Full Length Research Paper

On enhanced control charting for process monitoring

Saddam Akber Abbasi ${ }^{1 *}$ and Muhammad Riaz ${ }^{2}$
${ }^{1}$ Department of Statistics, the University of Auckland, Auckland, New Zealand.
${ }^{2}$ Mathematics and Statistics Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Accepted 4 June, 2012

Abstract

The information on auxiliary characteristics helps significantly in increasing the efficiency of control charts for detecting shifts in process parameters. In this study we proposed Shewhart type control charts, namely the A_{r} chart, the D_{r} chart and the K_{r} chart, which utilizes information on two auxiliary characteristics (X and Z) for improved monitoring of process location parameter with respect to a single quality characteristic of interest ($\boldsymbol{\eta}$. Assuming trivariate normality of (Y, X, Z), a general control chart structure is developed in the form of the three sigma and the probability limits. The performance of the proposed charts is compared with the usual Shewhart \bar{Y} chart, the M_{r} chart of Riaz (2008a), the control limits of Zhang (1984) and Wade and Woodall (1993). It has been observed that the proposed charts perform superior, in terms of discriminatory power, as compared to the above mentioned counterparts, depending upon the correlation structure among the auxiliary characteristics and the quality characteristic of interest. The said superiority zone of the correlation structures, favoring the proposed charts, needs to be identified very carefully to apply it in a given situation.

Key words: Auxiliary characteristics mean control charts, location parameter, normality, power curves, quality characteristics.

INTRODUCTION

A process is generally described by its characteristics and out of these some are of main concern and others are of a supplementary nature. The characteristics of main concern are termed as quality characteristics of interest while the other characteristics are termed as auxiliary characteristics. The auxiliary characteristics need to be identified very carefully along with the characteristics of interest. An auxiliary characteristic may be an early measurement in a process, crude but simple to obtain measurement, a property that would be monitored etc. The quality characteristic of interest may be any current variable of major interest which needs to be monitored for example, weight of a machine component, diameter of a shaft, spinning speed of wheel etc.

It is a common practice to take benefit out of the
information available on auxiliary variable(s), along with the main study variable(s) of interest, in order to improve the efficiency in statistical terms. There is a variety of literature available in this regard for example, Kiregyera (1984), Mukerjee et al. (1987), Singh (2001), Singh et al. (2004), Kadilar and Cingi (2005), Joarder (2009), (2011) and Omar and Joarder (2011). This idea of using information on some additional characteristic(s) (for example, auxiliary characteristic(s)) which are associated with the main quality characteristic of interest has also been used in quality control literature. Particularly in control charting methodology, it has been used in the form of cause-selecting and regression-adjusted control charts (for example, Mandel (1969); Zhang (1984); Hawkins (1991, 1993); Wade and Woodall (1993); Shu et al. (2005) and auxiliary information based control charts
(for example, Riaz (2008a, b); Riaz and Does (2009)) for the sake of an improved process monitoring with respect to the quality characteristic of interest.

Riaz (2008a) proposed a location control chart, namely the M_{r} chart, in which he used the information of single auxiliary characteristic on regression pattern. Riaz (2008b) and Riaz and Does (2009) gave proposals for variability control charts based on a single auxiliary characteristic in which they used the auxiliary informationon regression and ratio patterns respectively. There may be many real situations when more than one auxiliary characteristics are available to be used e.g. to monitor the inner diameter of a shaft its outer diameter and weight may be the two possible auxiliary characteristics. For the sake of simplicity we assume that there are two auxiliary characteristics available along with the quality characteristics of interest.
The rest of this article is organized as follows: The design structure of the proposed charts, performance evaluation measures and a comparison of the proposed charts with the usual Shewhart \bar{Y} chart and the M_{r} chart of Riaz (2008a), the steps for using the proposed chart with help of simulated examples and finally, the paper ends with conclusions.

THE PROPOSED CHARTS

Suppose that the quality characteristic of interest is denoted by Y and the two auxiliary characteristics by X and Z. We write these three variables of this study in the form of a triplet as
$(Y, X, Z) \quad$. Let $\quad(Y, X, Z) \square N_{3}(\underline{\mu}, \Sigma) \quad$ where
$\underline{\mu}=\left(\begin{array}{c}\mu_{y} \\ \mu_{x} \\ \mu_{z}\end{array}\right)$ and $\Sigma=\left[\begin{array}{c}\sigma_{y y} \sigma_{y x} \sigma_{y z} \\ \sigma_{x y} \sigma_{x x} \sigma_{x z} \\ \sigma_{z y} \sigma_{z x} \sigma_{z z}\end{array}\right]$.
Here N_{3} represents the trivariate normal distribution, μ_{y} , μ_{x} and μ_{z} represent the means of Y, X and Z, respectively; $\sigma_{y y}, \sigma_{x x}$ and $\sigma_{z z}$ represent the variances of Y, X and Z, respectively; $\sigma_{y x}, \sigma_{y z}$ and $\sigma_{x z}$ represent the co-variances between $Y, X ; Y, Z$ and X, Z; respectively.
Now the objective is to monitor the variations in Y by exploiting the information on X and Z. We consider here the case when the auxiliary characteristics X and Z remain stable over time. Also we assume that the spread parameters of Y is in-control so the only
parameter we are concerned with is the location parameter of Y, that is, μ_{y}. In a broader sense we can consider any process without cascade property (cf. Hawkins (1993)) where each variable may undergo a distributional change without affecting the other variables of the process.
To monitor the behaviour of Y, in terms of μ_{y}, taking into account the information on X and Z we need an estimator for μ_{y} which capitalizes the information on X and Z as well along with the information of Y. Let $\left(y_{k}, x_{k}, z_{k}\right)$ where $k=1,2, \ldots n$ be a trivariate random sample of size n drawn from (Y, X, Z). We considered three estimators of process location which uses the information of auxiliary characteristics X and Z , given as:
The regression type estimator given in Kadilar and Cingi (2005), defined as:

$$
\begin{equation*}
A_{r}=\bar{y}+b_{y x}\left(\mu_{x}-\bar{x}\right)+b_{y z}\left(\mu_{z}-\bar{z}\right) \tag{1}
\end{equation*}
$$

