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The present study is analysis of non-Newtonian blood flow through stenosed vessel in porous medium. 
The blood is assumed to be pulsatile couple stress fluid. The effect of externally applied magnetic field 
on blood flow in porous medium is studied in the present analysis. The expressions of axial velocity, 
flow rate and shear stress have been obtained by using Laplace and finite Hankel transforms and their 
graphical interpretation has been discussed. The results obtained have been compared with previous 
studies in special cases and found to be in good agreement with other theoretical results. 
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INTRODUCTION 
 
The study of blood flow in stenosed human arteries has 
been object of scientific research nowadays. Several 
researchers have considered blood as Newtonian fluid 
but some have also taken it as non-Newtonian. Since 
blood is a suspension of red blood cells in plasma, so it 
behaves as a non-Newtonian fluid at low shear rates. Lee 
and Fung (1970) analyzed Newtonian blood flow through 
stenosed artery. They have obtained numerical results of 
velocity, pressure, vorticity and shear stress in the range 
0 to 25 of Reynolds number. Popel et al. (1974) 
supposed blood as a continuous media with couple 
stresses. They have taken into account the rotation and 
deformation of suspended particles. Mcdonald (1979) has 
discussed solution for approximate equations of steady 
flow through axially symmetric mild stenosed artery. 
Mehrotra et al. (1985) presented model of Newtonion 
blood flow in a stenosed artery of elliptical cross-section. 
They compared the results of velocity, pressure, shear 
stress and impedance with the results of tube of circular 
cross-section. Mishra and Chakravarty (1986) have 
studied the Newtonian flow of blood through arterial 
segment   having   a  stenosis,  considering  the  effect  of 
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surrounding orthotropic elastic connective tissue on the 
motion of wall. 

Misra and Bar (1989) have developed mathematical 
model to study blood flow through stenosed blood vessel, 
by using momentum integral method taking into account 
the slip velocity at the wall of an artery and obtained 
analytical expressions for blood velocity, pressure 
gradient and skin fraction. Haldar and Ghosh (1994) have 
investigated Newtonian blood flow through indented 
artery under the effect of magnetic field in the presence 
of erythrocytes. They have taken variable blood viscosity 
according to Einstein relation and obtained expressions 
for blood velocity, pressure gradient, flow rate and have 
discussed graphically. Sanyal and Maji (1999) have 
discussed unsteady blood flow through stenosed artery 
with variable blood viscosity. Venkateswarlu and Rao 
(2004) have discussed numerical solution of unsteady 
blood flow through indented tube. 

Dash et al. (1996) have analyzed Casson blood flow in 
homogeneous porous medium by employing Brinkman 
model. This analysis can model the real pathological 
condition of human artery. The main cause of formation 
of arterial stenosis is deposition of low density lipoprotein 
in arterial wall, since the surrounding tissue of blood 
vessel is porous and this intimal thickening of walls of 
artery   leads   to   formation  of  stenosis.  Chaturani  and
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Figure 1. Geometry of the stenosed artery. 

 
 
 
Upadhya (1977) have studied couple stress blood flow 
along inclined plane. Srivastava (1985) has studied 
couple stress blood flow through axially symmetric 
stenosed blood vessel and it is seen that shear stress is 
increased even in case of mild stenosis, when compared 
with the results of Newtonian fluid. Pralhad and Schultz 
(2004) studied couple stress fluid taken into account for 
both inertia and viscous terms. Singh and Rathee (2010) 
have analysed the two-dimensional blood flow through 
stenosed artery due to LDL effect in the presence of 
magnetic field. Singh et al. (2010) have discussed power 
law blood flow through radially non-symmetric multi-
stenosed artery. Mishra and Verma (2010) discussed the 
effect of stenosis on non-Newtonian blood flow through 
uniform or non-uniform cross-section of blood vessels. 
They have considered blood as power law fluid, Bingham 
plastic fluid, Casson fluid and obtained analytic solution 
for different kinds of non-Newtonian fluids. 

The effects of magnetic field and body acceleration on 
axial velocity of pulsatile blood flow in inclined circular 
tube have been discussed graphically by Sanyal et al. 
(2007). Rathod and Tanveer (2009) have discussed 
pulsatile flow of blood through a porous medium under 
the effect of magnetic field by considering blood as 
couple stress fluid through a straight and rigid circular 
tube using Laplace and Finite Hankel transform. 

