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This paper proposes a flexible methodology for finding the optimal control of reservoir operations, 
which is adopted for simulating a storage system including a large reservoir simulation model and a 
numerical search method for searching decision variables. The optimization model used was a 
conditional differential evolution algorithm (CDE). The model was connected to reservoir simulation 
model for searching the decision variables in reservoir management. The reservoir management model 
was applied to Lampao reservoir in Kalasin province located in the northeast of Thailand. This study 
considers the criteria of minimum water shortages and downstream flood control. There were synthetic 
inflow data for evaluating the performance of the reservoir operating rule curves. It was found that the 
reservoir operating rule curves from the CDE showed a lower frequency and quantity of water shortage 
than the existing reservoir operating rule curve. In addition, the flood frequency and the flood quantity 
were reduced. The results also demonstrated that the CDE provided better reservoir operation in any 
probability of inflow situations. Further, it indicated that the reservoir operating rule curves obtained 
from this research could effectively support the increasing water requirements to a growing population.   
 
Key words: A conditional differential evolution algorithm (CDE), simulation model, optimization technique, 
reservoir rule curves 

 
 
INTRODUCTION 
 
Currently, reservoir operation is a very challenging 
proposition because water resources are limited and 
fluctuated. A large volume of water is obtained in the 
rainy season, but there is lack of water in the dry season. 
As such, it becomes very important to find the best 
method to determine an exact water resource plan. The 
water requirements encompass agriculture, consumption, 
industries, power generation, ecology and environment.  
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These requirements have increased with an increase in 
the population growth, lifestyle changes and economic 
expansion. It is well known that droughts and floods 
occur each year in the northeast of Thailand. A criterion 
of optimal water operation for storage reservoirs should 
establish that the amount of water storage in the area is 
limited. It has been reported that reservoir operating 
using rule curves could provide a positive solutions to 
flood problems, and achieve long-term operational 
planning (Rezbicek et al., 1991). 

In the past, until nowadays, the application of a system 
approach to reservoir management and operations has 
been  established as one of the most important advances  
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made in the field of water resources engineering. A 
primary role of systems analysis is to provide an 
improved support to decision-making. It has been 
concluded that a gap still exists between research studies 
and the application of a system approach in practice. It is 
difficult for reservoir management to derive the optimal 
operational strategies under data available and the global 
climate variability. 

Generally, reservoir operating systems are controlled 
on the basis of a water release budget. The stored water 
is released under certain conditions for a multitude of 
purposes that are defined by water use criteria and 
reservoir operating rule curves. Typically, reservoir 
operating systems have been large and complex. Optimal 
rule curves are required for operating reservoir systems. 

The searching of the optimum rule curves is a nonlinear 
optimization problem. Years ago, the optimization 
technique being applied to search the optimal rule curves 
was performed with a reservoir simulation model (Jain et 
al., 1998). However, the rule curves obtained from this 
method were not guaranteed to yield the optimal curves 
because of human adjustment. Later, “dynamic 
programming” (DP) was applied to solve non-linear 
problems in water resource areas (Esogbue, 1989; 
Kumar and Baliarsingh, 2003). However, DP method 
suffered from computational overburden for its large 
dimensionality (Hota et al., 2009). The “DP with the 
principle of progressive optimality” (DP/PPO) was deve-
loped to search the optimal rule curves of single and mul-
tiple reservoirs (Chaleeraktrakoon and Kangrang, 2007).  

