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In this work, a two-dimensional laminar and turbulent Power law fluid flow passing a square cylinder is 
numerically investigated. In the investigation, a finite volume code based on the SIMPLEC algorithm and 
non-staggered grid was used. In the discretization of the convective and diffusive terms, the third-order 
QUICK and the second-order central difference scheme, respectively were used. The turbulent flow was 

simulated using the fvk  2  model. Extensive numerical results of the drag coefficient, root 

mean square of the lift coefficient, Strouhal number, stream functions, pressure coefficient, time-
averaged velocities and power law viscosity are presented to determine the influence of the Power law 
index and Reynolds number. Laminar flows discussed in the present work are within the ranges: 

160Re60   and 6.16.0  n  covering shear thinning, Newtonian and shear thickening fluids. 

Turbulent flows within the ranges of Re=13000 and 22000 and 6.16.0  n  were also evaluated 

numerically and discussed. 
 

Key words: Single square cylinder, turbulence fvk  2   modeling, power law fluid, lift and drag 

coefficients, Strouhal number. 
 
 
INTRODUCTION 
 
In recent years, Newtonian fluid flow passing bluff bodies, 
especially cylinders have been considered because of its 
vast application and various flow regimes. Some of its 
industrial applications are: flows over bridges, tall 
buildings, pipelines, cooling towers and heat exchangers. 
Numerous investigations have been carried out on the 
effects of increasing Reynolds number on vortex 
shedding, the lift and drag coefficients and Strouhal 
number. Zdravkovich (1997, 2003) presented an 
extensive review of researches made on the flow passing 
circular cylinders until 2003. Okajima (1982, 1990) 
investigated the unconfined Newtonian fluid flow passing 
a rectangular cylinder experimentally and numerically in 

the range of 20000Re100   to determine the vortex 
shedding    frequency    and    Strouhal    number.   Many  
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comprehensive studies on both laminar and turbulent 
Newtonian fluid flows around square cylinders have been 
conducted by Sohankar et al. (1997, 2000, 2006). In spite 
of non-Newtonian fluid diversity and its extensive 
application in food, pharmaceutical, polymer and solution 
industries and production processes, a few studies have 
been performed on non-Newtonian fluid flows around 
cylinders and Newtonian fluids have mostly been 
considered for this field. Coelho and Pinho (2003a, b) 
have made experimental investigations on vortex 
shedding and onset for various regimes of non-
Newtonian fluid flows passing a circular cylinder in the 

range of 9000Re50  . Paliwal et al. (2003) have 

simulated two-dimensional steady state laminar flow with 
heat transfer around a square cylinder for non-Newtonian 
fluids in the range of 4.15.0  n , 4005  Pe  and 

40Re5   numerically to determine the effects of 

Power law index, Peclet and Reynolds numbers, thermal 
boundary condition on drag coefficient and Nusselt 
number. They concluded that the shear  thinning  fluid  do
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Figure 1. Schematics of the flow around a square cylinder. 

 
 
 
not only reduces the size of the wake region but also 
delays the wake formation, and shear thickening behavior 
shows the opposite effect. 

Dhiman et al. (2008) numerically studied the effects of 

blockage ratio, Hb / , (the ratio of cylinder width, b, 

to the vertical distance between the top and bottom 

boundaries, H,), Reynolds number ( 45Re1  ) and 

Power law index ( 0.25.0  n ) on the flow around a 

confined square cylinder. It was observed that 
recirculation length increases linearly with increasing 
Reynolds number and Power law index, and decreases 
with increasing blockage ratio. The vortex shedding 
phenomenon for non-Newtonian fluid flow around a 

square cylinder in the range of 160Re60   was 

investigated by Sahu et al. (2009, 2010). Bouaziz et al. 
(2010) studied non-Newtonian fluid flows around a 
square cylinder with heat transfer using finite element 
method. They have also investigated the bouncy effects 
on heat transfer and flow patterns for Power law fluids. 
Based on the above references, most studies have been 
focused on laminar flows of Power law fluids past square 
cylinders and turbulent flows disregarded. Therefore, in 
the present research, the effects of the Power law index 
and Reynolds number on the global parameters of the 
laminar and turbulent flow such as pressure coefficient, 
drag and lift coefficients, and Strouhal number are 
studied numerically using the finite volume method and 

the turbulence fvk  2  model. 

