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Two deformation models are proposed for clamped circular plates undergoing pulse loadings. By these 
models, behaviors of plate are studied effectively for the situations before and after local failure. In the 
first model, it is assumed that impulsive load is uniformly distributed and final deformation is of a 
spherical dome shape. In order to analyze this model, it assumed that under the shock wave, the 
mechanism of deformation is represented by a multi-peripheral stationary hinge scheme. In the second 
model, the final shape is considered to have a conical shape represented by a single peripheral plastic 
moving hinge. In this part, an alternate deformation model is proposed and the final shape is induced 
by transverse and radial motion of the plastic hinge. For each model, the deformation and motion after 
severance of the plate (post local failure) will be analyzed. Calculated plastic energies dissipated in 
deformation process, energy absorbed in boundaries during failure, residual kinetic energy and velocity 
after local failure are evaluated and discussed. Computed results show good agreement between our 
approaches and experimental data; better than that obtained with other models.   
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INTRODUCTION 
 
The plate structures are important in many applications 
such as; aerospace industry, and designing and 
fabrication of submarines, ships, bridges and vessels. For 
example; hull plates with small curvatures are welded 
together and supported by mechanical parts. The plates 
between these parts can be considered by a flat sheet. In 
some situations, the plate structures may be subjected to 
impacts and shock waves. So, analysis of their behaviors 
is remarkable for engineering safety designers. 
Enhancement of pressure pulse increases probability of 
rupture occurrence and or tearing of plate. Loading 
consequences  and  failure  expectation of circular  plates 

under impulsive loads have been previously considered 
by some researchers. Detailed reviews of theoretical and 
experimental studies on pre-failure deformations of the 
circular plates can be found in published works: (Teeling-
Smith and Nurick, 1991; Balden and Nurick, 2005; Shen 
and Jones, 1993; Lee and Wierzbicki, 2005a; Zajkani et 
al., 2010, 2012). To the best of current author’s 
knowledge, a few works have been done on post failure 
behavior of the plates subjected to impulsive loads, so 
far. In those works, the main focus has been on empirical 
observations and finite element simulations; example is 
given in Lee and Wierzbicki (2005b). 
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Menkes and Opat (1973) investigated dynamic behavior 
of beams under impulsive loading on the base of 
experimental observations and introduced three modes of 
failure which are the following: 
 
1. First mode of failure, large inelastic deformation, 
2. Second mode of failure, tensile tearing at the edges, 
3. Third mode of failure, shear failure at the edges. 
 
Teeling-Smith and Nurick (1991) carried out some 
experimental tests on explosive forming of the clamped 
circular plates, also. They observed that when the 
thickness of explosion materials increases, probability of 
the failure occurrence is proportionally raised. To predict 
second and third modes of the failure, Teeling-Smith and 
Nurick (1991) measured velocities of plates at clamped 
supports after full tearing. In addition, Nurick et al. (1996) 
presented various experimental results for the circular 
plates under explosive loadings. They considered initial 
stage of thinning as well as subsequent stages of the 
tearing on boundaries of plates. They used mild steel 
plates with 1.6 mm thickness and diameters of ranges 60 
to 100 mm. They also used the following dimensionless 
parameter of impulse to illustrate dependence of the 
effective variables as follow 
 

                                                             (1)  
 

where, , , ,  and  denote values of exposed 
impulse, radius of plate, thickness, density and yield 
stress of the material, respectively. In addition, they 
proposed the following intervals for each failure mode 
mentioned previously:  

 

1. , Fist mode 

2. , Second mode 

3. , Third mode 

 
Appling flow rule at analytical investigations often creates 
some computational challenges for solution procedures. 
According to related references such as Jones (1997), 
concept of single moving hinge has been applied 
frequently in the upper bound- limit analyses of the rigid- 
perfectly plastic materials. It is worth mentioning that in 
some reports, neither the hinge idea and nor the flow rule 
have been used. In these cases, equation of energy 
balance (energy conservation) has been merely 
implemented, in order to simplify formulations of 
plasticity. 

To predict deformation process of plate, Wen (1998) 
proposed an initial appropriate function. In order to obtain 
critical load  which  causes  the  second failure mode,  he  

 
 
