
International Journal of the Physical Sciences Vol. 7(4), pp. 560 - 565, 23 January, 2012 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.1518 
ISSN 1992 - 1950 © 2012 Academic Journals 
 
 
 
 

Full Length Research Paper 

 

Determination of periodic solution for the Helmholtz-
Duffing oscillators by Hamiltonian approach and 

coupled homotopy-variational formulation 
 

Mehdi Akbarzade1, Yasir Khan2* and A. Kargar1 
 

1
Department of Mechanical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran. 

2
Department of Mathematics, Zhejiang University, Hangzhou 310027, China. 

 
Accepted 3 January, 2012 

 

This paper aims to directly extend the Hamiltonian approach and coupled homotopy-variational 
formulation to study the periodic solutions of the Helmholtz-Duffing oscillator. The results of numerical 
example are presented and only a few terms are required to obtain accurate solutions. Results derived 
from this method are shown graphically. The behaviors of the solutions in the positive and negative 
directions are quite different, the asymmetric equation is separated into two auxiliary equations and the 
auxiliary equations are solved by two different method. Finally, the phase plane to show the stability of 
systems is plotted and discussed. An excellent agreement between the approximate periods with the 
exact period is achieved. The numerical results presented show that these methods are very accurate. 
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INTRODUCTION 
 
Most of engineering problems, especially some oscillation 
equations are nonlinear, and in most cases it is difficult to 
solve such equations, especially analytically. Large 
number of oscillation problems applications in mathemati-
cal interpretation of engineering problems, such as ship 
dynamics, oscillation of the human eardrum, dynamics of 
a particle moving in cubic potential and oscillations of one 
dimensional structural system with an initial curvature. In 
general, such problems are not amenable to exact treat-
ment. Amongst these, the perturbation methods (Nayfeh, 
1993; Hagedorn, 1988) are in common use. Perturbation 
methods are based on the existence of small parameters, 
the so-called perturbation quantity.  

Recently, considerable attention has been paid towards 
approximate solutions for analytically solving nonlinear 
differential equation. Many nonlinear problems do not 
contain such perturbation quantity, so to overcome the 
shortcomings. Many new techniques have appeared in 
open literature such as: variational iteration method (He et 
et al., 2010; Hosseini et al., 2010; Yilmaz and Inc, 2010; 
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Herişanu and Marinca, 2010), energy balance method 
(Ganji et al., 2009; Yazdi et al., 2010; He, 2002; 
Akbarzade et al., 2008; Yiming et al., 2011), Hamiltonian 
approach (He, 2010; Xu and He, 2010; Khan et al., 2010), 
coupled homotopy-variational formulation (Akbarzade 
and Langari, 2011; Akbarzade and Ganji, 2010), 
variational approach (He, 2007; Khan et al., 2011), 
amplitude-frequency formulation (Ganji and Akbarzade, 
2010; Khan et al., 2011) and other classical methods (He, 
2009, 2006, 2005, 2000, 2008; Marinca, 2006; Marinca 
and Herisanu, 2010; Khan and Wu, 2011; Khan et al., 
2011; Turkyilmazoglu, 2011a, b; Ganji and Kachapi, 2011; 
Marinca and Herişanu, 2011; Herişanu and Marinca, 
2010a, b; Nahe et al., 2011; Khan and Austin, 2010; 
Šmarda and Archalousova, 2010; Khan et al., 2011; 
Usman et al., 2011; Biazar and Eslami, 2011a, b). 

In this paper, the basic idea of Hamiltonian approach 
and coupled homotopy-variational formulation are intro-
duced and then their applications are studied for the 
following model of nonlinear oscillations (Leung and Guo, 
2009): 
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where ( )sgn u  is the sign function, the result equals to 

+1, if 0u  , 0 if 0u  and −1 if 0u  . 
 
 

THE APPLICATION OF THE HAMILTONIAN 
APPROACH (HA) 
 

Previously, He (2011) had introduced energy balance 
method based on collocation and Hamiltonian. Recently, 
in 2010 it was developed into the Hamiltonian approach 
(He, 2010).  This approach is a kind of energy method 
with a vast application in conservative oscillatory 
systems.  
 