The ratio type estimator proposed by Abu-Dayyeh et al. (2003), defined as:

$$
\begin{equation*}
D_{r}=\bar{y}\left(\frac{\mu_{x}}{\bar{x}}\right)^{\alpha_{1}}\left(\frac{\mu_{z}}{\bar{z}}\right)^{\alpha_{2}} \tag{2}
\end{equation*}
$$

The ratio type estimator proposed by Kadilar and Cingi (2003), defined as:

$$
\begin{equation*}
K_{r}=\bar{y}\left(\frac{\mu_{x}}{\bar{x}}\right)^{\beta_{1}}\left(\frac{\mu_{z}}{\bar{z}}\right)^{\beta_{2}}+b_{y x}\left(\mu_{x}-\bar{x}\right)+b_{y z}\left(\mu_{z}-\bar{z}\right) \tag{3}
\end{equation*}
$$

where \bar{y}, \bar{x} and \bar{z} are the sample means of Y, X and Z respectively. The quantities $b_{y x}$ and $b_{y z}$ are defined as:
$b_{y x}=s_{y x} / s_{x x}$ and $b_{y z}=s_{y z} / s_{z z}$
where $s_{x x}$ and $s_{z z}$ are the sample variances of X and Z, respectively, $s_{y x}$ and $s_{y z}$ are the sample co-variances between Y, X and Y, Z, respectively. We used the optimal choices of $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} as reported in AbuDayyehh et al. (2003) and Kadilar and Cingi (2005), respectively, that is:
$\alpha_{1}=\frac{c_{y} b_{y x z}}{c_{x}}, \alpha_{2}=\frac{c_{y} b_{y x x}}{c_{z}}, \beta_{1}=\frac{s_{y}}{r_{1} s_{x}} \rho_{1}^{*}$ and $\beta_{2}=\frac{s_{y}}{r_{2} s_{z}} \rho_{2}^{*}$

Where
$c_{y}=\frac{s_{y}}{\bar{y}}, c_{x}=\frac{s_{x}}{\bar{x}}, c_{z}=\frac{s_{z}}{\bar{z}}, b_{y x z z}=\frac{\rho_{y x}-\rho_{y z} \rho_{x z}}{1-\rho_{x z}^{2}}, b_{y z x}=\frac{\rho_{y z}-\rho_{y x} \rho_{x z}}{1-\rho_{x z}^{2}}$
$\rho_{1}^{*}=\frac{\rho_{x z}\left(\rho_{y x} \rho_{x z}-\rho_{y z}\right)}{1-\rho_{x z}^{2}}$ and $\rho_{2}^{*}=\frac{\rho_{x z}\left(\rho_{y z} \rho_{x z}-\rho_{y x}\right)}{1-\rho_{x z}^{2}}$
The population means of the two auxiliary characteristics that is, μ_{x} and μ_{z} are assumed to be known in Equation 1 to 3 . We will refer to the charts based on A_{r}, D_{r} and K_{r} estimators as the A_{r} chart, the D_{r} chart and the K_{r} chart, respectively.

Some distributional results

A general control chart structure that can be used with any of the three estimators will develop here.
First we define a pivotal quantity G, which is based on the sample statistic, say T, given as:

$$
\begin{equation*}
G=\sqrt{n}\left(T_{r}-\mu_{y}\right) / \sigma_{y} \tag{4}
\end{equation*}
$$

Here T represents any of the sample statistic given in Equation 1 to 3 , that is, A_{r}, D_{r} or K_{r}. The distributional behaviour of G entirely depends on the four quantities namely $n, \rho_{y x}, \rho_{y z}$ and $\rho_{x z}$. Here $\rho_{y x}, \rho_{y z}$ and $\rho_{x z}$ represent the correlations between $Y, X ; Y, Z$ and X , Z; respectively, where $\rho_{i j}=\sigma_{i j} / \sqrt{\sigma_{i i} \sigma_{i j}}$. Now we let the following:

$$
\left.\begin{array}{l}
\mu_{G}=g_{2}, \tag{5}\\
\sigma_{G}=g_{3} \text { and } \\
\alpha^{\text {th }} \text { quantile of } G=G_{\alpha}
\end{array}\right\}
$$

where μ_{G}, σ_{G} and G_{α} are the mean, standard deviation and α th quartile of the distribution of G. The asymptotic results for coefficients g_{2} and g_{3} considering different choices of T are provided in the Appendix.
The results given in Appendix can be used satisfactorily for larger values of n or $\rho_{i j}(i=y, x, z=j$ where $i \neq j)$. For other choices of n and $\rho_{i j} \mathrm{~s}$, we need the true results for g_{2}, g_{3} and G_{α} which may be obtained either analytically or through Monte Carlo simulations. To avoid
the analytical complications of dealing with the distributional properties of G in the form of g_{2}, g_{3} and G_{α}, we have written a code in R language to obtain the simulation results for these quantities. For some representative values of n and $\rho_{i j}$ s the simulation results of g_{2} and g_{3} are given in Table 1 while the lower and upper quartiles of G at $\alpha=0.01,0.005$ and 0.0027 are given in Tables 2 to 4, respectively for the A_{r} chart. The standard errors for the simulated results (reported in Tables 1 to 4) are less than 1%, which is acceptable in control chart studies (Schaffer and Kim, 2007). These simulation results are based on 1000 repetitions of 10,000 Monte Carlo simulations. Similar results can be easily obtained for D_{r} and K_{r} charts.