The “genetic algorithm” (GA) has been widely used to 
solve complex problems (Cheng et al., 2002; Muttil and 
Chau, 2006; Wang et al., 2009; Chau et al., 2005; Yeh, 
1997). The best part of the GA is that, it can handle any 
type of objective function of the search. The GA was 
applied to the reservoir operation model, studied in this 
paper, as it has been in several studies (Chang et al., 
2003, 2005; Hormwichian et al., 2009). In the last 
decade, a “simulated annealing algorithm” (SA) was 
applied to solve the optimization problem (Locatelli, 2000; 
Teegavarapu and Simonovic, 2002; Lamom et al., 2008). 
Rather, the SA does not always guarantee the globally 
optimal solution. Sometime, they can produce suboptimal 
or near globally optimal solution (Hota et al., 2009). More 
recently, the SA has been applied to search the optimal 
reservoir rule curves (Kangrang et al., 2011).  

The “differential evolution algorithm” (DE) is a new 
heuristic approach for minimizing possible nonlinear and 
non-differentiable continuous space function. It will be 
demonstrated that the new method converges faster and 
with more certainty than adaptive simulated annealing as 
well as the Annealed nelder and Mead approach, both of 
which have a reputation for being very powerful. The 
differential evolution requires few control variables, but it 
is robust and easy to use especially in the more difficult 
functions, and lends itself very well to parallel 
computation. It uses a simulation of natural evolution, the 
same  as  the  GA  (Price  and  Storn,  1997).  The  DE   is  a 

 
 
 
 
search technique based on the mechanism of natural 
selection and genetics. It has a robust random search 
capability and an approach to global optimum values. 
The DE structure is less complex than that of the GA. As 
a result, the DE finds the answer efficiently and faster 
than GA for solving complex equations in the 
mathematics field. When comparing DE with another well 
known method such as GA, SA, Nelder-Mead simplex 
search method (SM) and least squares technique (LS). It 
can obtain optimum solutions more easily than other 
(Wang and Ye, 2009). The DE uses fewer control 
parameters, namely, number of population including a 
scaling factor, combination coefficient and crossover rate 
(Karaboga and Okdem, 2004; Bardsiri and Rafsanjani, 
2011; Li et al., 2011). The DE can evenly solve both 
single and multi-objective optimization problems 
(Adeyemo and Otieno, 2009; Adeyemo et al., 2010). The 
DE has been used to the model calibration in the water 
resource field (Liu and Sun, 2010). Therefore, it can be 
said that the DE is a suitable alternative technique used 
to find the optimal rule curves within the limited 
boundaries of reservoir operation. 

This research aims to develop reservoir management 
by using a conditional differential evolution algorithm 
(CDE), which combines a complex reservoir simulation 
system to search the operating rule curves. A conditional 
constraint was applied to the search process to reduce 
the fluctuation of operating rules. Minimum average water 
shortage and downstream flood control were adopted as 
the objective function of the search process. Two types of 
models, the CDE and the conditional GA (CGA), are 
developed. The results of CDE and CGA as well as the 
rule curves which are used in the existing (here after 
shown by existing rule curves) were compared. The CDE 
model was evaluated to determine the optimum rule 
curves of the Lampao reservoir in the northeast region of 
Thailand. 
 
 

MATERIALS AND METHODS 
 

The DE uses the concept of the theory of evolution, or survival 
theory of Charles Darwin. It is similar to the Gas, but some 
evolution process was modified to improve performance. The basic 
working of the DE consists of the old and new generation of the 
same size N. A new trial vector is composed of the current 

vector G

iX of the old generation and the mutant vector 

1G

iM 
obtained by mutation. The mutation process is described as 

follows: 
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Where i, r = 1, 2,…., N. G and F are generation, and scaling factor 
which can range from 0 to 1.  

The trial vector was created by the crossover process of those 
chromosomes. The crossover process is shown as follows: 
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Figure 1. The structure of DE. 

 
 
 

Where 1G

jiT  and ( )randb j  are trial vector
 
and random number from 

j  =  1,2,….,D. CR  and
 

( )rnbr i  are crossover rate and randomly 

chosen integer number from i =  1,2,….,D.  
Finally, the selection process is searching good characteristics to 

next generation. It is shown as follow: 
 

1 1
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X

X otherwise

 


 

 
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(3) 

 
The algorithm uses natural genetic transferring which consists of 
mutation, recombination or crossover and selection. All process of 
the algorithm is shown in Figure 1.  

