Short Communication

Some results about log-harmonic mappings

Melike AydogAn

Yeni Yüzyil University Yilanli Ayazma Road Num: 26 Cevizlibağ-Topkapi-Istanbul, Turkey. E-mail: melike.aydogan@yeniyuzyil.edu.tr.

Accepted 7 March, 2011

Let A(α, β) be a subclass of certain analytic functions and H (D) is to be a linear space of all analytic functions defined on the open unit disc D = {z| |z| < 1}. A sense-preserving log-harmonic function is f **the solution of the non-linear elliptic partial differential equation;** $\overline{f}_z = w$ f f_z , **where w(z) is analytic,** satisfies the condition $|w(z)| < 1$ for every $z \in D$ and is called the second dilatation of f. It has been **shown that if f is a non-vanishing log-harmonic mapping, then f can be represented by;** $f(z) = h(\overline{z})\overline{g(z)}$, where h(z) and g(z) are analytic in D with h(0) = 0, g(0) = 1([1]). If f vanishes at z = 0, but it is not identically zero, then f admits the representation; $\int_{0}^{+\infty} f(z) dz = z |z|^{2\beta} h(z) g(z)$, where Re $\beta > -\frac{1}{2} h(z)$ **and g(z) are analytic in D with g(0) = 1 and h(0) = 0. The class of sense-preserving log-harmonic mappins is denoted by SLH. The aim of this paper is to give some distortion theorems of these classes.**

Key words: Starlike, subordination, distortion.

INTRODUCTION

Let $A(α, β)$ be the class of functions of the form:

$$
h(z) = 1 - \sum_{\substack{n=1 \ n \ (1)}}^{\infty} c_n z^n (c_n \ge 0)
$$
 (1)

which are in the analytic, in the open unit disc $D =$ ${z||z| < 1}$ and satisfy

$$
Reh(z) + \alpha zh^{0}(z) > 0, z \in D
$$
\n(2)

where $\text{Re}(\alpha) > 0$ and $0 \le \beta < 1$. The class $A(\alpha, \beta)$ S_1 for real $\alpha > 0$ was studied by Osman and Shigeyoshi (1992)

Let Ω be the family of functions $\varphi(z)$ which are regular in D and satisfying the conditions $\varphi(0) = 0$, $|\varphi(z)| < 1$ for all z [∈] D.

Let S_1 (z) and $S_2(z)$ be analytic functions in D with $S_1(0) = S_2(0)$. We say that $S_1(z)$ subordinated to $S_2(z)$ and denote by:

2000 Mathematics Subject Classification: 30C55, 30C45.

$$
S_1(z) \prec S_2(z) \tag{3}
$$

if $S_1(z) = S_2 (\varphi(z))$ for some function $\varphi(z) \in \Omega$ and every $z \in D$. If $S_1(z) \prec S_2(z)$, then $S_1(D) \subset S_2(D)$ (Zayid and Abu, 1996).

Further, S_1 (z) is said to be quazi subordinate to S2 (z) if there exists an analytic function $\varphi(z)$ Such that $S_1(z)$ is analytic in D, S₁(z):

$$
\frac{S_1(z)}{\varphi(z)} \prec g(z), (z \in D)
$$
\n(4)

and $\varphi(z) \leq 1$, $(z \in D)$. We also denote this quazi subordination () is equivalent to:

$$
S_1(z) = \varphi(z).S_2(w(z)),
$$
 (5)

where $|\varphi(z)| \leq 1$, $(z \in D)$ and $|w(z)| \leq z$ $(z \in D)$ studied by Zayid and Walter (1996).

In the quazi subordination if $\varphi(z) \equiv 1$ then, it becomes

the subordination. For analytic functions S_1 (z) and $S_2(z)$ in D, we say that, $S_1(z)$ is majorized by $S_2(z)$ if there exists an analytic function $\varphi(z)$ in D satisfying $|\varphi(z)| \le 1$ and $S_1(z) = \varphi(z) . S_2(z)$ (z $\in D$). We denote the majorization by;

$$
S_1(z) \, << \, S_2(z), \, (z \in D) \tag{6}
$$

If we take $w(z) = z$; then quazi subordination becomes the majorization (Yasunori and Shigeyoshi, 2008). Finally, let H (D) be the linear space of all analytic functions defined on the open unit disc D. A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation:

$$
\frac{\overline{f_{\overline{z}}}}{f} = w(z) \frac{f_z}{f},\tag{7}
$$

where $w(z) \in H(D)$ is the second dilatation of f such that $|w(z)| < 1$ for every $z \in D$. It has been shown that if f is a non-vanishing log -harmonic mapping, then f can be expressed as:

$$
f = h(z)\overline{g(z)}
$$
 (8)

where $h(z)$ and $g(z)$ are analytic functions in D.

