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Let A(a, B) be a subclass of certain analytic functions and H (D) is to be a linear space of all analytic
functions defined on the open unit disc D = {z| |[z| < 1}. A sense-preserving log-harmonic function is

— f
+, =w 12,
the solution of the non-linear elliptic partial differential equation; " where w(2) is analytic,

satisfies the condition |w(z)|] < 1 for every z € D and is called the second dilatation of f . It has been
shown that if f is a non-vanishing log-harmonic mapping, then f can be represented by;
f(z) = h(2)g(2). where h(z) and g(z) are analytic in D with h(0) = 0, g(0) = 1([1]). If f vanishes at z = 0, but
it is not identically zero, then f admits the representation; f(2) =z [z[" h(2)2(2), where Ref >-1, h(z)
and g(z) are analytic in D with g(0) =1 and h(0) = 0. The class of sense-preserving log-harmonic
mappins is denoted by SLH. The aim of this paper is to give some distortion theorems of these classes.
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INTRODUCTION

Let A(a, B) be the class of functions of the form:
xX -
cnz"(ch =0)

! (1)

which are in the analytic , in the open unit disc D =
{z||z| < 1} and satisfy

h(z) = 1-

Reh(z) + azh'(z) >0,z €D 2

where Re(a) > 0and 0 =B < 1. Theclass A(q, B)

for real a > 0 was studied by Osman and Shigeyoshi
(1992)

Let Q be the family of functions ¢(z) which are regular in
D and satisfying the conditions ¢(0) = 0, |(z)] < 1 for
all z e D.

Let S1 (z) and S2(z) be analytic functions in D with
S1(0) = S2(0). We say that Sq(z) subordinated to
S2(z) and denote by:
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$1(2) < $y(2) .

if S1(z) = S2 (¢(z)) for some function ¢(z) € Q and
every z € D. If S1(z) < S2(z), then S1(D) c S2 (D)
(Zayid and Abu, 1996).

Further, S1 (z) is said to be quazi subordinate to S2

(z) if there exists an analytic function ¢(z) Such
that 5! ® is analytic in D, S1(z):

Si(z)
0(z)

< g(z),(z€D)
(4)

and ¢@(z) = 1, (z € D). We also denote this quazi
subordination () is equivalent to:

S1(2) = 9(2).S2(w(2)), (5)

where |¢(z)] =1, (z €D) and |w(z)| =z (z € D)studied
by Zayid and Walter (1996).

In the quazi subordination if ¢(z) =1 then, it becomes
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the subordination. For analytic functions Sq (z) and
S2(z) in D, we say that, Sq1(z) is majorized by S2 (z)
if there exists an analytic function ¢(z) in D satisfying
|o(z)] =1 and Sq (z) = ¢(z).S2(z) (z € D). We denote
the majorization by;

S1(2) << S2(2), (z €D) (6)

If we take w(z) = z; then quazi subordination
becomes the majorization (Yasunori and Shigeyoshi,
2008). Finally, let H (D) be the linear space of all
analytic functions defined on the open unit disc D. A
sense-preserving log-harmonic mapping is the solution
of the non-linear elliptic partial differential equation:

£

= w(z)-Z,
i £ (7)
where w(z) € H(D) is the second dilatation of f such
that |w(z)] < 1 for every z € D. It has been shown

that if f is a non-vanishing log-harmonic mapping,
then f can be expressed as:

f =h()g(2) @

where h(z) and g(z) are analytic functions in D.

On the other hand, if f vanishes at z = 0 and at no
other point, then f admits the representation:

f=z|z|*8 h(Z)g(T), )

where Ref > —-1/2, h(z) and g(z) are analytic in D
with g(0) = 1 and h(0) = 0. We nde thatthe class
of log-harmonic mappings is denoted by S| H .

Let f = zh(z)g(z) be an element of Spy

was

studied by Zayid and Daoud (1988).

RESULTS

Theorem 1

Let T =#M@E@ =0@® 1o o element of S/ (A, B)

0(z) =2h(z) , glz) = 1 +aiz+ a2’ +.., hz) =by+bz+byz’ +..
H( ) z2p'(2)

And let $ " Then:

H(z) € A(a, B) & Re(H (z) + azH U(Z)) > B, (|Z| <1 (10)

for some complex a, (a = 0) ;

< 1).
Proof
Let f €S™ L4 (A, B). Then:
H(Z) _ Z(I)O(Z)_ Z(b() +2b1Z+ 3b222 + )
T Pp(z) bz +biz2 +byzd +
by b b, b2 i}
=0 +2 024322 +.)(1 + g4 220+
(I+ b0Z+ b )( b, X

b, b, b b, b, o b
= (4224324 (- (= + )+ =27+ ) = (24 +0)
b G ER T EIT

2
(22322 - (— —)z2+...)
bO bO 0

_1 b1 3b1b0 - b% - b1b2
+ b_OZ + b%

Zy +...

:1+h1Z+h2Z2 + ...

satisfied easily.

Lemma 1:

X , X
H@z) =1+ bz €A, B, hy = || €777 2

n=1 n=1

(1+nRe(ar)) [hy| < 1-P.

Proof
xX
Re(H (z) + azH 0(z)) = Re(1 + (1 + na)h,z")
n=1
X
=Re(l + (1+an) |hy|e ™™z > B

n=1

for all z € D Let z = |z| e~1©
and,

X
Re(H (z) +azH'(z)) = 1- (1 +nRe(a)) |hy||z|" > B

n=1

, then z" = |z|n

and for some B (0 =B

(11)

(12)

(13)

If H(z) is an element of A(a, B) then;

(17)



Telling |z| — 17, we have;

xX
(1 + nRe(a)) |hy|=1-p

n=1

Theorem 2

If H(z) is an element of A(a, B) then:

X _
H(z) =1+  h,z" € Ao, B), hy = |[hy| e Re(oq) =0
n=1
=>1- l;ﬁm <ReH(z) S H@| =<1+ im
I+Rea ' - - 1+ Rea
for |z| < 1.

Proof by Lemma 1,

X 1-B
Ihn| = 1 + Re(a)

n=1

Thus:

H(z)] =1+ |z] > |hn| =1 +& |z|

nel 1+ Rea

and,

ReH (z) = 1+Re(Xh“z“) = |Z|X|h“| >1— 1-p l2|
n=1 el 1+ Re(a)

Theorem 3

If H(z) is an element of A(a, B) then:

X ,
haz" € Ao, B), hy = |hy| €™ Re(a) =0

n=1

1-B - (1 +Re(a) [h])

ﬁRe(h) - < 0
1 ( ) |Z| = ReH (Z)
1—|S— 1+ Re(a h
<|H0(Z)|<|h1|+ (Fe( s( l)l ll) |Z|
for Izl < 1.

(21)
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Proof
Note that:
X
(1+Re(@)) |y [+ (1+nRe(a)) [hy| < (1+nRe(w)) |hy| < 1-,
n=1 n=1 (30)
This gives that:
X 1-B-(1+ Re(w)) |hy|
n [ha| = Re(a)
n=2 (31)
Thus we have that:
xX
H'z)|= h + nh,z"" <|h|+g|+]z| 0lhal
n=2 n=2 (32)
1-PB-(1+ Re(a)) |h
Re((X) (33)
and,
ReH'(z) = Re(h Xh ") = Re(hy) - [z [hy|
e z) = Re + nh,z""') = Re -z n |h,
1 1 (34)
1-B-(1+ Re(n)) |h
Re(a) (35)
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