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In this paper, an attempt has been made to solve the problem related to the motion of a second grade 
fluid for an oscillating rod. The fluid is electrically conducting in the presence of a uniform transverse 
magnetic field. The developed d i f f e r e n t i a l  equation takes into account the effect of the material 
constants and the applied magnetic field. The modeled problem has been solved analytically and an 
exact solution has been obtained in terms of Bessel function. 
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INTRODUCTION 
 
Considerable attention has been paid in recent years to 
solve problems of non-Newtonian fluids due to their 
industrial and technological applications.  Several models 
have been developed to describe the behavior of non-
Newtonian fluids since the classical Navier-Stokes model 
fails to describe rheologically complex fluids such as 
blood, paints, shampoo and polymeric solutions. These 
fluids exhibit a nonlinear relationship between stresses 
and the rate of strain. Because of the diversity of non-
Newtonian fluids, it is not possible to have single 
constitutive equation through which all the non-
Newtonian fluids can be described; therefore many 
constitutive equations have been suggested by 
researchers. Some of them being empirical or semi-
empirical. 

The equation of motion governing non-Newtonian fluid 
flow is undoubtedly of higher order than Navier-stokes 
equation. Among the several models of non-Newtonian 
fluid model, there is subclass of viscoelastic fluid 
models namely second grade for which one can 
reasonably hope to obtain an analytic solution. Many 
researchers hav e discussed the flows of second grade 
fluid model for various situations.  Fetecau  and  Fetecau 
(2005) has studied starting solutions for some unsteady 
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unidirectional flows of a second grade fluid. Rajagopal 
(1981) discussed the unsteady unidirectional flows of 
second grade fluid. The flows are induced either due to 
the application of pressure gradient or through the 
motion of boundary.  In another paper, Rajagopal (1984) 
examined the creeping flow of second grade fluid. 
Bandelli (1995) obtained some unsteady solutions in 
second grade fluids. In another article, Massoudi and 
Tran, (2009) has studied unsteady motion of non-linear 
viscoelastic fluid. In continuation, Massoudi and Tran, 
(2008) have discussed the motion of the fluid of a 
second grade fluid due to longitudinal and torsional 
oscillations of a cylinder. 

Magnetohydrodynamics (MHD) fluid flows have vast 
importance and physical applications in petroleum 
industry, cooling systems with liquid metals industry, 
MHD generators and in the extrusion of crude oil etc. 
Hayat et al. (2001) has studied the motion of a MHD 
rotating flow of a third grade fluid between two 
eccentrically placed cylinders. More recently Nicholas 
et al. (2009) has studied MHD fluid flows spurred by 
problems encountered i n  aeronautics and astronautics. 
In another recent attempt Kipro (2006) has investigated 
the effects of MHD in the use of constant intensity in 
metallurgy to direct flow, to stir, and to levitate conducting 
melts. Whereas,  Nouri  et  al.  (2010)  has  studied the 
behaviour of MHD fluid flows for damp convection in  
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Motivated by these facts in this work an attempt has 
been made to study the longitudinal and torsional 
oscillations of a rod under the influence of transverse 
magnetic field. An exact solution has been obtained for 
the velocity field by using the theory of Bessels’s 
functions. 
 
 
GOVERNING EQUATIONS 
 
The basic governing equations for the steady MHD flow 
of an incompressible second grade fluid in the absence of 
body forces can be written as: 

 

0,=divV                                       (1) 

 

,div= BJp
Dt

DV
                                  (2) 

 

Where V  is the velocity vector,  the density of the 

fluid, 
Dt

D
 denotes the material derivative,  the Cauchy 

stress tensor, p  the pressure, J  the electric current 

density and B  the total magnetic field. bBB =  , 

where B  represents the imposed magnetic field and b  

denotes the induced magnetic field. In the absence of 
displacement currents, the modified Ohm's law and 
Maxwell's equations (Hunt and Moreau, 1976; Chang and 
Yen, 1959; Rossow, 1958) are: 
 

}.{= BVEJ
                                    

 (3) 

 

t

B
CurlEJBB m =,=0,=div                           (4) 

 

in which  is the electrical conductivity, E  the electric 

field and m  the magnetic permeability. The following 

assumptions are made in order to lead our discussion: 
 

(i) The density  , magnetic permeability m  and 

electric field conductivity  are constant throughout the 

flow field region, 
(ii) The electrical conductivity  of the fluid is finite, 

(iii) Total magnetic field B  is perpendicular to the velocity 

field V  and the induced magnetic field b  is negligible 

compared with the applied magnetic field B  so that the 

magnetic Reynolds number is small (Hunt and Moreau, 
1976; Rossow, 1958).  
(iv) There is no energy added or extracted  from  the  fluid 
by the electric field, which implies that there is no electric 
field present in the fluid flow region. 