 
 
PROBLEM STATEMENT AND FORMULATION 

 
In this research, uncompressible laminar and turbulent flow of non- 

Newtonian fluid passing an unconfined square cylinder are studied 
numerically by considering artificial boundaries around the cylinder 
as shown in Figure 1. For top and bottom boundary conditions, slip 

flow boundaries were used. Sohankar et al. (1998) studied the 
effects of blockage ratio and downstream extent, Xd, on the flow 
around cylinder. They concluded that for =0.05

 
and Xd=15b, the 

distance between the boundaries has minimum effect on it. Based 
on these results, the variables used in this work were chosen to be 
H=20b, Xd=15b and Xu=10b, where Xu is upstream length. 
Unsteady flow was considered in this study because the vortex 

shedding occurs at this range of Reynolds number. The governing 
equations are as follows: 
 

Continuity equation: 0. V        (1) 

 

Momentum equation: 
T

Dt

DV
.




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


                              (2) 

 

Where T is total stress tensor and 

Dt

DV  is material derivative of 

the velocity vector. 
 

  PT                                       (3) 
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Where   is the unit tensor and P is the static pressure. 

 
 
Laminar flow 

 

For an incompressible Newtonian fluid, the relationship between 
shear rate and shear stress can be expressed as follows: 
 

ijij  2                                       (5) 

 

In Equation 5,  , ij  and )//(2/1 xvyuij   are 

viscosity, the components of the stress and of the rate of 

deformation tensor, respectively. The simplest and often a very 

useful relationship between shear rate and  shear  stress  for  shear  
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thinning or thickening fluids can be expressed by the Power law 

model. This relationship can be expressed as follows: 

 

n

n

jiijijij m

1

).2(,2



          (6) 

 

Where  , m  and n  are the Power law viscosity, the consistency 

factor and the Power law index, respectively. According to Power 

law model, if 1n  fluid is shear-thinning, 1n  fluid is 

Newtonian and  1n  fluid is shear-thickening. 

 
 
Turbulent flow 

 
For turbulent flows, the instantaneous quantities such as velocity 
can be separated into a mean value that contains periodic 
fluctuation and stochastic turbulent fluctuation. Replacing these 
values in the momentum equations, averaged equations are 
obtained containing products of turbulent velocity fluctuations. 
Therefore, a new stress tensor for turbulent flow fields can be 
written with tensorial notation as follows: 
 

QPT                             (7) 

 

Where vvQ   is the velocity fluctuation correlation tensor. 

These new turbulent stresses that appear in the momentum 
equations are termed as Reynolds stress and can be simulated by 
invoking the Boussinesq turbulent stress-strain relationship as 
follows: 
 

ijijt kvv 
3

2
2              (8) 

 

Where k  is the turbulent kinetic energy. In Equation 8, t  is the 

eddy viscosity that can be simulated using different turbulence 

models, for example, k  and k . 

In recent years, the fv 2
 turbulence model has become 

increasingly popular due to its good performance in correctly 

accounting for nearby wall damping without use of damping 

functions. Most of fv 2
 models are based on the k  

model. In the present work, the modified fv 2
 model based on 

the standard k  model was employed as proposed by Nazari 

et al. (2009). 

The validity of fv 2
 model has been reported for several 

applications such as aerodynamics, flow around bluff bodies, 
separated flow and three-dimensional boundary layers (Lien et al., 
1997; Manceau et al., 2000; Iaccarino et al., 2003). The equations 
used in solving the above mentioned model are presented in 
Equations 9 to 12. 
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Where  /ap ,  TvCkt

2,/min    and 

ijijtk SSP 2  are apparent viscosity, the eddy viscosity and 

the production of the kinetic energy, respectively. The time scale 

and length scale are  kCT ap  
 /,/1max , 

 25.075.05.0 )/(,/max kvCkCL l  
  the model 

constants are 09.0 , 27.0C  , 0.1 , 

0.2k , 4.11 C , 3.02 C , 5.0lC , 0.15C , 

5.0C , 075.0 , 9/5
.
 All parameter and 

constants are adopted from Nazari et al. (2009).  
 