 
 
presents a static solution considering work hardening 
effect. Zajkani et al. (2010) considered dynamic plastic 
responses of titanium, aluminum and steel plates 
subjected to large amplitude pulse loading. They adopted 
more complicated geometrical schemes representing 
deflection fields with the novel functions for the hinge 
motion. Applying the flow rule and strain rate effects, they 
produced a functional of energies and calculated 
unknown coefficients by the modified Ritz method. 
Gharababaei and Darvizeh (2010), Gharababaei et al. 
(2010), Gharababaei and Darvizeh (2011) and Babaei 
and Darvizeh (2012) obtained vertical mid-point 
deflection of the metallic plates (aluminum, copper and 
steel) subjected to impulsive loads. Methodologies of 
these works are: The modified Homotopy Perturbation 
method for solution of nonlinear equation (Gharababaei 
and Darvizeh, 2010), the singular value decomposition 
method (Gharababaei and Darvizeh, 2011), the balance 
of energy (Gharababaei et al., 2010; Babaei and 
Darvizeh, 2012) by using a zero-order Bessel function for 
deformation profile. Recently, Zajkani et al. (2012) have 
developed a pseudo-spectral collocation methodology to 
analyze high rate elasto-viscoplastic behaviors of the 
circular plates. By means of a relatively complex 
computational modeling, they solved incremental 
formulations of the differential equations and verified it by 
the finite element simulations. In that work, tearing of the 
plate was not considered, directly and an evolution of a 
porosity parameter is computed to evaluate effect of 
ductile material damage.  

Jones (2010) reviewed some reports over the 
contributions of simple models, narrowly. He confirmed 
that those models can provide required facilities for 
designing constructions and assurance of the industrial 
plant against the high-intensity dynamic loading.  

Using the motion equations, Jones and Alves (2010) 
studied the pre and post-failure behaviors of the beams 
and circular plates. In their dynamic solution, it is 
assumed that a moving plastic hinge is responsible for 
the deformation. According to this model, values of the 
critical loads for happening of the full severance or 
tearing of the plates are much lower than experimental 
amounts used in criteria at report (Teeling-Smith and 
Nurick, 1991). The main reason of this significant 
difference between analysis and experimental data is 
neglecting membrane stresses in the reference (Jones 
and Alves, 2010).  

Although, present work like to other simple models 
does not cover overall aspects of the elastic-plastic 
deflections under high–rate loads but, it can present 
satisfactory accurate results. Herein, we remind 
capabilities of a simple model among this area in 
reference (Jones, 2012). The accuracies are normally 
achievable because, the principle parameters e.g. profile 
shape, strain rate and final time can be deducted from 
relevant experiments. So, these models are naturally 
capable  of  improving validations and assist designers to  



 

 
 
 
 
consider preliminary judgment in risky cases. 
Nevertheless, despite a lot of existing data in this subject, 
there are significant differences on viewpoints, 
descriptions and quantities of the motion after failure 
occurrence of the plates.  

Scaling amounts of the residual velocity plays a 
fundamental role to validate efficiency of a certain failure 
mechanism of the plate exposed by a pressure pulse. In 
our previous modelings (Zajkani et al., 2010, 2012; 
Gharababaei and Darvizeh, 2010, 2011; Gharababaei et 
al., 2010), we did not consider the tearing of plate and did 
not calculate the velocity of motion after local failure. 
Here, we will propose two new deformation models by 
effective applying the yield line theory. Both models 
compute permanent deflection, straightforwardly and 
consider the deformation and motion after severance of 
the plate (post-local failure). The membrane forces and 
bending moments are considered, simultaneously. Two 
situations of deformation that is, pre and post-local failure 
are considered. Firstly, a new deformation model is 
considered by assuming the multi- stationary plastic 
hinges produced during deformation. These peripheral 
hinges are responsible for deformation and generate a 
spherical dome shape. Obtained results are compared 
with experimental data and some other works. In this 
state, a partial part of deformation that might be 
happened after severance is neglected. In the second 
model, final shape is considered by a conical shape, 
which is produced by a single peripheral moving hinge. In 
this part, comprising the transverse and radial motion of 
the plastic hinge, an alternate deformation procedure is 
proposed. Calculated plastic works of the deformation, 
energy absorbed in the boundaries at failure are 
obtained. In addition, calculating kinetic energy, the 
residual velocity of motion at outset of the local failure 
(second mode) is quantified more exactly as compared to 
existing models mentioned above. In order to verify 
obtained results, the ratios of the mid-point deflection 
respect to the thickness are illustrated, discussed and 
compared with the empirical data and other analyses. 
 
 
PRELIMINARY 
 
Equilibrium equations of energy for the different failure 
modes can be easily written as follow: 
 
1. First mode         
 

                                                                   2) a) 
 
2. Second mode 
 

                                (2b) 
 
3. Third mode: 
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                                             (2c) 
 

where, , ,  and  imply to input 
energy, deformation energy, shear energy and the 
residual energy, respectively. 
 