Control chart design

Based on the results given above, we are now in a position to define the design structure of a general control chart namely the T_{r} Chart. From the expressions given in (4) and (5) above, we have the following:
$\left.\begin{array}{ll}\mu_{G}=g_{2} & \Rightarrow \mu_{T_{r}}=\mu_{y}+g_{2} \sigma_{y} / \sqrt{n} \\ \sigma_{G}=g_{3} & \Rightarrow \sigma_{T_{r}}=g_{3} \sigma_{y} / \sqrt{n} \\ G_{\alpha}=\alpha^{t h} & \text { quantile of } G\end{array} \quad \Rightarrow T_{r_{\alpha}}=\mu_{y}+G_{\alpha} \sigma_{y} / \sqrt{n}\right\}$
where $\mu_{A_{r}}, \sigma_{A_{r}}$ and $T_{r_{\alpha}}$ are the mean, standard deviation and α th quartile of the distribution of T_{r}, respectively. Based on these results for $\mu_{T_{r}}, \sigma_{T_{r}}$ and $T_{r_{\alpha}}$, we can define the control limits of the T_{r} charts, using the three sigma limit and the probability limit approaches, as:

Three Sigma Limits
$C L=\mu_{T_{r}}, L C L=\mu_{T_{r}}-3 \sigma_{T_{r}}$ and $U C L=\mu_{T_{r}}+3 \sigma_{T_{r}}$
where $C L, L C L$ and $U C L$ refer to the Central Line, Lower Control Limit and Upper Control Limit on the T_{r} chart and the results for $\mu_{T_{c}}$ and $\sigma_{T_{r}}$ are given in (6).

Probability Limits

$$
\begin{equation*}
M L=T_{r_{0.50}}, L P L=T_{r_{\alpha / 2}} \text { and } U P L=T_{r_{(1-\alpha / 2)}} \tag{8}
\end{equation*}
$$

Table 1. Control chart coefficients g_{2} and g_{3} for the proposed A_{r} chart.

n	$\rho_{x z}$	$\rho_{y x}$	$\rho_{y z}$							
			0.2	0.5	0.6	0.7	0.2	0.5	0.6	0.7
			g_{2}				g_{3}			
5	0.1	0.2	0.02528	0.01118	0.00286	-0.02103	1.37879	1.25962	1.19871	1.11642
		0.5	0.02124	0.00101	0.00559	0.01226	1.25305	1.12344	1.09129	1.00844
		0.7	-0.00531	0.01388	-0.00072	0.00301	1.10444	0.98864	0.88997	0.7833
	0.4	0.2	0.00062	-0.00609	0.0072	0.01235	1.38015	1.33266	1.22746	1.1622
		0.5	-0.02645	-0.00976	-0.002	-0.00839	1.32587	1.22778	1.18168	1.10548
		0.7	-0.00705	0.00271	-0.0174	0.01366	1.15595	1.10066	1.06812	0.99845
	0.6	0.2	-0.00197	0.00907	0.01026	0.00406	1.46208	1.33059	1.27938	1.18668
		0.5	-0.00711	-0.02869	-0.00815	-0.00565	1.35712	1.33152	1.25687	1.16798
		0.7	-0.01363	-0.0016	-0.01275	0.00543	1.14878	1.19654	1.14881	1.10673
10	0.1	0.2	-0.00563	-0.00288	-0.00945	0.00688	1.08122	0.98617	0.92521	0.84061
		0.5	-0.00461	0.01465	0.00944	-0.00743	0.98483	0.8928	0.81227	0.71503
		0.7	-0.00273	0.00824	-2e-04	0.00255	0.83997	0.72319	0.63659	0.51959
	0.4	0.2	0.02833	0.01165	0.01507	-0.01221	1.11388	1.02812	0.96857	0.90049
		0.5	0.0087	-0.0062	0.00074	-0.01407	1.03116	0.98071	0.92882	0.86788
		0.7	0.00306	0.00767	0.00337	-0.00634	0.8959	0.87357	0.81322	0.75689
	0.6	0.2	-0.02319	-0.01109	0.00263	0.02549	1.15461	1.0691	1.02283	0.92831
		0.5	0.01838	0.01306	-0.01017	-0.00651	1.06936	1.04593	1.00541	0.95394
		0.7	0.00656	0.01254	0.00046	0.01008	0.93079	0.94729	0.92794	0.89932
15	0.1	0.2	0.001	-0.00371	-0.00448	-0.00194	1.04659	0.93876	0.85827	0.78882
		0.5	0.01472	-0.00889	-0.00796	0.01011	0.93186	0.82375	0.76034	0.66147
		0.7	-0.00161	-0.0061	0.01524	-0.00027	0.79915	0.67325	0.58489	0.45589
	0.4	0.2	-0.01385	0.00744	-0.00434	0.01175	1.06876	0.96603	0.92541	0.85329
		0.5	-0.0112	0.0072	0.00733	0.00566	0.96556	0.91324	0.88048	0.80839
		0.7	-0.00789	-0.00359	0.02181	-0.01146	0.84572	0.81578	0.7686	0.71474
	0.6	0.2	0.00597	0.00838	-0.00581	0.01725	1.08526	0.99464	0.94147	0.88688
		0.5	-0.00031	0.01003	-0.00629	0.01038	1.00483	0.97996	0.95624	0.89657
		0.7	0.00443	0.00981	0.01118	-0.00304	0.87396	0.91137	0.88681	0.84288

where $M L, L P L$ and $U P L$ refer to the Median Line, Lower Probability Limit and Upper Probability Limit on the T_{r} chart and the results for $T_{r_{\alpha}}$ s are given in (6). Here α is a pre-specified false alarm rate which is equally divided on both the tails to define the probability limits.
In probability limits approach it is preferable to replace the $C L$ by $M L$ as we did in (8). The control limits given in (7) and (8) are the specified parameters versions of the three sigma and probability limits structures of the T_{r} chart. In case of unspecified parameters the estimated versions may used by replacing μ_{y} and σ_{y} by their estimators $\hat{\mu}_{y}$ and $\hat{\sigma}_{y}$, where $\hat{\sigma}_{y}$ may be obtained from some spread control chart e.g. the R chart and $\hat{\mu}_{y}=\bar{T}_{r}$
based on an initial set of say m samples from the process in a stable situation. The choices of T as A_{r}, D_{r} and K_{r} will be referred as the proposed A_{r} chart, D_{r} chart and K_{r} chart, respectively.

