7. Flowchart of the proposed EOG classification algorithm. 

 
 
 

The proposed algorithm has two advantages as 
compared to other publication algorithms for a 
classification of eight-directional movements based on 
EOG signals. Firstly, the proposed algorithm provided a 
high accuracy as shown in Figure 9. The figure showed 
the detection of 8 eye movements (M1 to M8) on the top 
panel from both Ch.V on the middle panel and Ch.H on 
the bottom panel. The classification accuracy of 8 eye 
movements is 100% resulting from three healthy 
subjects, whereas the accuracy from other publications is 
less than 100%. Examples from previous publications 
showing the results from 4 directional eye movements 
are as follows. In a study by Deng et al. (2010), 90% 
classification accuracy was achieved for applications in 
game control, eye test and Television controller. In 
Merino et al. (2010), 94% average rate was achieved 
when the derivative and amplitude levels were used for 

detecting the direction. Examples from previous 
publications showing results from eight-directional eye 
movements are as follows. In a study by Yamagishi et al. 
(2006), 90.4% classification accuracy was achieved for 
applications in screen keyboard when algorithm based on 
logical combination was realized. In Itakura and 
Sakamoto (2010), 96.7% classification accuracy was 
obtained from algorithm based on the integration method 
when EOG data were acquired from six subjects. 

Secondly, the algorithm was not affected by various 
noises and involuntary movements, that is, single blinking 
(SB), double blinking (DB) and involuntary eye closing 
(IEC). Figure 10 showed the detection of left eye movement 
(M3) on the top panel using the EOG signals from Ch.V 
and Ch.H on the middle and bottom panels, respectively. 
Although, there are SB, DB and IEC noises as shown in 
thick lines generated in Ch.V, the proposed algorithm can
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Table 2. Mean (μ) and standard deviation (σ) values of all features from subject 1. 
 

Feature 
Down  Up  Left  Right 

μ σ  μ σ  μ σ  μ σ 

PAPV 100.8 23.9  13 4.1  n/a n/a  n/a n/a 

VAPV 14.0 1.0  110 11.1  n/a n/a  n/a n/a 

PAPH n/a n/a  n/a n/a  101.8 15.1  12.6 0.5 

VAPH n/a n/a  n/a n/a  14 1.6  102.8 12.6 

UWLV 50.8 6.4  71.4 11.3  n/a n/a  n/a n/a 

LWLV 56.0 1.7  56.4 14.1  n/a n/a  n/a n/a 

UWLH n/a n/a  n/a n/a  57.6 8  51.4 1.9 

LWLH n/a n/a  n/a n/a  62.6 9.5  53 6.2 

PAVV 393.9 44.8  33.42 21.1  n/a n/a  n/a n/a 

VAVV -289.6 11.8  -355.8 26.7  n/a n/a  n/a n/a 

PAVH n/a n/a  n/a n/a  353.9 8.0  280.6 5.7 

VAVH n/a n/a  n/a n/a  -303.6 8.0  -298.7 41.1 

AUCV 10045.6 701.5  11814.2 409.6  n/a n/a  n/a n/a 

ALCV 9676.2 113.7  9326.2 817.6  n/a n/a  n/a n/a 

AUCH n/a n/a  n/a n/a  9419.0 385.6  8020.0 158.5 

ALCH n/a n/a  n/a n/a  9769.0 251.7  8193.6 420.3 

            

Feature 
Down-left  Down-right  Up-left  Up-right 

μ σ  μ σ  μ σ  μ σ 

PAPV 50.8 10.5  33.4 5.4  65.6 3.8  61.2 1.9 

VAPV 62.6 17.8  41.2 5.4  59.8 2.4  53.6 2.1 

PAPH 44.4 2.5  50.8 3.8  55.4 2.4  54.4 2.3 

VAPH 57.2 3.9  46.8 5.3  58.8 4.3  53.4 3.2 

UWLV 97 38.3  102.4 9.6  12.6 1.1  10.6 0.9 

LWLV 30.2 32.9  15.8 1.6  121.4 11.7  107 13.6 

UWLH 82.6 59.9  13.4 1.3  116.6 11.1  15.4 1.7 

LWLH 24.6 34.3  105.4 8.6  18.8 2.3  99.2 7.9 

PAVV 398.8 59.0  285.5 40.8  355.9 58.5  259.5 20.4 

VAVV -285.5 10.6  -191.4 31.6  -425.9 28.8  -259.9 128.9 

PAVH 231.8 9.8  193.1 35.3  304.2 15.2  274.8 5.5 

VAVH -33.7 164.4  -237.2 29.4  -250.2 20.2  -289.7 13.2 

AUCV 9133.6 1047.5  5483.8 922.1  11727.0 1023.8  7566.4 474.3 

ALCV 8863.6 258.5  5577.8 1037.7  11796.8 872.4  6948.8 3381.1 

AUCH 5893.0 266.2  6356.4 956.5  9011.6 701.1  9035.6 203.0 

ALCH 6309.8 168.3  6234.4 947.3  9078.2 1127.8  8505.2 511.0 
 

Note that n/a is information in a field that is not provided or is not available. 