Assuming that the energy dissipated through plastic work 
is equal to the input energy (initial kinetic energy) of the 
plate. According to the principle of momentum 
conservation, initial velocity induced by the impulsive load 
is: 
 

                                                (3) 
 

                                              (4) 
 
As mentioned before, here a new mechanism is 
introduced and the present analysis established based on 
the mechanism and an approximate deformation function. 
Firstly, the function of transverse deflection is considered 

as a parabolic shape with power of  
 

.                                                  (5)   
 
In the dynamic loading analyses, in order to cover strain 

rate effects, dynamic yield stress  is used instead of 

static yield stress  by . Here, coefficient of  
can be obtained by an empirical material model such as 
the Cowper-Symonds constitutive equation (Jones, 
1997). In this model, dynamic yield stress will be a 
function of the strain rate and material parameters as 
follow: 
 

                                                        (6) 
 

where  is average of the plastic strain rate, and  and 

 are the material constants. The value of   can be 
estimated for moderate deflection of the plate. In addition, 
radial strain indicates main portion of the strain 
distributions of deformation and its rate can be used to 

evaluate . Moreover, strain calculation approximates 
maximum value of the radial strain equal to 0.19 and 
0.089 for the uniform and localized distributions of 
loading, respectively. In addition, Bodner and Symonds 
(1979) and Nurick (1985) reported that deflection of the 
blast   loaded  plates   reach   their   maximum    amounts  
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approximately at . So, it implies that for the 
parabolic prediction shape of deflection, values of the 
average strain rate for the uniform distribution of loading 

will be about  and  for  = 2 and 3, 
respectively. Also for the localized distribution of loading, 

it shows 

 

 

𝜀 𝑝   equal to . Therefore, average of  

can be obtained if the mentioned value for  and 

material constants  and  are considered in Equation 
(6). In order to simplify Equation (6) and make conversion 

of the solution,  will be considered constantly as the 
same of references (Gharababaei and Darvizeh, 2010, 
2011; Gharababaei et al., 2010). It is remarkable to 

mention that if an appropriate  is estimated  for threshold 
stage of the failure, despite of being constant value; we 
can expect satisfactory results in this short time 
deformation. 
 

 

LOCAL FAILURE (PERIPHERAL RUPTURE OR 
TEARING) CRITERION 
 
Firstly, it is assumed that failure is occurred at the 
support region and it is taken apart from clamped edge. 
Consequently, a full severance of the plate will be 
occurred after a specific sliding from support. The amount 
of sliding can be written as follow (Gupta and Nagesh, 
2007): 
 

                                                                           (7) 
 

where,  is the shear strain and  is half length of the 
plastic hinge at the supports. The critical sliding, where 
the complete severance can be happened, is: 
 

                                                                     (8) 
 

where,  is the critical shear strain obtained 
experimentally. It is 0.8 for mild steel and 0.5 for 
aluminum alloy (Yu and Chen, 2000). Shen and Jones 
(1993) proposed an approximate equation regarding the 

length of the plastic hinge  with dissipated energy ratio, 

. To find , the following equation can be utilized 
 

                                                            (9a)  
 

                                                               (9b)      
 

                                                                  (9c)      

 
 
 
 

where,  and  are the shear force energy and the 
plastic work in the circular plastic hinge formed at the 
support, respectively. 

For occurrence of the second failure mode, which is 
desirable here, Shen and Jones (1993) proposed 

parameter of . Using Equation (9), we can 

obtain: . According to available critical 

amounts of , the minimum amount of  can be 

obtained about  for the steel and  for the 
aluminum 1200 H4 alloys. These values are quite similar 
to the experimental data reported in Jouri and Jones 
(1988). It can be supposed that deflection quantity is 

equivalent with a coefficient of thickness; . Therefore, 
this point is mentioned that a complete severance will 
happen at a definite critical coefficient of thickness as 

, which can be evaluated. Here, the least amount of 

this quantity is obtained as  and  for the steel 
and aluminum, respectively. Similarly, its highest amount 
is obtained about 0.4 and 0.25 for the steel and 
aluminum, respectively. Here, we assume that the critical 
sliding is changed linearly with respect to input impulse. 
So, on the basis of the second failure mode, the critical 
sliding for the mild steel and aluminum alloys can be 
written as: 
 

            (10) 

 
 
DEFORMATION SCHEME-MULTI HINGES MODEL 
 
Basically, the limit analysis are derived from virtual work 
and categorized by the approximate theories. Practically, 
concept of the flow rule is closer to nature of the plastic 
deformation; more exact than the limit analysis. Since 
applying a limit analysis simplifies problems, here 
adopting a multi hinges model would be much beneficial. 
This task is the same of plastic node method expressed 
in Ueda and Yao (1982). In many cases of the finite 
element analysis of plasticity, the flow rule can be stated 
as a procedure that plastic deformation is considered at 
the plastic hinges. This attitude to the elastic-plastic 
problems can facilitate applying concept of the flow rule 
in the continuum mechanics. In the finite element 
modeling of metal forming process, implementing the flow 
rule through the nodal yielded lines reduces 
computational efforts, drastically (Kobayashi et al., 1989). 
Herein, concept of the multi hinge is that the yield 
function is checked only at each peripheral node in 
domain of interest and stress  resultants  satisfy  the yield  
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Figure 1. Dome shape deformation scheme modeled by multi plastic hinges. 
 