 

Boundary conditions 
 

A uniform flow was considered at the inlet and as of the outlet a 
convective boundary condition (Orlanski condition) was used for all 
velocity components. No slip conditions have been prescribed at 
the cylinder surfaces. Symmetry conditions which represent slip 
boundary conditions were used at the upper and lower boundaries. 
The boundary conditions are chosen as shown in Equations 13 to 
16. 
 

Inlet: 0,1   vUu       (13) 

 

Cylinder surfaces:       0 vu      (14) 

 

Outlet: 0









x
U

t
C


     (15) 

 

Symmetry: 0,0 



v

y

u
     (16) 

 

Using the Orlanski boundary condition, the value of CU  is set to 

U . Boundary conditions at the solid walls for fvk  2  

model are 02  fvk  and 
2/6 yap   . The 

values of uX , dX  and H  are set to 10, 15 and 20b, 

respectively (Figure 1). The instantaneous values of the drag and 
lift coefficients on the cylinder can be calculated at each time step 
and are defined as stated in Equations 17 to 18. 
 

bU

F
C D

D 22/1 




                    (17)
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Figure 2. Non-uniform computational grid (202 × 236). 
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Where FD
 
and FL are the drag and lift forces exerted by the fluid on 

the cylinder, respectively. These forces are calculated by 
integrating the viscous shear forces and pressure over the surface 
of the cylinder. The Reynolds and Strouhal number are defined as 
expressed in Equations 19 to 20. 
 

m

bU nn


2

Re


     (19) 

 




U

bf
St      (20) 

 

Where f is the vortex shedding frequency. 
 
 
Numerical method 
 

Presented results in this work are obtained numerically by an 
incompressible finite volume CALC-BFC code using collocated grid 
arrangement developed. The SIMPLEC algorithm has been used 
for pressure-velocity coupling. However, for time discrietization the 
second order Crank–Nicolson scheme was used. The third-order 
QUICK and central difference schemes was considered to 

discretize convective and diffusive terms, respectively. The time 
step is set at 0.005 for both laminar and turbulent states as smaller 
values do not have any significant effect on numerical accuracy or 
stability. More details about the code can be found in Sohankar et 
al. (1996).  

 
 
RESULTS AND DISCUSSION 
 
In this work, numerical computations  are  carried  out  for  

both laminar and turbulent non-Newtonian fluid flows. 
Laminar flows in the range of 160Re60   and 

6.16.0  n  that covers shear thinning, Newtonian and 

shear thickening fluids are discussed. Also turbulent 

flows for Re=13000 and 22000 and 6.16.0  n  are 

studied numerically. The effect of the Power law index 
and Reynolds number on flow characteristics such as lift 
and drag coefficients, Strouhal number, pressure 
coefficient, time-averaged velocity and Power law 
viscosity are investigated. 
 
 
Grid independence 
 
Grid size is a considerable parameter in numerical 
methods. Grid size and number of control volumes 
influence the calculation time of the code and the result 
error. It would thus be very good to obtain grid 
independent results. In the present work, a non-uniform 
grid was used around the cylinder in the flow field. The 
meshing was split in five regions each having different 
number of nodes as shown in Figure 2. These grids are 
produced by hyperbolic tangent distribution functions. In 
this study, seven different grids were used to investigate 
the effects of the grids on the results of laminar and 
turbulent flows. For laminar flows, grid D was chosen. If

kywy nn /2   , dimensionless wall distance of the 

nearest node to the cylinder is less than one, satisfactory 

results can be obtained for turbulent flows. In 
y  

equation,  /ww   is the friction velocity and w  is the 

wall shear stress. For turbulent flows, grid E was adopted.
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Table 1. Validating laminar flow characteristics. 
 

Re n Source 
DC  DPC  LrmsC  St  

60 0.7 Present 1.44 1.33 0.052 0.136 

60 0.7 Sahu et al. (2009) 1.46 1.41 0.083 0.136 

100 1.0 Present 1.52 1.43 0.177 0.148 

100 1.0 Sahu et al. (2009) 1.49 1.44 0.194 0.149 

160 1.6 Present 1.79 1.61 0.294 0.146 

160 1.6 Sahu et al. (2009) 1.68 1.53 0.262 0.147 

200 1.0 Present 1.41 1.49 0.250 0.168 

200 1.0 Sohankar et al. (1998) 1.43 1.47 0.229 0.165 

 
 

 
Table 2. Comparison turbulent flow. 