PERFORMANCE EVALUATION AND COMPARISONS

To evaluate the performance of a control chart discriminatory power is a very popular measure. We evaluate here the performance of our proposed control charts using the same performance measure. Let the in control value of μ_{y} be denoted by μ_{y}^{0} and the shifted value by μ_{y}^{1}. We define here μ_{y}^{1} in terms of μ_{y}^{0} and

Table 2. Quantile points of the distribution of G when $\alpha=0.01$ for the proposed A_{r} chart.

			$\rho_{y z}$							
			0.2	0.5	0.6	0.7	0.2	0.5	0.6	0.7
n	$\rho_{x z}$	$\rho_{y x}$	Lower quantile points				Upper quantile points			
5	0.1	0.2	-3.97102	-3.78103	-3.6426	-3.65317	4.14905	3.73057	3.8889	3.43684
		0.5	-3.62557	-3.27497	-3.16787	-2.92716	3.78079	3.31657	3.38637	3.01347
		0.7	-3.44537	-3.12252	-2.82657	-2.58031	3.37663	3.07759	2.69982	2.61299
	0.4	0.2	-4.11569	-4.19893	-3.73861	-3.59456	4.30716	4.07241	3.77613	3.56266
		0.5	-4.41764	-3.683	-3.54701	-3.39483	3.71978	3.78464	3.80811	3.46128
		0.7	-3.60466	-3.36004	-3.34861	-2.9802	3.65047	3.5377	3.35836	3.04366
	0.6	0.2	-4.50682	-4.23655	-3.98565	-3.68707	4.41788	3.85878	3.88798	3.76618
		0.5	-4.23524	-4.55563	-3.95808	-3.67121	3.94551	3.86092	3.88779	3.40115
		0.7	-3.61571	-3.88482	-3.75627	-3.44119	3.34483	3.52922	3.48809	3.41596
10	0.1	0.2	-2.86258	-2.59285	-2.46205	-2.24404	2.82898	2.68028	2.42749	2.30314
		0.5	-2.64839	-2.3952	-2.22006	-1.98339	2.67217	2.39217	2.23577	1.94372
		0.7	-2.25481	-2.03972	-1.80749	-1.58932	2.15949	2.01814	1.77604	1.52854
	0.4	0.2	-2.96395	-2.83776	-2.54074	-2.4675	3.06357	2.85225	2.72894	2.49768
		0.5	-2.83123	-2.7103	-2.51405	-2.51962	2.72242	2.70332	2.5911	2.36777
		0.7	-2.47889	-2.46715	-2.23234	-2.20898	2.3918	2.45258	2.30924	2.17702
	0.6	0.2	-3.14441	-2.84443	-2.87916	-2.55466	3.09088	2.95342	2.7877	2.66518
		0.5	-2.9006	-2.81961	-2.71347	-2.78393	2.88504	2.96454	2.7522	2.55112
		0.7	-2.54317	-2.57074	-2.64255	-2.57708	2.65917	2.711	2.67683	2.61477
15	0.1	0.2	-2.72483	-2.36326	-2.27587	-2.0561	2.70286	2.53425	2.19781	2.01474
		0.5	-2.36822	-2.19739	-1.99993	-1.75113	2.43056	2.18883	2.00273	1.75705
		0.7	-2.06945	-1.82418	-1.59031	-1.29214	2.15204	1.78648	1.60332	1.33872
	0.4	0.2	-2.82178	-2.58514	-2.53264	-2.22029	2.78592	2.54471	2.42061	2.33632
		0.5	-2.46588	-2.28677	-2.30213	-2.20105	2.48775	2.38369	2.40907	2.17542
		0.7	-2.24404	-2.23402	-1.9964	-1.97943	2.26355	2.15898	2.0529	1.89697
	0.6	0.2	-2.7444	-2.60271	-2.45856	-2.31174	2.86499	2.56944	2.43297	2.47822
		0.5	-2.64485	-2.53601	-2.70039	-2.52149	2.66358	2.54752	2.57133	2.51461
		0.7	-2.40357	-2.45853	-2.31856	-2.38694	2.33469	2.44131	2.47169	2.38482

$\delta \sigma_{y}$ as:

$$
\begin{equation*}
\mu_{y}^{1}=\mu_{y}^{0}+\delta \sigma_{y} \tag{9}
\end{equation*}
$$

Now the ability of the three sigma and the probability limits based design structures of the proposed charts is given by the following power expressions:

$$
\begin{equation*}
\text { Power }_{T C h a r t}=\operatorname{Pr}\left(\left(T_{r}<L C L \text { or } T_{r}>U C L\right) / \mu_{y}^{1}=\mu_{y}^{0}+\delta \sigma_{y}\right) \tag{10}
\end{equation*}
$$

(for three sigma limits)

Power $_{\text {Thart }}=\operatorname{Pr}\left(\left(T_{r}<L P L\right.\right.$ or $\left.\left.T_{r}>U P L\right) / \mu_{y}^{1}=\mu_{y}^{0}+\delta \sigma_{y}\right)$
(for probability limits)