On the other hand, if f vanishes at $z = 0$ and at no other point, then f admits the representation:

$$
f = z |z|^{2\beta} h(z) \overline{g(z)},
$$
\n(9)

where Re β > -1/2, h(z) and g(z) are analytic in D with $g(0) = 1$ and $h(0) = 0$. We note that the class of log-harmonic mappings is denoted by S_{CH} .

Let $f = zh(z)g(z)$ be an element of S_{LH} was studied by Zayid and Daoud (1988).

RESULTS

Theorem 1

Let $f = zh(z)g\overline{(z)} = \phi(z).\overline{g(z)}$ be an element of $S^*_{LH}(A, B)$ $\phi(z) = zh(z)$, $g(z) = 1 + a_1 z + a_2 z^2 + ..., h(z) = b_0 + b_1 z + b_2 z^2 + ...$ And let $H(z) = \frac{z\Phi^0(z)}{\Phi(z)}$. Then:

$$
H(z) \in A(\alpha, \beta) \Leftrightarrow Re(H(z) + \alpha zH^{\theta}(z)) > \beta, (|z| < 1)
$$
 (10)

for some complex α , $(\alpha = 0)$; and for some β $(0 \le \beta)$ $<$ 1).

Proof

Let $f \in S^*$ LH (A, B) . Then:

$$
H(z) = \frac{z\Phi^{0}(z)}{\Phi(z)} = \frac{z(b_0 + 2b_1z + 3b_2z^2 + ...)}{b_0z + b_1z^2 + b_2z^3 + ...}
$$
 (11)

$$
= (1 + 2\frac{b_1}{b_0}z + 3\frac{b_2}{b_0}z^2 + ...)(1 + \frac{b_1}{b_0}z + \frac{b_2}{b_0}z^2 + ...)^{-1}
$$
\n(12)

$$
= (1+2\frac{b_1}{b_0}z+3\frac{b_2}{b_0}z^2+...)(1-(\frac{b_1}{b_0}z+\frac{b_2}{b_0}z^2+...) + (\frac{b_1}{b_0}z+\frac{b_2}{b_0}z^2+...) - (\frac{b_1}{b_0}z+...) + ...)
$$
(13)

$$
= (1 + 2\frac{b_1}{b_0}z + 3\frac{b_2}{b_0}z^2 + ...)(1 - \frac{b_1}{b_0}z + (\frac{b_1^2}{b_0^2} - \frac{b_2}{b_0})z^2 + ...)
$$
\n(14)

$$
= 1 + \frac{b_1}{b_0}z + \frac{3b_1b_0 - b_1^2 - b_1b_2}{b_0^2}z_2 + ...
$$
\n(15)

0 0 0 0 0

$$
= 1 + h_1 z + h_2 z^2 + \dots \tag{16}
$$

satisfied easily.

Lemma 1: If $H(z)$ is an element of $A(\alpha, \beta)$ then;

$$
H(z) = 1 + \sum_{n=1}^{\mathbf{X}} h_n z^n \in A(\alpha, \beta), h_n = |h_n| \cdot e^{i(n\theta + \pi)} \Rightarrow \sum_{n=1}^{\mathbf{X}} (1 + nRe(\alpha)) |h_n| \le 1 - \beta.
$$
 (17)

Proof

$$
Re(H(z) + \alpha zH^0(z)) = Re(1 + \sum_{n=1}^{\infty} (1 + n\alpha)h_n z^n)
$$
 (18)

$$
= \text{Re}(1 + \sum_{n=1}^{\infty} (1 + \alpha n) |h_n| e^{i(n\theta + \pi)} z^n) > \beta
$$
\n(19)

for all z ϵ D Let $z = |z| e^{-i\theta}$, then $|z|^n = |z|^n e^{-in\theta}$ and,

$$
Re(H(z) + \alpha zH^0(z)) = 1 - \sum_{n=1}^{\infty} (1 + nRe(\alpha)) |h_n||z|^n > \beta
$$
 (20)

Telling $|z| \rightarrow 1^-$, we have;

$$
\sum_{n=1}^{\infty} (1 + nRe(\alpha)) |h_n| \le 1 - \beta
$$
\n(21)