 

Re n Grid/Source Grid resolution 
DC  DPC  LrmsC  St  

13000 1.0 A 92×107 1.962 1.982 0.999 0.148 

13000 1.0 B 114×131 1.974 1.989 0.998 0.147 

13000 1.0 C 118×139 1.978 1.993 1.008 0.146 

13000 1.0 D 124×144 1.967 1.980 0.956 0.148 

13000 1.0 E 132×152 2.028 2.041 1.122 0.148 

13000 1.0 F 134×156 2.066 2.080 1.241 0.148 

13000 1.0 G 202×236 2.162 2.174 1.483 0.148 

13000 1.0 Norberg (1993)  2.160 - - 0.132 

22000 1.0 A 92×107 1.777 1.790 0.546 0.142 

22000 1.0 B 114×131 1.914 1.926 0.833 0.146 

22000 1.0 C 118×139 1.927 1.939 0.872 0.146 

22000 1.0 D 124×144 1.907 1.918 0.808 0.146 

22000 1.0 E 132×152 1.990 2.001 1.010 0.147 

22000 1.0 F 134×156 2.028 2.040 1.127 0.147 

22000 1.0 G 202×236 2.136 2.147 1.400 0.146 

22000 1.0 Lyn et al. (1995)  2.100 - - 0.130 

22000 1.0 Sohankar et al. (2000)  2.320 - 1.540 0.132 

22000 1.0 Lubcke et al. (2001)  2.206 - 0.950 0.150 

 
 
 

Even though there are many papers specifically about 
laminar Newtonian and non-Newtonian fluid flows, there 
are none on turbulent non-Newtonian fluid flows passing 
square cylinders. Hence, the laminar flow results are 
compared with available Newtonian and non-Newtonian 
results for validating the calculations, but turbulent flow 
validation has been done using Newtonian results. Some 
of these comparisons are shown in Tables 1 and 2. 
 
 
Laminar results 
 
In this section, the numerical results for laminar flows are 
presented. Figure 3 shows time-averaged streamlines 
around a cylinder for Re=80 and 160 and n=0.6, 0.8, 1.0 
and 1.6. It is seen that the recirculation length increases 

as the Power law index increase or as Reynolds number 
decrease. As shown in Figure 3a, leading edge 
separation takes place only for n=0.6 and in Figure 3b, it 
occurs for both n=0.8 and 1.0. Therefore, it can be 
concluded that leading edge separation for shear thinning 
fluids takes place for lower Reynolds numbers. 
Separation from the leading edge results in widening of 
wake area. It is observed that for a single Reynolds 
number, there are three kinds of separations; separation 
from the trailing edges, separation from the leading edge 
with reattachment and separation from the leading edge 
without reattachment in the trailing edges. This 
phenomenon depends on the fluid nature and it affects 
some flow characteristics, for example, CL and CD. 

In Figure 4, the drag coefficient variation with respect to 
Re for different Power law  indexes  is  shown.  The  drag  
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Figure 3. Time averaged streamlines at Re = 80 and 160 for n = 0.6, 0.8, 1.0 and 1.6. 
 

 
 

 
 
Figure 4. Variation of time-averaged total drag coefficient with 

Reynolds number for laminar flow (Newtonian and non-
Newtonian fluid). 

 
 
 

force consists of two components; viscous drag and 
pressure drag. Viscous drag acts on the top and bottom 
surfaces of the cylinder, but pressure drag acts on the 
front and rear surfaces of the cylinder. As shown in 

Figure 4 by increasing the Reynolds number, drag 
coefficient decreases for shear thickening and Newtonian 
fluids. The same phenomenon is shown for shear 
thinning fluids up to a certain Reynolds number. Above 
that specific number, the leading edge separation takes 
place and the viscous drag becomes negative. As 
mentioned earlier, leading edge separation without 
reattachment results in increase of the wake area width. 
Increasing the wake area width, results in increasing the 
pressure drag as shown in Figure 5. In other words, 
leading edge separation causes the viscous drag to 
become negative and pressure drag to increase. The 
effect of pressure drag is more than viscous drag. These 
results in total increase the drag for shear thinning fluids. 
As known, the wake area is a low pressure area and 
larger width of wake area leads to larger pressure drag. 
As leading edge separation width of wake area in shear 
thinning fluids is larger as compared to Newtonian and 
shears thickening fluids, wider wake area results in an 
increase of the pressure drag coefficient gradient. 

