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An analytical study of electromagnetic wave scattering using Lippmann-Schwinger equation is 
presented in this work. Lippomann-Schwinger equation was derived first from hamiltonian that involves 
non-interacting and interacting terms. The solution for non-interacting and out going scattered waves 
was obtained using a boundary conditions specified on the green’s function [En – H0]

-1 which 
specifically handles the singularity that facilitates expressing Lippman-Schwinger equation correctly. 
The scattering amplitude of the wave was obtained analytically. 
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INTRODUCTION 
 
Scattering of electromagnetic wave when it encounters 
an obstacle has been studied by many researchers. 
When an EM wave encounters an obstacle, obviously, 
bound charges are set unto oscillation and secondary 
wave are scattered in all directions (Barron, 1982). Within 
a medium, the obstacle responsible for light scattering 
can be as a result of impurities in crystals or medium, 
water droplet or dust particles in the atmosphere and 
colloidal matter suspended in liquids. 

Light scattering also occurs in transparent material due 
to the in homogeneities at the molecular level. In this 
case, scattering occurs without a change in frequency as 
observed in Rayleigh scattering (Rayleigh, 1900). Scatt-
ering in which there is a frequency shift as observed by 
Raman and Krishnan is known as Raman scattering 
(Raman et al., 1928). 

From the time of Rayleigh and Raman till date, many 
scholars had delved into the study of scattering using 
different tools and the application. Green’s function has 
been one of the tools that has been strongly used to 
study electromagnetic wave scattering (Morse et al., 
1953). Other work like formulations based on the 
principles of scattering superposition have been construc-
ted coupled with scattering dyadic green’s function (Le-
Wei et al., 1004). The idea of EM wave scattering com-
bined with acoustic excitation for detecting buried objects 
has been carried out (Stewart, 1960; Scott et al., 1998 
and Scott et al., 1999). Others had developed scattering 
models for specific landmines and had demonstrated the 
phenomena associated with the acoustic-electromagnetic  

objects (Daniel et al., 2001; Sarabands et al., 1997). 
The purpose of this paper is not however to discuss the 

applications of EM wave scattering nor to develop any 
scattering model for specific application, but rather to 
analytically look at electromagnetic wave scattering using 
Lippmann-Schwinger equation. In the analysis, consi-
deration was given to the first exponential, the contour 
closed with a large semicircle in the upper half plane and 
also for second case when the semicircle is closed in the 
lower half plane. The singularities that contribute to the 
poles which enhance the target energy in the out going 
state and the scattering amplitude were analyzed. 
 
 
THEORETICAL PROCEDURE 
 
Lipmann-Schwinger equation was derived starting with hamiltonian 

0H V+ where 0H is non-interacting Hamiltonian while V  is the 

interacting term. The energy eigenstates of 0H  are 
 

0 n n nH EΦ = Φ                                            (1) 
 
and are normalized so that a completeness relation for the identity 
operator can be written as  
 

1n n ns Φ Φ =�                               (2) 
 
Where n is the quantum number with the integral including sum 
over any bound state. 



 
 
 
 
Rearranging the Schrödinger equation, the eigenstates of 0H V+  

are solutions of   
 

( )0n n nE H V− Φ = Φ                              (3)                     

 
The solution for a non-interacting term with the addition of out going 
scattered waves can be written as  
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Where .b c  is the boundary conditions specified on the green’s 

functions [ ] 1
0nE H

−− . As energy is conserved, non-interacting 

components of the solutions far from the scattering center will have 

energy nE . Therefore specifying boundary conditions means 

specifying how to handle the singularity when the eigenvalue of 

0H  equals nE . The most common choices are to remove the 

singularities by writing the Lippmann-Schwinger equations as  
 

0

1
n n n

n

V
E H

ϕ ϕ
η

± ±= Φ +
− +
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When η  is a positively infinitesimal and ϕ ±
 is in state while 

−Φ  is an outgoing state. 

 
 
Amplitude of the scattered wave   
 
If we insert the completeness state, one writes 
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Where 0H  operates on 
βΦ  to give Eβ .Using the definition of 

the T  matrix for the matrix element, we obtain 
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When we multiply equation 7 on the left by VβΦ  and put 

dummy state index as  γ  , then we have  
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 And writing V matrix element as nVβ  etc, we have 
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Using the Lippmann-Schwinger equation, the wave packets can be 
written as  
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                                                                                                     (10) 
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The matrix element with r  when inserted to a complete set of r  

and kΦ  state, it gives   
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Where 0H operates on 1k
Φ  to give ,k

E and operates on ,r  to 

give ( )1V r  

 
Thus in terms of wave function we obtain  
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                                                                                                     (13) 
The green’s function associated with the formalism is  
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Since r  is positive, we can close the contour for the first 
exponential with a large semicircle in the upper half plane, and only 

the pole  k iη+  contributes 
Similarly, for the second exponential, we close the lower half 

plane and only the pole at k iη− −  contributes. Thus the result 
becomes 
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When η  is taken to be zero, putting this into equation 14 results to 
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Where the scattering amplitude is  
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DISCUSSION OF RESULT  
 
Analytical study of the scattering behaviour of 
electromagnetic wave using Lippmann-Schwinger equa-
tion for a specific hamiltonian starting with a Hamiltonian 

0H V+ involving non-interacting and interacting 
eigenstates. 

From the results of equation 11, we can view the 
η integral as an integral along the real axis of the energy 
where for any degenerate states, the integrand contains 
an additional integration over the degenerate states and 
for energies without states the integrand is multiplied by 
zero. For t → +∞ , we close the contour with large semi-
circle in the lower half plane, while for t → −∞ , we 
close the upper half plane. As a result, the T matrix has 
with it the imaginary part that gives exponentially damped 
contributions for large magnitude, t . The only singularity 

that contribute is therefore the simple poles at nE Eβ=  

which give  2 iπ  times the residue for the contour close in 
the upper half plane and 2 iπ−  for the contour close in the 
lower half plane. The iη±  factors displace the poles 
slightly so that they only contribute for positive time for 

+Φ  and for   negative time for −Φ with the result given 
as 
 

( ) ( )t
g gt tϕΦ → , 

 
for t → ±∞ , 

( ) ( ) ( ) ( ) ( )
1

| 2
gE t
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With these considerations, if the result as obtained in 
equation 15 is compared with the expressions for wave  

 
 
 
 
packets formed from the non-interacting states and the  
interacting states with same amplitudes, the scattering 

amplitude is f which is strongly dependent on target 

energy in the outgoing state from equation 15, 1k is the  
wave vector in the r direction that satisfies energy 
conservation. The plane wave together with the target 
state from the energy conservation state ,BΦ and 

these doted with potential just give the .T  matrix of the 
scattering amplitude as  
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