These power expressions for the proposed A_{r} chart may be evaluated using the distributional results given above. It is a common practice to evaluate such expressions by varying the values of δ and we do the same here in this article. By varying the values of δ from 0.0 to 3.0 , we have evaluated the power expressions for different n by fixing the false rate at α level. It is to be mentioned that for power evaluation, the shifts are taken in μ_{y} in terms of σ_{y} units. The resulting powers/power curves are provided in the following sub-sections along with the comparison with other charts. We expect that the proposed control charts should detect any shift in the parameter of interest with a high probability, keeping the false alarm rate at fixed low level. We compare the

Table 3. Quantile points of the distribution of G when $\alpha=0.005$ for the proposed A_{r} chart.

performance of the proposed A_{r}, D_{r} and K_{r} charts, in terms of discriminatory power, with the existing counterparts serving the same purpose. These exiting counterparts are the M_{r} chart of Riaz (2008a) and the usual Shewhart \bar{Y} chart. An indirect comparison with the control limits of Zhang (1984) and Wade and Woodall (1993) is also provided.

Comparison of proposed A_{r}, D_{r} and K_{r} charts with M_{r} and \bar{Y} charts. We have evaluated the power expression (11) of the proposed A_{r}, D_{r} and ${ }_{K_{r}}$ charts for $n=15, \alpha=0.01$ and $\delta=0.0-0.3$ for different representative combinations of $\rho_{y x}, \rho_{y z}$ and $\rho_{x z}$. These powers are plotted against δ and the resulting power curves are
shown in the Figures 1 to 9 whereas Figure 10 presents power curves for a specific case when $n=25$, to investigate the effect on sample size on the performance of the proposed chart. We have varied the values of $\rho_{y x}$ and $\rho_{x z}$ between Figures 1 to 10 and within each figure we have taken different choices of $\rho_{y z}$. The similar power curves for the M_{r} chart of Riaz (2008a) and the usual Shewhart \bar{Y} chart are also provided in Figures 1 to 10.

The symbols used in Figures 1 to 10 are defined as:
\bar{Y} refers to the power curve of the usual \bar{Y} chart; $M_{r_{0,5}}$ refers to the power curve of the M_{r} chart when $\rho_{y x}=0.5$;

Table 4. Quantile points of the distribution of G when $\alpha=0.0027$ for the proposed A_{r} chart.

$\rho_{y z}$										
			0.2	0.5	0.6	0.7	0.2	0.5	0.6	0.7
n	$\rho_{x z}$	$\rho_{y x}$	Lower quartile points				Upper quartile points			
5	0.1	0.2	-5.39974	-5.00368	-5.43807	-4.58529	5.01409	5.1413	5.01839	5.07115
		0.5	-4.52258	-5.14223	-5.18399	-4.04945	4.89941	4.66119	4.86417	4.38703
		0.7	-4.90532	-4.25886	-4.17131	-3.94228	4.7847	3.87925	4.36303	4.01529
	0.4	0.2	-5.50985	-5.12604	-4.94594	-4.99818	5.24367	5.46468	4.72265	4.79616
		0.5	-5.34707	-5.2568	-5.02791	-4.46698	5.13957	4.94856	4.7503	4.52779
		0.7	-5.14314	-4.12201	-4.77943	-4.28963	4.97546	4.12672	4.25718	4.49008
	0.6	0.2	-5.52532	-5.81717	-6.24932	-5.17663	7.13212	5.40913	5.56254	5.39732
		0.5	-6.33033	-5.10441	-4.90417	-5.89414	5.52745	5.18017	5.71029	5.04137
		0.7	-5.65621	-5.24406	-4.69353	-5.63756	5.52347	5.35344	5.33113	5.1099
10	0.1	0.2	-3.27143	-3.22835	-3.01715	-2.63105	3.22923	3.13473	3.13884	2.78724
		0.5	-3.05905	-2.8379	-2.69147	-2.37552	3.09342	2.98674	2.7367	2.38318
		0.7	-2.56669	-2.35595	-2.17836	-2.04356	2.85726	2.40829	2.21894	2.09169
	0.4	0.2	-3.58836	-3.79965	-3.46405	-3.03036	3.62924	3.27544	3.25358	3.03745
		0.5	-3.32176	-3.47487	-2.9817	-3.1034	3.23131	3.2391	3.28229	2.88333
		0.7	-3.03735	-2.76057	-2.95401	-2.63614	3.11502	3.12867	2.70669	2.59237
	0.6	0.2	-3.67768	-3.61903	-3.42601	-3.4583	3.93277	3.83308	3.446	3.25822
		0.5	-3.68748	-3.52476	-3.64232	-3.23163	3.3837	3.40624	3.4675	3.44901
		0.7	-3.06349	-3.36299	-3.16347	-3.55088	3.14006	3.3475	3.27739	3.26034
15	0.1	0.2	-3.0439	-2.90463	-2.71473	-2.37663	3.12921	2.96994	2.66318	2.40894
		0.5	-2.98606	-2.55459	-2.40091	-2.23551	2.95396	2.55838	2.31413	2.09056
		0.7	-2.58221	-2.10444	-1.76171	-1.54547	2.53261	2.06038	1.87562	1.68233
	0.4	0.2	-3.41324	-3.14535	-2.78668	-2.70091	3.23811	3.00637	2.80955	2.79875
		0.5	-3.053	-3.02028	-2.72883	-2.6213	3.25452	2.98602	2.58218	2.54357
		0.7	-2.73916	-2.66978	-2.4749	-2.5905	2.73159	2.57113	2.53498	2.42894
	0.6	0.2	-3.54761	-3.02662	-3.16646	-2.99985	3.39046	3.18865	3.32626	2.83037
		0.5	-3.10087	-3.02705	-3.01128	-2.90399	3.34941	3.10859	3.08018	2.92046
		0.7	-2.87782	-2.84046	-2.96856	-2.81365	2.6707	3.05733	2.96639	2.76807