Figure 6 shows variations of CLrms, rms value of lift with 
respect to Reynolds number for different Power law 
indexes. As shown for all Power law indexes, by 
increasing Reynolds number, CLrms increases. The 
difference between shear thickening and shear thinning 
fluids is the sharp increase of CLrms in shear thinning 
fluids. This phenomenon is due to an increase in the 
amplitude of CL which is affected by the widening of the 
wake area. 
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Figure 5. Variation of time-averaged pressure drag coefficient 
with Reynolds number for laminar flow (Newtonian and non-
Newtonian fluid). 

 
 
 

 
 
Figure 6. Variation of rms value of lift coefficient with Reynolds 

number for laminar flow (Newtonian and non-Newtonian fluid). 

 
 
 
As shown in Figure 7, increasing Re, results in 

increasing Strouhal number. After the leading edge 
separation takes place, this phenomenon becomes 
inverse and Strouhal number become smaller due to a 
wider wake area. As shown in Equation 20, Strouhal 
number is the frequency of vortex shedding and it is 
proportional with the inverse of time. As the wake area 
becomes wider, it takes more time for  a  vortex  to  shed,   

 
 
 
 

 
 

Figure 7. Variation of Strouhal number with Reynolds 
number for laminar flow (Newtonian and non-Newtonian 
fluid). 

 
 
 

 
 
Figure 8. Time-averaged pressure coefficient around the cylinder 

for laminar flow (Newtonian and non-Newtonian fluid). 

 
 
 
which in turn results in a lower Strouhal number. Figure 8 
shows the variation of pressure coefficients for Re=160 
and n=0.8, 1.0 and 1.6. As mentioned earlier, the wake 
region is a low pressure region. In Figure 8, it is observed 
that CP of shear thinning fluids is more negative than 
corresponding of shear thickening and Newtonian fluids 
because of formation of wake at the top and bottom sides 
and extending of this region in the trailing edge of 
cylinder (region BCDA). 

Figures 9 and 10 show time averaged velocity profiles at  
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Figure 9. Time-averaged stream wise velocity profiles in the 

centerline of the cylinder for laminar flow (Newtonian and non-
Newtonian fluid). 

 
 
 

the centerline and at different cross sections, 
respectively. Differences between these velocity profiles 
are due to different kinds of separations, as well as 
differences in fluid nature. In these figures, recirculation 
length and recirculation width are obvious. 

Figure 11 shows the variation of  /ap  (ratio of Power 

aw viscosity to Newtonian viscosity) around cylinder 
surfaces for Re=160 and n=0.8 and 1.6. It is observed 
that shear thinning and shear thickening fluids behave 

inversely. The maximum variations of  /ap  are seen at 

the cylinder corners and at stagnation points. This 
phenomenon is due to sharp variations of velocity 
gradients. As viscosity changes, other flow characteristics 
also change. 
 
 
Turbulent results 
 
The numerical results for turbulent flows using 

fvk  2  turbulence model, are presented in this 

section. Figure 12 shows the time-averaged streamlines 
around a cylinder for Re=13000 and 22000, and n=0.6, 
1.0 and 1.4. In contrast to laminar flows, by increasing 
the Power law index, the recirculation length decreases 
and by increasing the Reynolds number, the recirculation 
length increases for all Power law indexes. For turbulent 
flows, the effect of Power law index on recirculation 
shape and length is more significant than the effect of 
Reynolds number. As shown in Figure 12, all Power law 
indexes and Reynolds numbers leading  edge  separation  
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takes place. Therefore the recirculation width is almost 
constant for all sex cases presented above. 

Figures 13 and 14 represents drag coefficient and 
Strouhal number variations with respect to the Power law 
index for Re=13000 and 22000, respectively. As shown 
from these figures, by increasing the Power law index, 
drag coefficient and Strouhal Number increase and these 
variations for Re=13000 are larger than for Re=22000. 
Figure 15 shows pressure coefficient variations for 
turbulent flows with Re=22000 and n=0.6, 1.0 and 1.4. 
The results obtained in this work are compared with the 
experimental results for Newtonian fluids presented by 
Norberg (1993). As observed, variation of Cp at the top, 
bottom and rear edges of the cylinder for shear thinning 
fluids are larger than the corresponding for shear 
thickening and Newtonian fluids. This phenomenon 
depends on the wake region formation. Figures 16 and 
17 show time-averaged velocity profiles for turbulent 
flows with Re=22000 and n=0.6, 1.0 and 1.4 at the 
centerline and at three different cross sections, 
respectively. Results are compared with Newtonian fluids 
solved with Large Eddy Simulation turbulence model, 
Sohankar et al. (2000) and Sohankar (2006). It is obvious 
from these figures that the recirculation length for shear 
thinning is larger than corresponding value for shear 
thickening. The variation of time-averaged velocity for 
shear thinning is greater than the corresponding one for 
shear thickening fluids. 