 
 
 
still detect the motion with 100% accuracy as shown in 
the top panel. The value of threshold THRSF was set at 
30, in order to keep away from small fluctuation during 
eye movement. The threshold value is approximately 
12% of the feature length. Several noise removal 
techniques have been presented in the past few years, 
for instance, a simple median filter and a wavelet packet 
approach, using Daubechies wavelets at level nine 
(Bulling et al., 2008), a velocity shape algorithm and a 
threshold and correlation technique (Kim et al., 2007), a 
calibration technique and a low-pass filter (Yagi, 2010). 

More attention should be paid to the development of 
noise removal techniques in future studies, since it is still 
an active topic of research. 
 
 
Conclusions 
 
EOG signal is widely employed in various clinical 
applications, such as diagnosis of the eye diseases and 
evaluation of the eye injuries, and in various engineering 
applications, such  as  eye-controlled  cursor  mouse  and
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Table 3. Mean (μ) and standard deviation (σ) values of all features from subject 2. 
 

Feature 
Down  Up  Left  Right 

μ σ  μ σ  μ σ  μ σ 

PAPV 183 20.1  19.4 11.1  n/a n/a  n/a n/a 

VAPV 18.6 3.4  183.8 26.2  n/a n/a  n/a n/a 

PAPH n/a n/a  n/a n/a  204.4 29  33.4 35.7 

VAPH n/a n/a  n/a n/a  32.8 28.1  172.6 35.9 

UWLV 46.8 5.4  41.6 3.6  n/a n/a  n/a n/a 

LWLV 64.4 3.4  49.6 4.6  n/a n/a  n/a n/a 

UWLH n/a n/a  n/a n/a  46.8 9  69.8 7.3 

LWLH n/a n/a  n/a n/a  63.6 5.1  67 4.5 

PAVV 570.6 83.8  335.8 53.6  n/a n/a  n/a n/a 

VAVV -353.3 36.5  -355.2 36.9  n/a n/a  n/a n/a 

PAVH n/a n/a  n/a n/a  395.9 25.5  410.1 9.8 

VAVH n/a n/a  n/a n/a  -309.4 43.9  -470.0 21.9 

AUCV 14604.8 2133.9  12743.4 1538.7  n/a n/a  n/a n/a 

ALCV 12939.6 2374.9  11654.8 1858.8  n/a n/a  n/a n/a 

AUCH n/a n/a  n/a n/a  11434.2 519.1  14454.4 338.2 

ALCH n/a n/a  n/a n/a  31490.0 44816.3  14443.4 276.0 

            

Feature 
Down-left  Down-right  Up-left  Up-right 

μ σ  μ σ  μ σ  μ σ 

PAPV 165.6 22.5  169.8 63.9  22.6 17.1  14 2.5 

VAPV 20.6 5  20.2 2.8  209 18.8  188.8 13.7 

PAPH 172.4 23.5  54.4 82.5  209.4 18.4  17.8 1.5 

VAPH 13.6 2.4  203.6 22.7  26 18  187.8 12.9 

UWLV 46.8 5.4  41.6 3.6  61.8 2.2  61.8 8.5 

LWLV 64.4 3.4  49.6 4.6  50.6 10.8  52 7.2 

UWLH 45.2 3.7  65.6 6.6  46.8 9  69.8 7.3 

LWLH 46.6 7.6  54.4 13.4  63.6 5.1  67 4.5 

PAVV 435.6 63.7  492.2 38.0  284.8 12.1  193.2 63.2 

VAVV -276.3 23.0  -265.9 22.5  -280.9 15.3  -208.6 41.1 

PAVH 232.9 9.9  230.3 17.1  352.2 22.8  328.3 29.3 

VAVH -184.3 18.4  -256.3 10.5  -277.4 6.6  -381.8 41.8 

AUCV 9471.0 1025.1  10875.0 572.8  8495.4 118.7  6016.0 1375.1 

ALCV 10826.2 487.3  10934.8 657.9  8120.2 271.2  6693.4 1372.5 

AUCH 6280.2 412.0  8126.8 728.8  10230.0 364.9  13315.2 851.4 

ALCH 5095.6 627.5  7756.6 782.6  10872.8 677.7  12941.6 588.7 
 

Note that n/a is information in a field that is not provided or is not available. 