$A_{r_{0,5}}$ refers to the power curve of the A_{r} chart when $\rho_{y z}=0.5 ; D_{r_{0.5}}$ refers to the power curve of the D_{r} chart when $\rho_{y z}=0.5 ; K_{r_{0.5}}$ refers to the power curve of the K_{r} chart when $\rho_{y z}=0.5$;

Similarly the other symbols are defined.
The power curve analysis advocates the following for the proposed charts:

The D_{r} chart is performing better than all the other competing charts followed by the K_{r} chart. A_{r} chart
although less efficient then D_{r} and K_{r} charts, performs better then M_{r} and \bar{Y} charts.For a fixed value of $\rho_{x t}$, power of the proposed A_{r}, D_{r} and K_{r} charts increases with an increase in $\rho_{y x}$ and $\rho_{y z}$ (Figures 1 to 3). Power of the proposed charts decreases with an increase in $\rho_{x z}$ and vice versa (Figures 1 and 4).
The proposed charts performs better than both the \bar{Y} and M_{r} charts for low and moderate values of $\rho_{x z}$ irrespective of the values of $\rho_{y x}$ and $\rho_{y z}$ (that is, for low, moderate and high values of $\rho_{y x}$ and $\rho_{y z}$, the proposed

Figure 1. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.1, \rho_{y x}=0.2$ and $\rho_{y z}=0.5$ and 0.7 .

Figure 2. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.1, \rho_{y x}=0.5$ and $\rho_{y z}=0.5$ and 0.7 .

Figure 3. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.1, \rho_{y x}=0.7$ and $\rho_{y z}=0.5$ and 0.7 .

Figure 4. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.4, \rho_{y x}=0.2$ and $\rho_{y z}=0.5$ and 0.7 .

Figure 5. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.4, \rho_{y x}=0.5$ and $\rho_{y z}=0.5$ and 0.7
provided $\rho_{x x}$ is not high (Figures 1 to 6)). The M_{r} chart unconditionally performs better than the \bar{Y} chart (Figures 1 to 10).
In brief, the proposed charts has shown better performance for the case when the auxiliary variables (X and Z) are not much correlated with each other but strongly/moderately correlated with main variable (Y). To be specific, the correlation between X and Z (that is, $\rho_{x z}$) should not exceed 0.50 while the correlations of X and Z with Y (that is, $\rho_{y x}$ and $\rho_{y z}$) should be at least 0.30 in order to have a superior performance from the proposed charts. An important point to be noted is that these constraints on $\rho_{x z}, \rho_{y x}$ and $\rho_{y z}$ keeps relaxing with an increase in the value of n. This can be examined by looking at Figures 5 and 10. One can easily see the gaps among the curves in Figures 10 are more than those of in Figures 5. It means that the conditions on the correlation structures $\rho_{x z}, \rho_{y x}$ and $\rho_{y z}$ have been relaxed with the increase in sample size n.
A_{r} Chart vs. Zhang (1984); Wade and Woodall (1993) Zhang (1984) proposed an improvement over the separate use of the usual Shewhart's \bar{Y} charts. Later Wade and Woodall (1993) gave an improvement over

Zhang (1984) by proposing their prediction limits. Riaz (2008a) proved superiority of the M_{r} chart over the control limits of Zhang (1984); Wade and Woodall (1993). We have shown from above that the charts proposed in this study perform better than the M_{r} chart. Hence we can indirectly draw the conclusion that the proposed A_{r}, D_{r} and K_{r} charts will perform better than the control limits of Zhang (1984); Wade and Woodall (1993).

ILLUSTRATIVE EXAMPLES

In this section we will illustrate the application procedure for one of the three proposed charts that is, the A_{r} chart. Let us consider the data in which we have two auxiliary characteristics (X and Z) and one quality characteristic of interest (Y). Suppose we have samples of size $n=10$ available on 30 time points and the sample on each time point comes from one of the following two mechanisms:

Example 1: In all the 30 samples as a whole, 90% of the observations come from $N_{3}\left(\left(\begin{array}{l}0.0 \\ 0.0 \\ 0.0\end{array}\right),\left[\begin{array}{ccc}1.0 & 0.5 & 0.6 \\ 0.5 & 1.0 & 0.1 \\ 0.6 & 0.1 & 1.0\end{array}\right]\right)$ and

Figure 6. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.4, \rho_{y x}=0.7$ and $\rho_{y z}=0.5$ and 0.7 .

Figure 7. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.6, \rho_{y x}=0.2$ and $\rho_{y z}=0.5$ and 0.7 .

Figure 8. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.6, \rho_{y x}=0.5$ and $\rho_{y z}=0.5$ and 0.7

Figure 9. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.6, \rho_{y x}=0.7$ and $\rho_{y z}=0.5$ and 0.7 .