 
 

condition while the interior of an annular element remains 
elastic. Figure 1 illustrates deformation scheme for the 
multi hinges model.  

According to this model, loading process produces 
several circular yield lines (plastic hinges) during 
deformation of plate. In this case, the distances between 
the plastic hinges are supposed by several frustums. In 
the conical areas, radial curvatures will be zero. So, the 
works done by the radial bending moments are zero, 
while these moments at the plastic hinges are on the 
yielded limit. Generally, at the high -rate amplitude of the 
pressure pulse, the plate moves closer to the rigid- 
perfectly plastic scheme. At first glance, if the internal 
parts are supposed by elastic elements, it leads to 
include vibrating effect and spring backs in deflection. 
Alternately,  at  the  high  velocity forming of the plate, the 

snap and spring backs can be ignored. So, it is 
concluded that each frustum between two subsequent 
hinges can behaves plastically. Moreover, three types of 
the hinges distribution are examined. At first, the 
distances between the subsequent hinges are taken 

constant. Considering  plastic hinge, radial positions of 
the hinges would be as follow 

 

                     (11) 

 

where the central hinge is at  and the last hinge 

prior   the   support   is   accounted   by  .  The  vertical  
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displacement of the hinges can be written in the following 

form  
 

                                                (12) 
 
It is assumed that the circumferential bending moment 
throughout the plate reaches the yield point. The 
deflection function of plate between hinges is: 
 

                  (13) 
 
According to the relation (13), the radial and 
circumferential membrane strains between subsequent 
hinges would be as follow: 
 

                                                (14a) 
 

                                                                  (14b) 

 
Also, the values of curvatures can be obtained  

 

                                                      (15a) 
 
 

         (15b) 

 
So, Equations (15) result 

 

                                              (16b) 
 

                                                    (16b) 
 
 
CALCULATING THE PLASTIC WORKS 
 

The total plastic work  includes energies of the 

deformation  and shearing failure  as follow: 

 

                                                    (17) 

 
 
 
 

 is defined by the plastic works of the radial and 

circumferential membrane forces (  and , the 
radial and circumferential bending moments 

, and the plastic works dissipated by 

internal hinges  and the hinge on edge support 

 as follow: 
 

             (18) 
 
 
WORKS OF MEMBRANE FORCES 
 
Using the Tresca yield condition criteria and flow rule with 
rigid –perfectly plastic material, it could be assumed that 

. Using Equation (16a), work of radial force in 
each cone would be obtained as follow: 
 

      (19) 
 
So, work of all elements are added to give 
 

  (19b) 
 
Similarly, plastic work of the circumferential force 
throughout plate domain is evaluated for as  
 

                   (20) 
 
 
WORK OF BENDING MOMENTS 
 
The work of radial and circumferential bending moments 
can be calculated as 
 

                                                                      (21a)            
 

                                   (21b) 
 

where  
Substituting (12) to (15) into Equation (21b) leads to 

simplify it as follow: 



 

 
 
 
 

                  (22) 
 
 
PLASTIC SHEARING FAILURE WORK AT THE 
SUPPORT 
 
Plastic work of the shearing force at support can be 
calculated as 
 

 
 

 
 

where  is  shear stress when it reaches the dynamic 
yield stress. 
 
 
WORK OF PLASTIC HINGES  
 
Considering the deformation profile, plate slope at the 
support is as follow: 
 

                                                      (24) 
     
So, the work done by this force component is 
 

                    (25) 
 
On the other hand, works of other internal hinges can be 
calculated, easily. Rotation angle of the  i

th
 hinge can be 

expressed as a function of the radial and vertical position 
of neighbor hinges 
 

 (26) 
 
Considering above equation, the work of the internal 
hinges is obtained 
 

                  (27) 
 
Consequently, according to relations (17) to (27), we 
have 
 

 (28) 
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and 
 

     (29) 
 
By equating relation (29) with input energy (4) and using 
dimensionless impulse (1), the mid-point deflection of 
plate can be obtained  
 

   (31) 
 

where . When pressure pulse is less than the 

critical value,  is taken zero. In the final limit state 

 that the hinges have too small distances from 
together, Eq. (30) will be evaluated as 
 

                                          (31) 
 
 
EFFECT OF HINGES NUMBER 
 
To investigate the effect of hinges number on the 
computed results, several numbers are examined by 
comparisons between calculated plastic works and the 
equation proposed in reference (Teeling-Smith and 
Nurick, 1991). In this reference, some experiments on the 

circular steel plate with thickness of  have been 
carried out and the following equation for deformation 
energy has been proposed for the second failure mode  
 

                                         (32) 
 
The material properties present in the Table 1 are used to 
show the results. 