 
 
 
wheelchair. In this study, we have proposed a non-
pattern recognition algorithm to classify eight eye dire-
ctional movements from EOG signals. From experimental 
results, the features proposed (peak and valley amplitude 
values and upper and lower wave-lengths) and threshold 
classification algorithm showed the best performance to 
be used in discrimination of EOG signal. Avoiding artifact 
method that was defined from the first derivative 
technique, can be effectively used to avoid most noises in 
EOG signal. The resting features (peak and valley 
amplitude positions and area under upper and lower 

curves) have shown that they can be added to increase 
the classification performance of advanced movements, 
such as eye movements with different angles (10 to 30°), 
eye writing 0 to 9, A to Z, +, -, x, /) and activity based on 
eye movement (reading, typing and browsing). Interestingly, 
more interest should be paid on two issues in future 
studies for real-world applications: (1) noise removal or 
(noise avoiding techniques (Bulling et al., 2008; Kim et 
al., 2007; Yagi, 2010) and (2) minimi-zation of EOG 
electrode positions (Usakli and Gurkan, 2010) and design 
of wearable EOG goggles (Bulling et al., 2009). 
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Table 4. Mean (μ) and standard deviation (σ) values of all features from subject 3. 
 

Feature 
Down 

 
Up 

 
Left 

 
Right 

 
Down-left 

 
Down-right 

 
Up-left 

 
Up-right 

μ σ 
 

μ σ 
 

μ σ 
 

μ σ 
 

μ σ 
 

μ σ 
 

μ σ 
 

μ σ 

PAPV 100.6 12.3 

 

30 45.8 

 

n/a n/a 

 

n/a n/a 

 

83.8 8.4 

 

127.6 71.9 

 

24.4 30.6 

 

11.2 4.1 

VAPV 15.4 1.1 

 

159.2 46.4 

 

n/a n/a 

 

n/a n/a 

 

18.6 1.1 

 

43.8 61.1 

 

121 34.9 

 

129 17.5 

PAPH n/a n/a 

 

n/a n/a 

 

109.8 19.7 

 

14.8 0.4 

 

88 7.4 

 

44 59.9 

 

121 34.7 

 

18.8 2.5 

VAPH n/a n/a 

 

n/a n/a 

 

13.4 0.9 

 

117.2 15.1 

 

14.6 2.4 

 

134.2 68.3 

 

27.2 29 

 

128.2 18.9 

UWLV 43.8 8.9 

 

51.6 1.3 

 

n/a n/a 

 

n/a n/a 

 

48.2 7.5 

 

33 4.4 

 

45.8 1.3 

 

57.8 17.3 

LWLV 53 3.7 

 

50 8.8 

 

n/a n/a 

 

n/a n/a 

 

56.8 2.2 

 

51 10.3 

 

49.8 8.6 

 

57.6 6.6 

UWLH n/a n/a 

 

n/a n/a 

 

57.6 4.6 

 

66.4 5.5 

 

51.6 4 

 

53.6 2.9 

 

54 4.2 

 

61.6 5.5 

LWLH n/a n/a 

 

n/a n/a 

 

58.6 3.2 

 

65 3.6 

 

61.6 5.4 

 

40 21.4 

 

62 2.3 

 

55.8 5.6 

PAVV 326.4 28.7 

 

227 6.2 

 

n/a n/a 

 

n/a n/a 

 

336.5 38.9 

 

347.2 49.6 

 

235.8 33.4 

 

227.7 29.2 

VAVV -213.2 7.5 

 

-248.9 23.8 

 

n/a n/a 

 

n/a n/a 

 

-265.2 17.9 

 

-201.6 13.7 

 

-261.8 10.7 

 

-195 13 

PAVH n/a n/a 

 

n/a n/a 

 

343.5 21.6 

 

373.9 13 

 

259.7 12.7 

 

216.1 18 

 

318.4 40 

 

195.6 97.2 

VAVH n/a n/a 

 

n/a n/a 

 

-307.7 17.3 

 

-437.3 25.9 

 

-211.8 5.3 

 

-238.8 56.6 

 

-202.4 100.7 

 

-290.6 16.6 

AUCV 20359 29769.9 

 

7110.8 291.1 

 

n/a n/a 

 

n/a n/a 

 

8362.8 426.4 

 

1489.2 1553.9 

 

5459.8 1804.2 

 

7040.4 2155.5 

ALCV 6934.4 469 

 

6848 798.7 

 

n/a n/a 

 

n/a n/a 

 

8840.6 447.7 

 

5809.6 1162.8 

 

7144 146.4 

 

6592.8 656.8 

AUCH n/a n/a 

 

n/a n/a 

 

9489 525.2 

 

6237 1051.1 

 

7170 184.5 

 

5489 1133.7 

 

9029.8 502 

 

8975.2 547.4 

ALCH n/a n/a 

 

n/a n/a 

 

9980.4 744.5 

 

4676.6 3038.2 

 

7534.4 422.3 

 

2407.4 2346.3 

 

9003.4 167.4 

 

8859.2 1009.7 
 

Note that n/a is information in a field that is not provided or is not available. 
 
 

 
 
Figure 8. Up-left movement associated with EOG signals at 10, 20 and 30 degrees from 
two channels, Ch.V and Ch.H.  
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Figure 9. Example result of the proposed EOG classification algorithm for discriminating eight-directional movements. 

 
 
 

 
 

Figure 10. Effect of noises on the vertical EOG signal: single blinking (SB), double blinking (DB) and involuntary eye closing 
(IEC).
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