This model of blood flow is more realistic than other 
previous models because the medium sized arteries such 
as coronary arteries are more prone to atherosclerosis 
so, it would be more appropriate to consider blood fluid 
as non-Newtonian fluid. Here, we have analysed the 
effects of magnetic field on couple stress blood flow of 
constant viscosity µ and density ρ  through stenosed 
blood vessel in porous medium. Since, recently the 
application of porous medium in blood flow through 
tissues has been considered as more appropriate 
because tissues are collection of dispersed cells. In the 
proposed model, we wish to examine the effect of porous 
medium and also the effect of magnetic field on couple 
stress blood flow. 

MATHEMATICAL MODEL 
 
In the present model, blood is represented by incompressible, 
homogeneous and pulsatile couple stress fluid in the presence of 
externally applied magnetic field through porous medium. We 
assume that induced magnetic field and electric fields are 
negligible. The flow is considered to be symmetric and fully 
developed. The geometry of stenosis is described by Haldar and 
Ghosh (1994) (Figure 1). 
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where, s (�2) is a parameter determining the shape of stenosis, 

d is the position of stenosis, 0l  is the length of stenosis, ( )R z is 

a radius of stenosed vessel, 0R  is radius of unobstructed blood 

vessel, z denote the axial positions and A is a parameter, given by 
 

1

0 0 ( 1)

s s

s

s
A

R l s
ε −

=
−

,                                      (2)  

  

ε  is the maximum height of stenosis at 0
1 1s

l
z d

s −= +  such that 

0/ Rε <<1. 

The governing equation for the incompressible, pulsatile couple 
stress fluid under the effect of magnetic field in porous medium is 
given by 
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( , )u r t  is velocity in the axial direction , 0β is the external applied 

magnetic   field,   1η    is   a   couple  stress  parameter.  K   is  the 

 
 

  



 

 
 
 
 
permeability of the isotropic porous medium and r  is the radial 
coordinate. The boundary conditions, which support the present 
problem, are  
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We use the transformation 0y r R= and t Tω= in Equation (3) 

in order to make the variables r and t  dimensionless, so that 
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where, 
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the Couple stress parameter; 
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Integral transforms required for solution  
 

If ( )f y  satisfy Dirichlet conditions in closed interval [ ]00, R R , 

then its finite Hankel transform is given by 
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Its inverse Hankel transform is defined as 
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0

0

0n

R
J

R
λ
� �

=� �
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Bessel’s functions of first kind. The Laplace transform of any 
function ( )f t  is defined as: 
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Analysis of the problem 
 
The pressure gradient is defined as 
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Making use of transformation t Tω= , Equation (14) becomes 
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where 0A is the steady part of the pressure gradient and 1A  is 

amplitude of the oscillatory part, 2 fω π= and f is the 
frequency of heart rate. Using Equation (15) in Equation (9), we get 
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Applying Laplace transform on Equation (16), we obtain 
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Now, applying finite Hankel transform on Equation (17), we get 
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Also, taking inversion of both Laplace transform and finite Hankel 
transform, we obtain 
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The expression for flow rate Q is given by 
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The shear stress at the wall is found to be 
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Let us consider another case of pressure gradient, when 
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Then Equation (9) becomes, 
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Now, applying Laplace transform on Equation (25), we get 
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After employing finite Hankel transform, we find 
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Now, taking inversion of both Laplace transform and finite Hankel 
transform, we obtain 
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The flow rate Q is given by 
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The shear stress on the wall is obtained to be 
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RESULTS AND DISCUSSION 
 
The numerical experiment has been conducted by using 
MATLAB platform and the parameters which have been 
chosen for numerical computations are permeability 
constant ‘ K ’, magnetic field ‘ M ’, couple stress 
parameter ‘ 1α ’, and time ‘ t ’. The following parameter 
values have been used for graphical representations, that 
is, 0 2000A = dynes/cm3, 1 4000A = dynes/cm3, 

100L = mm, 20d =  mm, 0 40l =  mm, 

.035µ = P, 1α = , 1 2α = . Figures 2 to 4 are drawn for 
axial velocity along the z-axis and it describes the 
variation of velocity at various times and Hartmann 
number. Figures 2 to 6 show variation of velocity profile 
(cm/time), flow rate (cm3/time) and shear stress 
(dynes/cm2) along z –axis (cm), when 

0 1

p
A ACost

z
∂− = +
∂

 .  It is observed that, initially the 

velocity drops down and then increases slowly. Due to 
periodicity, there is fluctuation in the velocity for various 
times which is quite obvious in the real situations. For 
values of M  = 1, 2, 3, 4 and 8, we see that as the time 
progresses, the effect of magnetic field is visualised to 
control the blood flow but beyond a certain magnitude of 
magnetic field, it is not advisable, as it may cause sudden 
death of patient as reported by Haldar and Ghosh (1994). 
Figure 3 is also for axial velocity along z-axis at 1α =2, 4, 
6, 8 and 10. In this case the trend of velocity with  respect
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Figure 2. Variation of axial velocity at different values of time and Hartmann number.  
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Figure 3. Variation of axial velocity along z-axis for different values of 1α . 