Considering the relevant relations, it can be expected 
that less plastic work is necessary for lower number of 
hinges. In Figure 2, amounts of plastic works at the 
second failure mode have been illustrated per different 
number of hinges. For these calculations, material is mild 
steel and radius of plate is 50 mm. The   result with 

 has a good compatibility with the relation 
proposed by (Teeling-Smith and Nurick, 1991). It is also 
observed   that  by  increasing  the  hinges   number,   the  
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Table 1. Properties of the plates used in the analysis (radiuses of the plates are ). 

 

Material Thickness  Yield stress    
Mild steel 1.6, 2 and 3 318 7800 3.08 
     

Copper 
2 277 

8940 2.65 
3 201 

     

Aluminum 1200 H4 2 and 3 120 2700 1.87 

 
 
 

n=10 n=100 n=40 n=Inf inite Eq. (32)

I N.s
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E
def

J

0

1000
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4000

 
 
Figure 2. The plastic work versus input impulse for mild steel (1.6 mm). 

 
 
 

deformation plastic work grows. In the Figure 3, ratios of 
the residual velocity at the second failure mode respect to 
initial velocity are shown per different hinges number.  

Using Equation (29) it is possible to obtain the mid-
point deflection of the plate versus imparted impulses. 
Some experimental results have been presented in 
Gharababaei and Darvizeh (2011). In Table 2, some 
proposed relations for dimensionless mid-point deflection/ 
thickness of a circular plate under uniform distribution of 
impulsive loading have been summarized. 

In Figures 4 to 6, results are compared with the 
experiments done by (Gharababaei et al, 2010) and two 
theoretical models proposed by (Symonds and 
Wierzbicki, 1979) and (Nurick and Martin, 1989). These 
models are corresponds with two first equations of Table 
2. In Figure 4 to 6, the mild steel plate with thickness of 

, the aluminum plate with thickness of   and 

the copper plate with thickness of  have been used,  

respectively. 
As seen in figures, whenever the number of hinges 

increases, results of the modeling follow the experimental 
data more closely.  

 
 
THE EFFECT OF NON-UNIFORM HINGES 
DISTRIBUTION 

 
Previously, it was assumed that the hinges distributions 
are located uniformly at the radial distance of the plate. 
Here, two different schemes are proposed for the non-
uniform distribution of the hinges. Similarly, new obtained 
results are compared with the experimental and 
theoretical data. At the first case of non-uniform 
distribution of hinges (C1), a hinge distribution is 
considered by a condition that distances between 
adjacent  hinges  at  the  center areas are closer together  
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Figure 3. The ratio of residual velocity to initial velocity. 

 
 
 

Table 2. Proposed relations for mid-point deflection thickness ratio for circular plate under 

explosive loads (Nurick and Martin, 1989). 
 

Researchers Relations  

Symonds and Wierzbicky  

 

 

  
(33a) 

   

Nurick and Martin - (model I)  
 

(33b) 

   

Hudson  
 

(33c) 

   

Lipman  
 

(33d) 

   

Jones  
 

(33e) 

   

Batra and Dubey 
 

(33f) 

 
 

 

rather than other areas near the boundaries. In this case, 
the function of hinges distribution is supposed to be as 
follow 
 

                                                             (34) 
 
The plastic deformation work could be obtained in a 
similar way mentioned before. At the limit state, in which 
number of the hinges are infinite, results are obtained as 
the same of previous part, but  for the  limited  number  of 

the hinges, different results are seen. In Figures 7 to 10, 
results of the residual velocities and plastic deformation 
works are compared with the case of the uniform 
distribution of hinges.  

To evaluate the effect of case C1, amounts of the 
plastic deformation works are compared with the uniform 
hinges distribution in the Figure 8. 

According to illustration, plastic work of case C1 is 
lower than the uniform distribution at the same number of 
hinges. But by increasing the number of hinges, the 
plastic deformation works are getting convergent 
together. Figure  9  displays   the  residual   velocity-initial  
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n=10                                    

Experiments (Gharababaei et a l, 2010)

n=inf inite

n=40  
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Eq. (33b) g iven by (Nurick and Martin, 1989)
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Figure 4. The mid-point deflection thickness ratios versus impulse for mild steel plate (  thickness). 
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Experiments (G harababaei et al, 2010)
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Eq (33a) given by (Symonds and Wierzbicki, 1979)

I N.s
0 2 4 6 8 10 12 14 16

w
0

h

0

10

20

30

 
 

Figure 5. The mid-point deflection thickness ratios versus impulse for aluminum plate (  thickness). 
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Figure 6. The mid-point deflection thickness ratios versus impulse for copper plate (  thickness). 