 
 
Reservoir simulation model 
 
Good reservoir operations have to support water requirements and 
downstream flooding. The objective function of this study was the 
minimization of the annual sum of  squared  deviation  from  desired  
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irrigation release and desired storage volume. The decision 
variables are release for irrigation and other requirements 
(agriculture, consumption, industries, fishery and maintaining the 
ecological regime downstream etc.) from the reservoir. The random 
rule curves from the CDE model will be used in reservoir simulation 
model for considering water release.  

A new reservoir operation model was constructed on the concept 
of water balance, and it can be used to simulate reservoir operation 
effectively (Hormwichian et al., 2009). The reservoir operating 
policies are based on the reservoir rule curves and the principles of 
a water balance concept. The reservoir system operates along the 
standard operating policy as expressed by Chaleeraktrakoon and 
Kangrang (2007). It is shown in Equation 4: 
 

, ,

,
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           (4)  

 

Where Lt,m is the water release quantity from the reservoir during 
time period t and period m (m = 1 to 12, representing January to 

December); m
 
is the water requirement of month m, αm and λm are 

the lower rule curve and upper rule curve of month m. 
νt,m is the available water calculated by simple water balance as 

shown in Equation 5: 

 

, 1 , , , ,t m t m t m t m t mv v D L E               (5) 

 

Where vt,m is the stored water at the end of month m; Dt,m is monthly 
reservoir inflow; Et,m is average value of evaporation loss.  

There are policies for releasing water from a reservoir:  if 
available water is in a range of the upper and lower rule level, then 
requirements are satisfied in full; if available water is over the top of 
the upper rules level, then the water is spilled from the reservoir to 
the downstream river in order to maintain the water level at the 
upper rule level; and if available water is below the lower rule level, 
then the release water is reduced. 

The release water of the reservoir was used to calculate the 
situations of water shortage and excess water release, namely, the 
number of failures in a year, the number of excess water releases, 
as well as the average annual shortage (Figure 2). The results will 
be recorded for use in the developed CDE model. 
 
 
Development of conditional differential evolution model   
 
This model is developed to combine an optimization technique 
(CDE) into a reservoir simulation model for optimum reservoir 
operational strategies. The structure operation of the model is 
shown in Figure 2. The CDE requires encoding schemes that 
transform the decision variables into chromosome (rule curves). 
Then, the differential evolution operations (reproduction, mutation 
and crossover) are performed. These CDE operations will generate 
new sets of chromosomes. The most common encoding schemes 
use binary strings. In this study, each decision variable represents a 
monthly level of the rule curves of reservoirs that will be used in the 
mentioned release policies. 

After the chromosomes of the initial population have been 
determined, the release water is calculated by the simulation model 
using these rule curves. Then, the release water is used to 
calculate the objective function for evaluating CDE fitness. Next, the 
reproduction including selection, mutation and crossover is 
performed for creating new rule curves parameters in the next 
generation. This procedure is repeated until the criterion is satisfied 
as  shown  in  Figure  2.  There are 24 parameters (upper and lower  
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Figure 2. Diagram of the searching optimal reservoir 

operating model. 
 
 
 

rule curves for 12 months) which are represented by the 
chromosomes.  