Figure 18 shows variations of  /ap  around the 

cylinder surface for Re=13000 at n=0.6 and 1.4. As for 
laminar flows, shear thinning and shear thickening fluids 

behave inversely and the maximum variations of  /ap  

are seen at the cylinder corners. By comparing the 

variations in  /ap  between laminar and turbulent flows, 

for shear thinning fluids, it is seen that the variation is 
less for turbulent flows as compared to laminar flows. In 
contrast to shear thinning, shear thickening fluid 
variations between laminar and turbulent flows are not 
significant. 

 
 
CONCLUSION 
 
Laminar and turbulent Power law fluid flows passing an 
unconfined single square cylinder by using the 

fvk  2  turbulence model were investigated 

numerically to obtain flow characteristics such as drag 
coefficient, root mean square of lift coefficient, 
recirculation length, stream functions, pressure 
coefficient, time-averaged velocities and Power law 
viscosity. For laminar flows, the range of Reynolds 
number and Power law index considered are Re=60 and 

160 and 6.16.0  n . For turbulent flows discussed, 

these    values     are    Re=   13000    and    22000    and  
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Figure 10. Time-averaged stream wise velocity profiles at four locations for laminar flow (Newtonian 
and non-Newtonian fluid). 

 
 
 

 

 
 

Figure 11. Variation of v_ap/v around the cylinder surfaces for 
Re=160 at n=0.8 and1.6. 
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Figure 12. Time averaged streamlines at Re =13000 and 22000 for n = 0.6, 1.0 and 1.4. 

 
 

 

 
 
Figure 13. Variation of time-averaged total drag coefficient 

with Power law index for turbulent flow (Newtonian and non-
Newtonian fluid). 

 
 
 

6.16.0  n . This range of Power law index covers 

shear thinning, Newtonian and shear thickening fluids. 
For the studied values of Reynolds numbers, the vortex 
shedding   phenomenon   occurred.  By  increasing  the 

 
 
Figure 14. Variation of Strouhal number with Power law index 

for turbulent flow (Newtonian and non-Newtonian fluid). 
 

 
 

Reynolds number in laminar shear thinning and 
Newtonian fluid flows, the position of flow separation 
shifts to the front edge of the cylinder. For shear 
thickening fluids in the present range of Reynolds number
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Figure 15. Time-averaged pressure coefficient around the cylinder for 
turbulent flow (Newtonian and non-Newtonian fluid). 

 
 
 

 
 

Figure 16. Time-averaged stream wise velocity profiles in the 
centerline of the cylinder for turbulent flow (Newtonian and non-

Newtonian fluid). 

 
 
 

and Power law index, there was no leading edge 
separation. As leading edge separation occurred, the 
wake width increased as a result of flow behavior 
changes. This phenomenon has also been reported by 
Sahu et al. (2009). In the present work, turbulent flows 

with Re=13000 and 22000 in the range of 6.16.0  n  

was studied. As the Reynolds numbers are high for all 
shears thinning, Newtonian and shear thickening fluids, 
leading edge separation was observed. In contrast to 
laminar flows, the recirculation length in shear thinning 
fluids was larger than the corresponding for Newtonian 
and   shears   thickening   fluids.  By  comparing  the  two  
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Figure 17. Time-averaged stream wise velocity profiles at three locations for turbulent flow (Newtonian 

and non-Newtonian fluid). 

 
 
 
 

 
 

Figure 18. Variation of v_ap/v around the cylinder surfaces for 

Re=13000 at n=0.6 and 1.4. 

Reynolds numbers in the range of Power law index, it 
was concluded that the Power law index affected flow 
characteristics such as recirculation length, stream 
functions, etc., more than the Reynolds number. 
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