 
 
 

n=40 (non-uniform: C1)               n=10 (non-uniform: C1)
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Figure 7. The deformation plastic works versus impulses for mild steel plate (1.6mm); first case of non-

uniform hinge distribution (C1). 
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Figure 8. The deformation plastic works for mild steel (1.6 mm); comparisons between case of C1 non-uniform 

hinge distribution and uniform distribution. 
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Figure 9. The residual velocity initial velocity ratio versus input impulse for mild steel (1.6mm); first case of 
non-uniform hinges distribution (C1). 
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Figure 10. The ratios of residual velocity to initial velocity for mild steel (1.6 mm); comparisons 

between case of C1 non-uniform and uniform hinges distribution. 

 
 
 
velocity ratio versus imparted impulses. 

To be better comparison of the effect of hinge numbers, 
results have been plotted in Figure 10 for the numbers of  
10 and 100 hinges. 

In the previous case for C1, the effect of hinges 
distribution scheme was investigated for the 
circumstance that hinges aggregation at center area is 
more than boundary. In the second case of non- uniform 
hinges distributions (C2), which it is reverse of C1, the 
aggregation of hinges at areas near center is less than 
the boundary. Therefore, this distribution function of 
hinges would be as follow 
 

                                                                (35) 
 
Figure11 shows the plastic deformation energies versus 
imparted impulses at case C2.  

For better comparison between two schemes of the 
non- uniform hinges distributions, deformation energies of 
patterns C1 and C2 are plotted in the Figure 12. In 
pattern C2, the results are converging faster than C1. At 
the   large   numbers   of   hinges,     two     patterns    are 

approximately compatible together. Here, it can be found 
that the pattern C2 could be more reasonable, lower 
volume of calculations and better responses. 

As mentioned previously, there is no enough attention 
to consider behavior of the plate exactly when it takes 
apart from its support. Here, using the criteria stated in 
present study, a total energy required for deformation 
severance of plate can be obtained. Considering amount 
of input energy of imparted impulse, the residual energy 
after severance will be acquirable. Herein, it should be 
noted that the deformation after severance is neglected.   

In Figure 13, the effect of hinges distribution pattern are 
compared again by the ratios of residual velocity respect 
to initial velocity per 10 and 100 hinges.  

Table 3 presents the root mean square errors (RMSE) 
for three metallic materials and different numbers of the 
hinges. The experimental data have been chosen from 
reports in Gharababaei and Darvizeh (2010) and 
Gharababaei et al. (2010). Generally, these comparisons 
indicate that increasing the number of hinges causes 
more compatibility of results with the experimental data 
else copper plate.  

A lot of examples can be found in Gharababaei et al. 
(2010)  to  compare  more  specimens.  Table 4 indicates  
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Figure 11. The deformation plastic works versus impulses for mild steel plate (1.6 mm); second 

pattern of non-uniform hinges distribution (C2). 
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n=10 (non-uni form: C1) n=100 (non-uniform: C1)

I N.s
30 35 40 45 50 55 60

E
def

j

0

500

1000

1500

2000

2500

3000

3500

4000

 
 

Figure 12. The deformation plastic works versus impulses for mild steel plate (1.6 mm); 
comparison between patterns of C1 and C2 as two non- uniform hinges distributions. 
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Figure 13. The ratio of residual velocity initial velocity versus impulses for mild steel plate (1.6 mm); 

comparison between patterns of C1 and C2 as two non- uniform hinges distributions. 
 
 
 

Table 3. The root mean square errors (RMSE) for different numbers of the hinges. 

 

Material Thickness  
RSME 

    

Mild steel 
1.6 4.32 2.49 2.14 1.9 

2 2.43 1.33 1.12 0.99 
      

Copper 
2 0.73 0.61 0.75 0.87 

3 0.46 0.9 0.99 1.06 
      

Aluminum 1200 H4 
2 3.66 2 1.7 1.51 

3 1.54 0.58 0.4 0.28 

 
 
 
calculations of the root mean square errors for the mid-
point deflection ratios by other models. As it is seen, this 
study often introduces better predictions in comparison 
with the others works. 
 
 
DEFORMATION SCHEME - CONICAL MODEL 
 
The  final  shape of deformation is a function of the many  

parameters. Here, a condition is considered that the final 
deformation shape is a conical shape. Among the 
various loading conditions, if the stand-off distance is 
less than the radius of plate, this condition is normally 
named by the localized loading. In this case, the final 
shape is almost a conical form. However, in practical 
situations, the final shape is not a complete cone. So, an 
idealized situation will be considered here, which the final 
deformation  is  a  complete  cone.  Therefore, computed  
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Table 4. The root mean square errors (RMSE) of various models for 
experimental data (Gharababaei et al., 2010). 
 

Researchers RMSE 

Symonds and Wierzbicky 7.208 

Nurick and Martin - (model I)  2.017 

Hudson  14.53 

Lipman  1.833 

Jones  10.523 

Batra and Dubey 18.977 

 
 
 

 
 
Figure 14. The conical deformation scheme modeled by a single plastic hinge. 

where,  is radius of plate,  is the final mid-point deflection and  is the final 
angle with respect to the horizon. 