 
 
 
to z-axis is same as in Figure 2, but it does not fluctuate. 
The effect of couple stress parameter is to increase the 
velocity which is desired in the vicinity of stenosis. Figure 
4 shows the variation of velocity with increasing values of 
permeability ‘ K ’ and Hartmann number ‘ M ’. The 
increase in velocity with increase in value of K  depicts 
that the porosity increases the net uptake of  LDL  on  the 

walls of arteries. This fact is also verified from Dash and 
Mehta (1996) that the velocity for the case of Casson 
fluid reflects the same behaviour for increase in values of 
K  in tube without stenosis. Figures 5 represents the 
profiles for flow rate against ‘z’ wherein rate decreases 
sharply initially and then improves slowly. However, 
Figure 5 depicts that flow rate increases with  increase  in
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Figure 4. Variation of axial velocity along z-axis for different values of K  and M . 
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Figure 5. Variation of flow rate along z-axis for different values of K  and M . 
 
 
 
values of M  and K  respectively. Figures 6 to 8 are for 
variation of shear stress along z-axis. The shear stress 
increases sharply and then slows down moderately. It is 
maximum at the peak of stenosis. Figure 6 expresses the 
behaviour   of  shear  stress  for  different  values  of  time 

and M , but as the time increases, there is fluctuation for 
large values of M . Figure 7 describes the profiles of 
shear stress with different values of K and M . It 
increases with increase in values of both K  and M . In 
Figure 8,  the  shear  stress  decreases  with  increase in
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Figure 6. Variation of shear stress for different values of times and M. 
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Figure 7. Variation of shear stress along z-axis for different values of K  and M . 
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Figure 8. Variation of shear stress for different values of 1α . 
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Figure 9. Variation of axial velocity along z-axis for different values of 1α . 
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Figure 10. Variation of axial velocity along z-axis for different values of K  and M . 
 
 
 
values of couple stress parameter 1α which is also 
reported by Srivastava (1985) and Pralhad and Schultz 
(2004). Figures 9 and 10 describe the trends of axial 

velocity for the pressure gradient 0 ' tp
A e

z
λ−∂− =

∂
. The 

velocity first decreases sharply then increases 
moderately. However, the velocity increases with 
increase in values of 1α , K  and M . Figures 11 and 12 
show the profiles of shear stress along z-axis.  Figure 9 
to 12 show the variation  of  axial  velocity  (cm/time)  and 

shear stress (dynes/cm2), when 0 ' tp
A e

z
λ−∂− =

∂ . 
 The 

shear stress first increases and then decreases with 
respect to z. The stress decreases with increasing values 
of K , 1α , M , λ . 
 
 
Conclusions 
 
1. This analysis presents the results of axial velocity, flow 
rate, and shear stress graphically by considering  the  two
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Figure 11. Variation of shear stress along z-axis for different values of K  and M . 
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Figure 12. Variation of shear stress for different λ and 1α . 

 
 
 
different pressure gradients. The same trends are 
observed for both forms of pressure gradient, but differ in 
magnitude. 
2. The impact of porosity on blood flow leads to more and 
more deposition of LDL along the walls of arteries. 
3. There are only fluctuations with increase in values of 
M  and t . 
4. The advantage of this study is that, we can calculate 
the extent of strength of  magnetic  field  up  to  which  we 

can control the blood flow in hypertensive patients and 
those who have blockage in their arteries. 
5. This numerical experiment is helpful for biologists and 
medical practitioners to analyze the effects of magnetic 
field on the stenosed human arteries and to have precise 
information based on mathematical analysis and in the 
sense that, what magnitude of shear stress, a patient can 
bear having stenotic arteries, in case the magnetotherapy 
is used. Also, the blood pressure and velocity of  the  flow 
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can be precisely visualized on screen by making a 
suitable program based on this study. 
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