Figure 10. Power curves of $\bar{Y}, M_{r}, A_{r}, D_{r}$ and K_{r} charts for $\rho_{x z}=0.4, \rho_{y x}=0.5$ and $\rho_{y z}=0.5$ and 0.7 when $n=25$.
rest of the 10% come from $N_{3}\left(\left(\begin{array}{c}1.0 \\ 0.0 \\ 0.0\end{array}\right),\left[\begin{array}{ccc}1.0 & 0.5 & 0.6 \\ 0.5 & 1.0 & 0.1 \\ 0.6 & 0.1 & 1.0\end{array}\right]\right)$.
Example 2: First 20 samples are from $N_{3}\left(\left(\begin{array}{l}0.0 \\ 0.0 \\ 0.0\end{array}\right),\left[\begin{array}{lll}1.0 & 0.5 & 0.6 \\ 0.5 & 1.0 & 0.1 \\ 0.6 & 0.1 & 1.0\end{array}\right]\right)$ and the last 10 samples are from $N_{3}\left(\left(\begin{array}{l}1.0 \\ 0.0 \\ 0.0\end{array}\right),\left[\begin{array}{lll}1.0 & 0.5 & 0.6 \\ 0.5 & 1.0 & 0.1 \\ 0.6 & 0.1 & 1.0\end{array}\right]\right)$. We have simulated the datasets for the above mentioned two mechanisms of examples 1 and 2 so that we can have datasets with the known characteristics. The resulting datasets are used to calculate the required quantities for the proposed chart. The sample statistic A_{r} as defined in (1) and R_{y} (the sample range) are calculated for both the examples and are provided in the following Table 5.
The control limits for the proposed A_{r} chart are calculated using $\alpha=0.01$ for the two examples under discussion. The two sets of limits are given as:
(For example 1)
$L C L=\bar{A}_{r}+G_{0.005} \hat{\sigma}_{\mathrm{y}} / \sqrt{n}=-0.535$
$C L=\bar{A}_{r}=0.121$
$U C L=\bar{A}_{r}+G_{0.995} \hat{\sigma}_{\mathrm{y}} / \sqrt{n}=0.781$
where $\hat{\sigma}_{y}=\bar{R}_{y} / d_{2}=2.874 / 3.078=0.934, G_{0.005}=-2.220, G_{0.995}=2.236$,
$\rho_{x z}=0.1, \rho_{y x}=0.5, \rho_{y z}=0.6, n=10, \alpha=0.01$
(For example 2)
$L C L=\bar{A}_{r}+G_{0.005} \hat{\sigma}_{y} / \sqrt{n}=-0.728$
$C L=\bar{A}_{r}=-0.061$
$U C L=\bar{A}_{r}+G_{0.095} \hat{\sigma}_{y} / \sqrt{n}=0.611$
where $\hat{\sigma}_{y}=\bar{R}_{y} / d_{2}=2.925 / 3.078=0.9502, G_{0.005}=-2.220, G_{0.955}=2.236$,
$\rho_{x z}=0.1, \rho_{y x}=0.5, \rho_{y z}=0.6, n=10, \alpha=0.01$
Now values of the statistic A_{r} given in Table 5 are plotted against their respective control limits given above. The resulting control chart displays of the A_{r} chart are presented in Figures 11 and 12 for Examples 1 and 2 respectively.
According to our decision rule for the proposed A_{r} chart, we received out-of-control signals at time points

Table 5. Sample statistics A_{r} and R_{y} fro the simulated data sets.

Sample	Example 1		Example 2	
Number	A_{r}	R_{y}	A_{r}	R_{y}
1	-0.1953	3.4072	-0.2522	2.3536
2	0.9956	3.4576	-0.5479	3.7193
3	0.3632	3.3511	-0.0228	3.1412
4	0.3848	2.4604	0.3154	5.0663
5	0.0504	3.2620	-0.3051	2.4668
6	-0.2662	1.8949	-0.0692	2.6307
7	-0.3812	1.7086	0.2455	3.8516
8	1.4919	2.2800	0.1176	1.4283
9	-0.2341	2.2169	0.0573	2.9638
10	0.1919	3.9100	-0.2906	2.8699
11	-0.2110	2.3610	-0.0198	3.2805
12	0.0577	2.9506	-0.0261	2.6952
13	-0.1008	2.3926	0.0244	2.1876
14	-0.4243	2.4553	-0.4366	2.8410
15	-0.0554	2.8706	-0.1345	2.8980
16	0.1396	2.7692	0.1654	1.9662
17	-0.1152	2.3398	-0.0683	1.9612
18	0.6356	2.9082	0.2092	3.6413
19	0.1922	3.4963	0.1461	3.5290
20	-0.0131	2.1525	-0.3310	3.0069
21	0.1314	2.2191	1.0648	2.4157
22	0.1363	2.5550	0.7475	3.1311
23	1.0418	3.4011	0.7258	2.7343
24	-0.0354	2.9528	0.6691	2.3613
25	-0.2625	2.3061	0.7959	3.3186
26	-0.1491	2.9588	0.9752	5.4543
27	0.1727	2.3281	0.9220	2.6533
28	0.2465	4.1356	1.0267	2.7691
30	0.5724	3.9148	1.0901	3.8828
	4.8015	0.9544	2.9581	

\#2, 8, 23 and 29 as can be seen in Figure 11. Similarly the out-of-control signals are received at time point's \#21 to 30 as can be seen in Figure 12 (which is infact a permanent shift in the location parameter μ_{y}).

Conclusions

In this study we proposed three Shewhart type control charts, namely the A_{r} chart, the D_{r} chart and the K_{r} chart. These charts exploit the information of two auxiliary characteristics for the sake of an improved monitoring of the location parameter of the quality characteristic of interest. The design structure of the proposed charts has been developed in the form of the three sigma and the probability limits based on trivariate normality
assumption. Comparison of the proposals has been made with the existing counterparts including the usual \bar{Y} chart and the proposals of Zhang (1984); Wade and Woodall (1993); Riaz (2008a). The comparisons revealed that the D_{r} chart is best among all the charts investigated in this study. All the new proposals outperformed the said existing counterparts in terms of discriminatory power. This superiority of the proposed chart demands the auxiliary characteristics to be highly/moderately correlated with the main quality characteristic of interest but not having high correlations with each other.

The proposals of this article are of Shewhart type, focusing on an improved monitoring of the location parameter. However EWMA and CUSUM type structures can also be devised by using these location estimators,

Figure 11. A_{r} chart for Example 1.