 
 
 
 
Under these assumptions, the magnetohydrodynamic 
force involved in Equation (2) can be put into the form,: 
 

.= 2VBBJ                           (5) 

 
The stress tensor  defining a second grade fluid is 

given by ii
S

2

1=
= , where: 

 
2
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and where  is the coefficient of viscosity and 1  and 

,2  are material constants. The Rivlin-Erickson tensor, 

nA , are defined by: 
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 We shall assume a velocity field of the form: 
 

zetrwetrvtzrV ),(),(=),,,(                        (9) 

 
Using Equation 9, Equation 1 is identically satisfied and 
using Equations 5 to 9, we get: 
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PROBLEM STATEMENT 
 
Let us consider an incompressible second grade fluid at 

rest, in a long cylindrical rod of radius 0r . At time 0=t  

the rod starts to oscillate according to Rajagopal and 
Bhatnagar (1995): 
 

zetVetV )cos()cos( 2211  
 

Where 1  and 2  are the frequencies of the velocity of 

the cylindrical rod, e  and ze  are the unit vectors 

corresponding to  and z directions respectively  and  1V  

and 2V  are constant amplitudes. The governing 

equations are given by Equations 10 and 11, while the 



 
 
 
 
associated initial and boundary conditions are also given 
in the study. 
 
 
Boundary conditions 
 
Since we have assumed that the solid cylindrical rod of 

radius 0r  is oscillating in a manner that the velocity of the 

surface of rod is given by zetVetV )cos()cos( 2211 . 

The conditions that fluid adheres to the surface of the rod 
then implies that: 
 

zetVetV )cos()cos(= 2211V                             (12) 

 
or 
 

tVwtVv 2211 cos=,cos=
                            

(13) 

 
We shall also require that the fluid is quiescent at 
infinity,that is: 
 

raswv 0,                                  (14) 

 
 
SOLUTIONS OF THE PROBLEM 

 
We shall now proceed to obtain the exact solution to the 
Equations 10 and 11 subject to the boundary conditions 
in Equations 13 and 14. 

For Equation 10, we assume a separable solution of 
the form: 
 

)()(=),( tTrVtrv
                                                   

(15) 

 
 Substituting Equation 15 into Equation 10, we obtain: 
 

0=TT                                                             (16) 

 
 having the solution: 
  

teCtT 1=)(
                                                           

(17) 

 
Where C1 is constant of integration. 

It may be mentioned here that  is an arbitrary 

constant, known as separation constant. We have three 

different cases corresponding to the nature of , that is, 

0<0,>  or 0<  In our case, we had trivial 

solution for both 0<  or 0< . Therefore we have 

chosen 0> . 

 
 
 

Bano et al.        2941 

 

 

0=
)(

)(11

1

2

0

2
V

B

r
V

r
V

                   

 (18) 

 

On defining r
B

s
2

1

1

2

0

)(

)(
=

 
 
Equation 18 after some manipulation can be re-written 
as: 
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Equation 19 can be easily identified as a Bessel equation 
whose general solution is given by: 
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substituting the value of s in Equation 20, we get: 
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But we need real part of the solution, therefore we define: 
 

)(=)( sJisI
                                                       

(22) 

 

 Putting 1=  in Equation 22, we get: 
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V  now becomes:  
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Using results in Equatons 17 and 24 in Equation 15 and 
applying boundary condition in Equation 13 and 14, we 
get: 
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Where Re denotes real part of the solution, 1= , 1K  
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is a modified Bessel function and 
1
 is the frequency of 

the velocity of the cylindrical rod. 
We next try to solve the equation governing longitudinal 

oscillations, given by: 
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Again by seeking solution ),( trw  of the separable form: 
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so that Equation 26  gives: 
 

0=TT                                                              (28) 

 
having the solution: 
 

teCtT 2=)(                                    (29) 

 
C2 being the constant of integration, and 
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After some manipulation, Equation 30 can be rewritten 
as: 
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which is again a Bessel equation, whose general solution 
in terms of Bessel functions is given by: 
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Putting the value of s in equation 32, we get: 
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But as we are interested in real value of the solution, 
therefore we define: 
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Putting 0=  in Equation 33 we have Bessel function of 

order zero: 
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Using results in Equations 29 and 34 in Equation 33 and 
applying boundary condition in Equations 13 and 14, we 
get: 
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Where 0K  is a modified Bessel function. 

 
 
CONCLUSION 
 
In this paper, we have obtained the solution to the 
problem related to the motion of a second grade fluid for 
an oscillating rod. The fluid is electrically conducting in 
the presence of a uniform transverse magnetic field. The 
developed differential equation takes into account the 
effect of the material constants and the applied magnetic 
field. The modeled problem has been solved analytically 
and an exact solution has been obtained in terms of 

Bessel function. Remark: In Equation 25, if 00B , we 

recover the solutions obtained by Rajagopal and 
Bhatnagar  (1995) for torsional oscillations. 
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