 
 
 
results are compared with the relevant experimental data, 
which the final deformation is not exactly a cone but, it 
has a little radial curvature. Here, an alternate 
deformation mechanism is proposed by using a new 
motion of a single circular plastic. The conical 
deformation mechanism is shown in Figure 14. 

Actually, deformation is complemented by the radial 
and vertical motion of the hinges. The end of deformation 
is the instance that the hinge reaches the center of plate. 
Here, using an energy approach, the mid-point deflection 
of the plate is evaluated, straightforwardly. Also, the 
threshold energy and impulse, which are necessary for 
the complete tearing of plate, are obtained, analytically. 
Firstly, a shear sliding at the boundary is considered by 
the  factor  of  tearing.  Assuming  that  upon  mechanism 

reaches the first stage of critical sliding; complete tearing 
will be taken place. The redundant energy, which is more 
than the required value of the complete tearing mid 
deformation, is converted to the kinetic energy. The other 
part of the deformation that might be happened after the 
tearing is neglected.  

Point of  at distance of   from the center is the initial 
position of the hinge. It is assumed that the plastic hinge 
moves over a straight line DA to get to the final position. 
As mentioned before, the deformation is performed as a 
process through motions of the radial and vertical plastic 
hinges. This procedure is completed so that the circular 
hinge becomes small until it reaches the center. In this 
moment, it is assumed that the sliding at the support 
causes    the   complete   tearing    and   the  deformation  



 

 
 
 
 
mechanism. If there is more energy than is needed for 
the deformation and tearing, it converts to kinetic energy 
of the plate after severance. Point B in Figure 14, 
represents the condition of the hinge when it is at 

distance  from the center with the vertical displacement 

. So, the cone will has an angle of  with respect to the 
horizon as follow: 
 

                                                                    (36) 
 
Thus, the final angle would be: 
 

                                                                       (37) 
 

Also,  could be obtained as follow: 
 

                                                        (38) 
 
Function of the frustum around the hinge is as below 
 

                  (39) 
 
The final shape function of the plate would be: 
 

                                                            (40) 
 
For a conical profile, radial and circumferential curvatures 
and strains are as follow: 
 

                                                                          (41) 
 

                                                                   (42) 
 

                                                       (43) 
 

                                                                     (44) 
 
where, considering Equation (41) and (43) would be 
 

                                                              (45) 
 
 
PLASTIC WORKS 
 
Total plastic work includes the dissipated works of hinge 
at the support, shear force in the support,  moving  plastic  

Zajkani et al.          475 
 
 
 
hinge and circumferential bending moment. Calculating 
these work components, it is possible to obtain the critical 
impulse for occurrence of the complete deformation and 
tearing. Here, there is no second deformation and it is 
assumed that exposed impulse will be more than the 
critical impulse, which causes rigid motion of the plate 
after severance.  

When the hinge is at  , in order to obtain work of the 
radial membrane force, radial strain is calculated using 
Equations (36) to (45) as  
 

                                                   (46) 
 
The work of this force component is as follow: 
 

  (47) 
 
At the end of deformation process that the hinge is at the 
center, the absorb energy by this force component would 
be 
 

                                                        (48) 
 
To evaluate the work of circumferential membrane force, 

the circumferential strain when the hinge is at  , is 
obtained as follows: 
 

                                                       (49) 
 
Similarly, the work of this force component when the 

hinge is at  is as follow: 
 

     (50) 
 
Similarly, the absorb energy by this force component will 
be  
 

                                                        (51) 
 
Considering Equation (39), circumferential curvature in 
frustum around is obtained as 
 

                                                        (52) 
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Thus, the work of circumferential bending moment when 

the hinge is at  , will be obtain as follow: 
 

           (53) 
 

At the end of process, , so the Equation (53) that 
represents the total work of circumferential bending 
moment would be as follow: 
 

                                       (54) 
 
Bending moment in the edge area is reached to the yield 
limit. The plastic work done by circular plastic hinge at the 
support, neglecting the shear sliding, would be as 
 

                                      (55) 
 
In a cone, the radial curvature is zero, so work of the 
radial bending moment would be zero. Work of the 
moving circular plastic hinge at the end of process could 
be obtained in the following form: 
 

                                                (56) 
 
which results as 
 

     (57a) 
 
with  
 

              (57b) 
 
Now, total deformation plastic work can be obtained as 
follow: 
 

  (58) 

 
In a condition where the input impulse is more than 
critical impulse, the plastic work at the support would be 

 

     (59) 

 
 
 
 

In the presented equations,  is the initial position of the 
hinge, its amount depends on radius of charge and 
stand-off. Here, it is assuming that hinge position can be 
considered initially according to relation given by (Jones 
and Alves, 2010), as follow: 
 