The objective function of searching the optimal rule curves was 
the minimum of the average water shortage (Kangrang and 
Chaleeraktrakoon, 2007) obtained from the simulation model. The 
boundary of the search for each generation is limited in order to 
reduce the fluctuation of the obtained rule curves. The range of 
searching for the lower and upper rule curves is fixed on the dead 
storage and normal high water level, respectively. This objective 
function is described as follows: 
 

[ 1, 2]Minimize Z z z            (6) 
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Where 1z , tD , tR , 2z , tQ ,and tQF are Drought index, the 

amount of water requirement during the month „t‟, the amount of 
water release from reservoir during the month „t‟, Downstream flood 
index, the  amount of water release from reservoir during the month 

 
 
 
 
„t‟, and  the amount of maximum water released for without flooding 
at downstream during the month „t‟, respectively. The constraints 
are described as follows: 
 

min maxtS S S 
                                                                        

(9) 

 

min maxtO O O                                                                      (10) 

 

Where minS , 
maxS  and tS  are dead storage of the reservoir, 

maximum storage of the reservoir, and storage of the reservoir 

during the month „t‟, respectively. minO , maxO and
 tO  are 

minimum water release, maximum water release and water release 
during the month „t‟, respectively. 
 
 
RESULTS AND DISCUSSION 
 
Illustrative application 
 
In this research, the model consisted of improved new 
strategies and optimum technical adaptation for optimal 
reservoir operating. Lampao reservoir is an important 
reservoir in the northeast of Thailand. It is located on the 
Lampao basin as shown in Figure 3 and was the 
experiment site. The capacity of the reservoir is 1,430 
million cubic meters (MCM) with an irrigation covering 
area of 502.4 km

2
. The average yearly rainfall of the 

Lampao basin is approximately 1,400 mm/year. The 
average inflow of the reservoir is 2,230 MCM/year. The 
maximum flood volume at 500 years of return period is 
5,482 m

3
/s. The observed monthly-inflow 1986 to 2008 

(23 years) is shown in Figure 4. 
In this study, the DE algorithm was developed and put 

into a reservoir operation model in order to find an 
optimal rule curves using the Matlab software. The 
optimal rule curve can then be applied to an actual 
scenario depending on whether the rule curve can be 
used to cover every case or event that might occur. Thus, 
“HEC-4 monthly stream flow simulation” (HEC-4) model 
was used to create synthetic inflow data into the monthly 
inflows of the reservoir as a synthetic data set of 500 
events as shown in Figure 5. Then, input synthetic inflow 
data were used to assess the efficiency of the new rule 
curves and compare them with the existing rule curves 
and also between the CDE and CGA models under the 
same conditions (objective function and constraints). 
Moreover, the new rule curves were assessed in various 
other situations, that is, water requirement increases, and 
inflow decreases to judge the impact of how these things 
will affect future operations.  

The reservoir operating model was set to maximum 
iteration of 1,000 cycles by the user and the control 
parameters of the model. These parameters were 
selected by the trial and error method. It was found that 
the control parameters value of the reservoir operating 
model of the CDE to provide optimum rule curves were F 
= 0.8,  CR = 0.9 and N = 240. The  statistics  of  trial runs  
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Figure 3. Location of the Lampao reservoir. 
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Figure 4. The monthly observed inflow data of the Lampao reservoir. 
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Figure 5. The synthetic inflow data of 500 events obtained from HEC-4. 

 
 
 

Table 1. Statistics of trial runs. 
 

Item 
Trial runs 

1 2 3 4 

CR 0.2 0.6 0.9 0.95 

F 0.3 0.5 0.8 0.8 

N 240 240 240 240 

Objective function (MCM) 174.56 77.34 71.13 83.61 

 
 
 
are shown in Table 1. The result of this experiment is 
represented by optimal rule curves approach as shown in 
Figure 6.  