Figure 12. A_{r} chart for Example 2.
for efficient detection of small deviations from the parameter value or alternatively some extra sensitizing
rules can also be carefully planned to be used with its control structure.

REFERENCES

Abu-Dayyeh WA, Ahmed MS, Ahmed RA, Muttlak HA (2003). Some estimators of a finite population mean using auxiliary information. Appl. Math. Comput. 139:287-298.
Hawkins DM (1991). Multivariate quality control based on regression-adjusted variables. Technometrics 33:61-75.
Hawkins DM (1993). Regression adjustment for variables in multivariate quality control. J. Qual. Technol. 25(3):170-182.
Joarder AH (2009). Moments of the product and ratio of two correlated chi-square random variables. Stat. Pap. 50(3):581-592.
Joarder AH (2011). Robustness of correlation coefficient and variance ratio under elliptical distributions. Tech. Rep., No. 422 - Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals - Saudi Arabia.
Kadilar C, Cingi H (2005). A new estimator using two auxiliary variables. Appl. Math. Comput. 162(2):901-908.
Kiregyera B (1984). Regression type estimators using two auxiliary variables and the model of double sampling form finite populations. Metrika 31:215-226.
Mandel BJ (1969). The regression control chart. J. Qual. Technol. 1:1-9.
Mukerjee R, Rao TJ, Vijayan K (1987). Regression type estimator using multiple auxiliary information. Aust. J. Stat. 29:244-254.
Omar MH, Joarder AH (2011). Some moment characteristics of the ratio of correlated sample variances. Technical Report No. 4223 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals - Saudi Arabia.
Riaz M (2008a). Monitoring process mean level using auxiliary information. Stat. Neerlandica 62(4):458-481.
Riaz M (2008b). Monitoring process variability using auxiliary information. Comput. Stat. 23(2):253-276.

Riaz M, Does RJMM (2009). A process variability control chart. Comput. Stat. 24(2): 345-368.
Schaffer JR, Kim MJ (2007). Number of replications required in control chart Monte Carlo simulation studies, Communications in Statistics: Simulation and Computation. 36(5):1075-1087.
Shu L, Tsung F, Tsui KL (2005). Effects of estimation errors on causeselecting charts. IIE Trans. 37:559-567.
Singh GN (2001). On the use of transformed auxiliary variable in the estimation of population mean in two phase sampling. Stat. Transit. 5:405-416.
Singh HP, Upadhyaya LN, Chandra P (2004). A general family of estimators for estimating population mean using two auxiliary variables in two phase sampling. Stat. Transit. 6:1055-1077.
Wade M, Woodall WH (1993). A review and analysis of cause-selecting control charts. J. Qual. Technol. 25:161-169.
Zhang GX (1984). A new type of control charts and a theory of diagnosis with control charts. World Quality Congress Transactions. Am. Soc. Qual. Control, Lond. 25:175-185.

APPENDIX

Here we will present asymptotic results of g_{2} and g_{3} for different choices of T

1. When $T=A_{r}$

From Kadilar and Cingi (2005), we have:

$$
\begin{aligned}
& g_{2} \approx 0 \\
& g_{3}=\sqrt{1-\rho_{y x}^{2}-\rho_{y z}^{2}+2 \rho_{y x} \rho_{y z} \rho_{x z}}
\end{aligned}
$$

2. When $T=D_{r}$

From Abu-Dayyeh et al. (2003), we have:
$g_{2}=\frac{1}{2 \sqrt{n}}\left[\frac{\sigma_{x}}{\mu_{x}} b_{y x . z}+\frac{\sigma_{z}}{\mu_{z}} b_{y z . x}-\frac{\sigma_{y}}{\mu_{y}} b_{y . x z}\right]$
$g_{3}=\sqrt{\left(1-\rho_{y, x z}^{2}\right)-\frac{1}{4 n}\left(\frac{\sigma_{x}}{\mu_{x}} b_{y x, z}+\frac{\sigma_{z}}{\mu_{z}} b_{y z x}-\frac{\sigma_{y}}{\mu_{y}} b_{y . x z}\right)^{2}}$
3. When $T=K_{r}$

From Kadilar and Cingi (2005), we have:
$g_{2}=\frac{\sqrt{n}}{\sigma_{y}} E\left\{\left(-\alpha_{1} \frac{\mu_{y}}{\mu_{x}}-b_{1}\right)\left(\bar{x}-\mu_{x}\right)+\left(-\alpha_{2} \frac{\mu_{y}}{\mu_{z}}-b_{2}\right)\left(\bar{z}-\mu_{z}\right)+\left(\bar{y}-\mu_{y}\right)\right\}$
$g_{3}=\sqrt{\left(\begin{array}{l}1+\left(\rho_{1}^{*}+\rho_{y x}\right)^{2}+\left(\rho_{2}^{*}+\rho_{y z}\right)^{2}+2\left(\rho_{1}^{*}+\rho_{y x}\right)\left(\rho_{2}^{*}+\rho_{x z}\right) \rho_{x z}-2\left(\rho_{1}^{*}+\rho_{y x}\right) \rho_{y x}-2\left(\rho_{2}^{*}+\rho_{x z}\right) \rho_{y z}- \\ \left(\frac{n}{\sigma_{y}}\right)^{2}\left(E\left\{\left(-\alpha_{1} \frac{\mu_{y}}{\mu_{x}}-b_{1}\right)\left(\bar{x}-\mu_{x}\right)+\left(-\alpha_{2} \frac{\mu_{y}}{\mu_{z}}-b_{2}\right)\left(\bar{z}-\mu_{z}\right)+\left(\bar{y}-\mu_{y}\right)\right\}\right)^{2}\end{array}\right.}$