If 0u  : 
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In order to clarify this approach, the Hamiltonian of the 
Equation 3 can be written in the form: 
 

 2 2 3 41 1 1 1
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H u u u u u                   (4) 

 

Equation 4 implies that the total energy keeps unchanged 
during the oscillation. According to Equation 4: 
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Introducing a new function ,  ( ),H u is defined as (He, 

2010): 
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It is obvious that: 
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Equation 2 is equivalent to the following equation: 
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Assume that the solution can be expressed as: 
 

( ) cos( )u t A t                                                    (10) 

 
Substituting it to Equation 9: 
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Consequently, approximate frequency can be found from 
Equation 11: 
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The approximate period is: 
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If 0u  : 
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Similarly, the approximate frequency can be obtained in 

the approximate period 1HA :   
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The approximate period is: 
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The approximate period T is: 
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THE APPLICATION OF THE COUPLED HOMOTOPY-
VARIATIONAL (CHV) FORMULATION  
 
The coupled method of homotopy perturbation method 
(He, 2000) and variational formulation (He, 2007), 
couples the homotopy perturbation method with the 
variational method. The method first constructs a homo-
topy equation, and then the solution is expanded into a 
series of p . As  the  zeroth order  approximate solution  is 
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easy to be obtained, the second term is solved using the 
variational approach, where the frequency of the non-
linear oscillator can be obtained. The first-order solution 
is the best among all possible solutions when the trial 
solution is chosen in cosine or sine function. This techno-
logy is very much similar to Marinca’s work where the 
unknown parameters are identified using least squares 
technology (Marinca, 2006; Marinca and Herisanu, 2010). 

In Equation 1, if 0u  , the following homotopy can be 

constructed:   
 

   2 3 2 2[ 1 (1 ) ] 0 ,  0 ,1u u p u u u p                 (18) 

 

When 0p  , Equation 18 becomes the linearized 

equation, 
2 0u u  , when 1p  , it turns out to be the 

original one. Assume that the periodic solution to 
Equation 3 may be written as a power series in p : 

 
2
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Substituting Equation 19 into Equation 18, collecting 
terms of the same power of p , gives: 
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and 
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The solution of Equation 20 is 0 cosu A t , where   

will be identified from the variational formulation for 1u , 

which reads: 
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To better illustrate the procedure, a simple trail function 
can be chosen: 
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Substituting  1u  into the functional Equation 22 results in: 
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Setting: 
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Solving the foregoing equations, approximate frequency 
as a function of amplitude equals to: 
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The approximate period is: 
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If 0u  : 
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Similarly, the approximate frequency can be obtained as 

the approximate period 2CHV : 
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The approximate period is: 
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The approximate period T is: 
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RESULTS AND DISCUSSION 
 
Here, the applicability, accuracy and effectiveness of the 
proposed approaches are illustrated by comparing the 
analytical approximate frequency with the exact solutions 
(Leung and Guo, 2009) in Tables 1 and 2. 

Finally, for selected constant parameters, the stability 
of the system is as shown in Figures 1 and 2. Generally, 
the system possesses no damping, and therefore, any 
excitation will cause instability of the system. 
 
 
Conclusions 
 
In this paper, the two powerful  and  simple  methods  are



Akbarzade et al.          563 
 
 
 

Table 1. Comparison of approximate periods with the exact period for 0.5  . 

 

A 
HAT  

CHVT  
ExactT  

0.01 6.2831 6.2831 6.2831 

0.02 6.2829 6.2828 6.2829 

0.05 6.2813 6.2805 6.2818 

0.1 6.2756 6.2726 6.2777 

0.2 6.2530 6.2410 6.2599 

0.4 6.1626 6.1186 6.1746 

0.8 5.8104 5.6855 5.7281 

1 5.5642 5.4104 5.3950 

2 4.1616 4.0207 3.8411 

5 1.9822 1.9590 1.8943 

10 1.0173 1.0139 1.0041 

20 0.5119 0.5115 0.51434 

50 0.2051 0.2051 0.20827 

100 0.1026 0.1026 0.10452 
 

 
 

Table 2. Comparison of approximate periods with the exact period 

for 0.9  . 

 

A 
HAT  

CHVT  
ExactT  

0.01 6.2830 6.2830 6.2830 

0.1 6.2623 6.2621 6.2622 

0.5 5.8148 5.8127 5.8065 

1 4.8595 4.8561 4.8413 

5 1.4864 1.4862 1.5054 

10 0.7592 0.7592 0.77273 

50 0.1529 0.1529 0.15618 

100 0.0765 0.0765 0.07813 
 

 
 

 
 
Figure 1. Phase plane maps showing the system stability, influence of 

  in the stability 0.1 0.9  . 
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Figure 2. Phase plane maps showing the system stability, influence of   in the 

stability 0.1 0.9  . 

 
 
 
applied for solving the Helmholtz-Duffing oscillator 
equation. Periodic solutions and natural frequencies are 
analytically obtained. Numerical simulations, for few 

typical points in the 
du

u
dt

  plane, are carried out and 

their phase plane trajectories are presented graphically. 
This new approaches proves to be very rapid, effective 
and accurate and this is proved by comparing the 
solutions obtained through the proposed methods with 
the exact solution results. An excellent agreement 
between the present and exact solutions is achieved. The 
analysis given here further shows confidence on 
Hamiltonian approach and coupled homotopy-variational 
formulation. 
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