The new rule curves from CDE and CGA were plotted 
to compare with the existing rule curves. It was found that 
the rule curves from CDE and CGAs show a similar 
trend. This is because both the CDE and CGA are a 
global optimum technique. It is also found that in the dry 
season (January to May), the lower water storage levels 
of the new rule curves are lower than the existing rule 
curves so as to release more water to reduce water 
scarcity. In the rainy season (June to September), the 
upper water storage levels of the new rule curves are 
higher than the existing rule curves so as to reduce water 
release to mitigate flood damage at downstream. 
Another, near the end of the rainy season (October to 
December)  water storage scenario was maximized so as 

to keep water for the dry season. This will help alleviate 
water shortages in the next year. Figure 7 shows the 
comparison of convergence of the optimal solution 
obtained using CDE and CGA (Hormwichain et al., 2009). 
In achieving the optimal solution, it was found that the 
CDE was better global convergence than that of CGA 
method, and this reveals that the CDE method‟s 
convergence towards an answer is slightly faster than the 
CGA method. This is because the DE method has a 
different structure model than the GA, and the 
parameters used are real numbers according to the study 
of Karaboga and Okdem (2004). However, these trends 
of iteration number are similar to the obtained trend of the 
other search techniques (Chang et al., 2005; Kangrang et 
al., 2011).  

Moreover, the synthetic inflow data of 500 events are 
obtained to evaluate the performance of CDE. These 
results are shown in Table 2. It is found that the data 
obtained from CDE are lower than the data obtained from 
the existing rule curves. It is considered that the new rule 
curves could reduce both water shortages in the dry 
season and floods in the rainy season.  

In addition, the performances of the new rule curves 
were evaluated in two situations. The first was an 
increase of the water requirements between 10 to 30% 
from the current state. The results are shown in Table 3. 
It is found that with an increase in water requirements up 
to 30% from the current state, the data obtained from 
CDE  are  lower  than  the data obtained from the existing  
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Figure 6. Comparison of rule curves among existing rule curves, CGA rule curves and CDE rule curves. 

 
 
 

 
 

Figure 7. Convergence characteristics of CGA and CDE model.  
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Table 2. Frequency, magnitude and duration of water shortage and excess water release of the Lampao reservoir system. 
 

Situation Rule curves 
Frequency 

(times/year) 

 Magnitude (MCM/year)  Duration (year) 

 Average Maximum  Average Maximum 

Water shortage 
Existing 

 0.926  327.2 669.9  13 16.4 

 0.049  20.6 85.6  6.3 4.8 

         

CGA 
 0.443  106.3 470.7  2.6 4.2 

 0.083  22.0 114.9  0.8 1.5 

         

CDE 
 0.402  96.8 411.6  2.1 3.7 

 0.056  20.2 97.3  0.7 1.3 

          
Excess release water 

Existing 
 0.979  922.6 2,738.1  18.2 20.1 

 0.029  25.2 565.7  6.3 4.3 

         

CGA 
 0.800  698.4 2,593.0  4.5 8.7 

 0.061  27.3 579.9  1.7 3.0 

         

CDE 
 0.817  707.5 2,631.0  4.8 10.8 

 0.063  28.1 582.4  1.9 3.4 
 

, Mean; , standard deviation. 

 

 
 

Table 3. Frequency, magnitude and duration of water shortage and excess water release of the Lampao reservoir system 
when the water requirements were increased. 
 

Situation 
Rule  

curves 

Frequency 

(times/year) 

 Magnitude (MCM/year)  Duration (year) 

 Average Maximum  Average Maximum 

Water shortage 
Existing (10%*) 

 0.966  403.1 773.1  18.3 20.1 

 0.032  21.1 92.3  5.8 3.7 

         

CDE (10%*) 
 0.670  183.6 618.6  3.7 6.9 

 0.076  24.8 128.1  1.2 2.4 

         

Existing (20%*) 
 0.982  487.1 883.9  21.6 22.1 

 0.023  22.4 97.2  3.4 2.1 

         

CDE (20%*) 
 0.869  285.2 774.1  8.5 13.0 

 0.054  25.7 136.7  4.4 4.3 

         

Existing (30%*) 
 0.994  581.5 1008.1  22.8 22.8 

 0.015  23.8 111.6  1.0 0.5 

CDE (30%*) 
 0.953  389.1 922.3  18.1 19.9 

 0.033  26.3 142.2  5.8 3.9 
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Table 3. Contd. 