Theorem 2

If H(z) is an element of $A(α, β)$ then:

$$
H(z) = 1 + \sum_{n=1}^{\infty} h_n z^n \in A(\alpha, \beta), h_n = |h_n| e^{-in\theta + \pi}, \text{Re}(\alpha) \ge 0
$$
\n(22)

$$
\Rightarrow 1 - \frac{1 - \beta}{1 + \text{Re}\alpha} |z| \le \text{ReH}(z) \le |H(z)| \le 1 + \frac{1 - \beta}{1 + \text{Re}\alpha} |z|
$$
\nfor $|z| < 1$.

\n(23)

Proof by Lemma 1,

$$
\mathbf{X} \Big| \mathbf{h}_{n} \Big| \leq \frac{1 - \beta}{1 + \text{Re}(\alpha)} \tag{24}
$$

Thus:

$$
|H(z)| \le 1 + |z| \sum_{n=1}^{\infty} |h_n| \le 1 + \frac{1 - \beta}{1 + \text{Re}\alpha} |z|
$$
\n(25)

and,

$$
ReH(z) = 1 + Re(\sum_{n=1}^{\infty} h_n z^n) \ge 1 - |z| \sum_{n=1}^{\infty} |h_n| \ge 1 - \frac{1 - \beta}{1 + Re(\alpha)} |z|.
$$
 (26)

Theorem 3

If H(z) is an element of $A(α, β)$ then:

$$
H(z) = 1 + \sum_{n=1}^{\infty} h_n z^n \in A(\alpha, \beta), h_n = |h_n| e^{-in\theta + \pi}, \text{Re}(\alpha) \ge 0
$$
\n(27)

$$
\Rightarrow \text{Re}(h_1) - \frac{1 - \beta - (1 + \text{Re}(\alpha_1) |h_1|)}{\text{Re}(\alpha)} |z| \le \text{Re}H^0(z)
$$
 (28)

$$
\leq |H^0(z)| \leq |h_1| + \frac{1 - \beta - (1 + \text{Re}(\alpha_1) |h_1|)}{\text{Re}(\alpha)} |z|
$$
\nfor $|z| < 1$.

\n(29)

Proof

Note that:

$$
(1+Re(\alpha))\left|h_1\right| + \sum_{n=1}^{\infty} (1+nRe(\alpha))\left|h_n\right| \le \sum_{n=1}^{\infty} (1+nRe(\alpha))\left|h_n\right| \le 1-\beta,
$$
\n(30)

This gives that:

$$
\mathbf{X}_{n} \mid h_{n} \mid \leq \frac{1 - \beta - (1 + \text{Re}(\alpha)) \mid h_{1} \mid}{\text{Re}(\alpha)}.
$$
\n(31)

Thus we have that:

$$
|H^0(z)| = h_1 + \sum_{n=2}^{\infty} nh_n z^{n-1} \le |h_1| + |z| + |z| \sum_{n=2}^{\infty} n |h_n|
$$
\n(32)

$$
\leq |h_1| + \frac{1 - \beta - (1 + \text{Re}(\alpha)) |h_1|}{\text{Re}(\alpha)} |z|
$$
\n(33)

and,

$$
ReH^0(z) = Re(h_1 + \frac{\mathbf{X}}{h_1 z^{n-1}}) \ge Re(h_1) - |z| \frac{\mathbf{X}}{h |h_n|}
$$
 (34)

$$
\geq \text{Re}(h_1) - \frac{1 - \beta - (1 + \text{Re}(\alpha)) |h_1|}{\text{Re}(\alpha)} |z|.
$$
 (35)

REFERENCES

- Osman A, Shigeyoshi O (1992). Majorizations and Quazi-Subordinations for Certain Analytic Functions, Proc. Japan Acad. Ser. A. Math. Sci., 68: 181-185.
- Yasunori H, Shigeyoshi O (2008). Majorization Problems for Certain Analytic Functions, Int. J. Open Problems Compt. Math., pp. 1-3.
- Zayid A, Daoud B (1988). Univalent functions in H.H (D), Trans. Am. Math. Soc., 305: 841-849.

Zayid A, Walter H (1996). One pointed univalent logharmonic mappings, J. Math. Anal. Apply., 203(2): 333-351.

Zayid A, Abu M (2006). Starlike log-harmonic mappings of order α, JIPAM., 123: 7-4.