                                     (60a) 
 

                                                                        (60b) 
 
In fact, in the first mode of failure in which no rupture is 
happened, mid-point deflection of the plate will be obtain 
by equating equations (58) and input energy. But as 
mentioned before, by increasing the input impulse more 
than critical amount, the second mode will be happened 
and the plate would tear apart from the support. By 
reducing stand-off distance, the final profile tends to have 
a conical like shape. So, the following equation is 
presented for stand-off distance less than the plate radius 
(Gharababaei et al., 2010): 
 

                                                    (62) 
 

where  is 2.4048. For the materials listed in Table 1, the 
mid-point deflection thickness ratios versus imparted 
impulses are plotted in the Figures 15 to 17. 

As expected, mid-point deflection thickness ratio for 

both thicknesses, , are approximately 
same, but the critical impulses for occurrence of the 
second failure mode are completely different. These 

values are computed by  and  for 

 and , respectively. Therefore, thickness 
of plate has sensible effect on the initiating tearing of 
plate and deformation is not enough to predict failure. For 
the case of copper sheet deformation, maximum impulse 

for  plate is  and for  is . 
For impulses more than these values, plate will tear apart 
from support and the second mode of failure is 
happened. In Figure 16 the mid-point deflection thickness 
ratio for the copper plate are plotted versus input impulse. 
Figure 17 shows the mid-point deflection thickness ratio 
versus input impulse for the aluminum sheets with 

thicknesses equal to  
It is observed that the predictions for the mid-point 

deflections are more than experimental data. It may be 
because of the fact that, as mentioned previously, in the 
experiment process, the final shape is not a full cone and 
that there is some radial curvature.  
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Figure 15. The mid-point deflection thickness ratios versus impulse for mild steel plate (1.6 
and 2 mm thickness). 
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Figure 16. The mid-point deflection thickness ratios versus impulse for copper plate 

(  thickness). 
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Figure 17. The mid-point deflection thickness ratio versus impulse for Aluminum plate (2 and 
3 mm thickness). 

 
 
 

A comparison between two approaches for yield lines 
(plastic hinges) are presented in Figure 18. As it is seen 
in this figure, residual velocity in the conical deformation 
scheme is more than the dome shape mechanism based 
on concept of multi- plastic hinge at the same loading 
condition. This is because of being more elements 
displacement in the dome shape deformation as 
compared to the conical shape at the same central 
deflections. The important point is that the residual 
velocities at the local failure had been produced 
differently by these models. 

Although, analytical models can often predict final mid-
point deflection relatively near real data (Gharababaei 
and Darvizeh, 2011, 2011; Gharababaei et al., 2010), 
these compatibilities are not enough to guarantee 
efficiency of the modeling for prediction of the failure 
procedure. In fact, these predictions must be 
accompanied by the velocity quantities, in particular, if 
the critical velocity is the basis of judgment about each 
model for stage after the tearing. This point has been 
delicately highlighted in previous experimental work 
(Teeling-Smith and Nurick, 1991).  
 
 
Conclusion 
 
Using an effective approach for the limit analysis, 
behaviors  of  the  circular metallic plates under impulsive 

loads were investigated. At first, forming process of plate 
was considered by assuming several circular yield lines 
(hinges). Comparisons of obtained results with existing 
experimental data illustrated good compatibility. In some 
cases, present modeling predicted final displacement of 
plate more accurate than other proposed models. 
Simplifying a failure criterion, the energy absorbed in the 
boundaries was calculated. Also, the residual energy and 
velocity of plate after severance were determined. In 
addition, impulse limits for occurrences of the first and 
second failure modes were obtained. 

In the first part of paper, a new deformation model was 
established on the concept of multi plastic hinges. In this 
model, several peripheral yield lines were formed. It was 
observed that by increasing these hinges lines, extracted 
results would be closer to the experimental data. Three 
different radial distributions of the hinges were 
investigated, individually. In the distribution type that 
hinges were closer together around of supports, results 
got convergent faster than others. This situation seems to 
be more convenient for plasticization in edge area.  

Moreover, in the second part, an idealized deformation 
model was proposed by a moving circular hinge, which 
was responsible for deformation. Plate started to deform 
following movement style of hinge so that an idealized 
final shape was considered by a conical shape. The initial 
position of the hinge could be function of loading 
condition  but  here,  an available relation was modified to  
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Figure 18. The Residual velocity initial velocity ratio versus input impulse for mild steel (1.6 mm). 

 
 
 
complete model. The differences between results were 
because of different final shape considered here by a 
complete cone, while experimental data was showing the 
final shape else a complete cone. 

It is concluded calculation of residual velocity in failure 
should be regarded with more precaution and accuracy in 
each straightforward analysis. 
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