 

Excess release water 
Existing (10%*) 

 0.955  841.3 2637.2  14.0 17.4 

 0.040  25.0 558.2  6.6 4.9 

         

CDE (10%*) 
 0.742  620.1 2476.7  3.6 7.3 

 0.062  29.6 576.8  1.2 2.6 

         

Existing (20%*) 
 0.915  768.1 2548.4  10.0 14.3 

 0.052  26.7 560.6  5.5 4.7 

         

CDE (20%*) 
 0.700  565.6 2394.1  3.2 6.5 

 0.064  30.9 572.3  1.0 2.4 

         

Existing (30%*) 
 0.882  706.2 2460.2  7.7 12.3 

 0.057  27.2 546.0  4.2 4.4 

         

CDE (30%*) 
 0.659  513.6 2310.9  2.8 5.8 

 0.067  31.1 571.0  0.8 2.0 
 

, mean; , standard deviation; *, increase in the amount of water requirements. 
 
 
 

Table 4. Frequency, magnitude and duration of water shortage of the reservoir systems when the inflows were decreased. 
 

Situation Rule curves 
Frequency 

(times/year) 

 Magnitude (MCM/year)  Duration (year) 

 Average Maximum  Average Maximum 

Water shortage 

Existing  
 0.926  327.2 669.9  13 16.4 

 0.049  20.6 85.6  6.3 4.8 

         

CDE (10%**) 
 0.577  154.3 570.1  3.3 5.7 

 0.081  22.8 124.2  1.1 2.0 

         

CDE (20%**) 
 0.711  217.2 668.7  4.5 7.8 

 0.077  3.4 21.8  0.7 0.8 

         

CDE (30%**) 
 0.840  304.0 782.7  7.3 11.6 

 0.066  21.9 121.3  3.6 4.0 
 

, Mean; , standard deviation; **, decrease in the amount of inflows. 
 
 
 
rule curves. This means that an increase in water 
requirements up to 30% does not affect the water 
shortage and excess water release when compared with 
the data from the existing rule curves. 

The second, a decrease of inflow between 10 to 30% 
from the current state is used and the results are shown 
in Table 4. It was found that the inflow decreased to 30% 
from the current state. The average frequency, average 
duration, and average magnitude of water shortage from 
the new rule curves are lower than the existing rule 
curves  even  if the inflow decreases. This means that the 

new rule curves could help the water shortage in dry 
season. Therefore, it can be concluded that the new rule 
curves can solve future reservoir operation problems 
even considering climate change and population growth.  
 
 
Conclusions 
 
In this study, an optimal rule curve using the CDE model 
connected with a reservoir simulation model was 
developed. It  considered  the  criteria  of  minimum water 
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shortages and downstream flood control. The generating 
synthetic stream inflow data of 500 events and the 
present observed data were used to evaluate the 
performance of new rule curves. The results revealed 
that new rule curves are more suitable than the existing 
rule curves because the frequency and magnitude of 
water shortage and excess water release were less than 
the existing rule curves. The performance of the new rule 
curves was better than the existing rule curves in all 
seasons.  

When the CDE and the CGA methods were compared, 
the rule curves from CDE had a good performance record 
for reservoir operating as the rule curves from CGA. 
Furthermore, the number of generations of both methods 
is not significantly different because the solution of model 
convergence leans toward the same global answers. 
However, the CDE method still converges towards an 
answer slightly faster than the CGA method.  

In the future, the new rule curves can be used to 
operate effectively when the downstream water 
requirements increase up to 20 or 30% from the current 
state and when quantity of the stream inflow decrease 
down to 20 or 30% from current state. It reveals that the 
proposed CDE model is an effective method to find 
optimal reservoir rule curves in all long-term situations. 
Further in the future, may be to apply this reservoir 
operating model with multi-reservoir system or short-term 
forecast for operating the gates.  
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