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An old variational principle (Maupertuis principle), forgotten as inconvenient quirk of history, has been 
reformulated into the modified variational principle (MVP) along with its reciprocal principle (RMP)  and 
both these principles have been derived classically as well as quantum mechanically. Wide scope of 
applicability of these new principles in classical mechanics has been demonstrated by solving the 
problems of Linear Oscillator, Anharmonic Oscillator and Anisotropic 2D-Quartic Oscillator (chaotic 
system). 
 
Key words: Variational principle, anharmonic oscillator, chaotic system. 

 
 
INTRODUCTION 
 
Classically a mechanical system of particles can be 

described by a Lagrangian L( ),, tqq ii
&  or by Hamiltonian  

),,( tpqH ii   where iq   are the generalized coordinates 

and ip  are the generalized momenta. The 

transformation from ),,( Lqq ii
&  to ),,( Hpq ii is the 

Legendre transformation (Rajput, 2005a) 
 

),,(),,( tqqLqptpqH ii

i
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Maupertuis proposed in 1744 a global integral quantity 
(Yourgan and Mandelstam, 1968) ‘Action’ which is least 
along the true path and greater for the unphysical virtual 
paths. Maupertuis definition of action and his 
corresponding variational principle were little vague, 
which were modified by Euler and Lagrange by taking the 
action as: 
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Where the arbitrary path )(tq j
′   runs from an initial point 

)0(ji qq =   to a final point ).(tqq jf =  These end 

points are kept fixed but the duration t is path  dependent. 

Euler and Lagrange showed that for the true trajectory W 

is stationary provided that the virtual trajectories )(tq j
′  

are all restricted to have the same fixed energy E= 
H=T+V. Thus the Maupertuis principle of least action may 
be written as: 
 

0)( =EWδ                                                                (3) 

 

Where Wδ  denotes a first order variation and the 

subscript E denotes that the energy is held fixed during 
the variation. This constraint of fixed energy brings 
several drawbacks in this Maupertuis variational principle 
given by Equation (3). It makes energy conservation an 
assumption and not a consequence, makes it 
cumbersome to convert this principle in to a differential 
equation for the trajectory, path becomes awkward to be 
handled analytically, and the virtual trajectories allowed 
by this principle in one dimension differ from the true 
trajectory by instantaneous velocity reversals. Due to 
these weaknesses the Maupertuis action (2) and his 
variational principle (3) were forgotten altogether. 

In the present paper, Maupertuis variational principle 
(3) has been reformulated into a very useful modified 
variational principle (MVP) along with its reciprocal 
principle (RMP). Deriving both these principles classically 
as well as quantum mechanically, their very wide 
applicability has been demonstrated in the problems of 
Linear Oscillator, Anharmonic Oscillator  and  Anisotropic 
 



 

 
 
 
2D-Quartic Oscillator (chaotic system). 
 
 
MODIFIED MAUPERTUIS VARIATIONAL PRINCIPLE 
(MVP) AND ITS RECIPROCAL PRINCIPLE (RMP) 
 
Maupertuis variational principle (3) can be reformulated in 
to following very useful modified variational principle 
(MVP) by relaxing the constraint of fixed energy for virtual 
path, allowing a larger class of trial trajectories and 

keeping the mean energy E  fixed (not necessarily 
conserving the energy):  
 

0)( =
E
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Where the mean energy may be defined as: 
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This modified variational principle (MVP), given by 
Equation (4) is free from weaknesses of the old principle 
(3) and it has the additional merit of allowing the 

reciprocal transformation interchanging EWand  

transforming it in to the following Reciprocal Maupertius 
Principle (RMP) with the same solution; 
 

0)( =WEδ                                                                    (6) 

 
The reciprocal pair of variational principles, MVP and 
RMP, given by Equation (4) and (2.3) respectively, may 
also be written in the following unconstrained form that is, 
Unconstrained Maupertuis Principle (UMP); 
 

EtW δδ =)(                                                                   (7) 

 
Where the time t, the duration of pure trajectory, is 
constant Lagrangian multiplier. 

Let us derive these variational principles, MVP, RMP 
and UMP, classically as well as quantum mechanically in 
the following subsections. 

 
 
Classical derivation 

 

Let us consider a function )]([ tqJ ′  such that:  
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Where ,......2,1 qq are the generalized coordinates and 

........,
21

qq && are the generalized velocities  of  the  system 
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of any number of particles. Taking the variation of virtual 
trajectory 
 

)()()( tqtqtq jjj
′+′→′ δ  

 

Where the end point variation of sq j '  are zero but there 

is an arbitrary final end point variation in t , that is, 
 

ttt δ+→  
 

Then, on applying the first variation theorem of calculus 
of variations, we have: 
 

t
q

F
tqtFtd

q

F

td

d

q

F
qJ

i

i

ii

t

o i

i
δδδ )])(()([)]([

&
&

& ∂

∂
−+′

∂

∂

′
−

∂

∂
= ∑∫∑      (9) 

 

Let us apply this result on the action given by Equation 
(2) which may also be written as: 
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Where we have: 
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And hence Equation (9) gives: 
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From Equation (5) for average energy we have:  
 

tdtpqH
t

tdtpqH
t

t
E

t

jjj

t

j
′′+′′−= ∫∫ ),,(

1
),,(

00

2
δ

δ
δ  

)(
1

0

Lqp
t

E
t

t
j

t

j

j −+−= ∫ ∑ &δ
δ

                                  (12) 

 

Where we have used Equation (1). This equation may 
also be written as: 
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Using relation (9), this equation may be written as: 
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Where in the first bracket we have used the well known 
Lagrangian equation, 
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And in the second bracket we have used the well known 
relation 
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For the holonomic conservative system. Now subtracting 
Equation (11) from (13), we have: 
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Where we have used relation (1). 

If  EtH =)(  is constant of motion, then Equation (14) 

reduces to 
 

0=− WEt δδ                                                              (15) 

 

On setting 0=Eδ  that is, for fixed average energy, this 

equation leads to MVP given by Equation (4) whereas for 

fixed W  that is, for 0=Wδ , it leads to RMP given by 

Equation (6). Equation may also be written as: 
 

EtW δδ =  

 
which is UMP given by Equation (7). 
 
 

Quantum mechanical derivation 
 
Schrodinger (1926a) tried to derive the variational 
principle of wave mechanics from something like RMP 
but in another of his paper on wave mechanics 
(Schrödinger 1926b), he described his heuristic argument 
used in earlier paper as incomprehensible and  presented 

 
 
 
 
a second platform for Schrödinger equation based on the 
analogy between geometric and wave optics on one hand 
and particle and wave on the other hand. It is interesting 
to note that Klein et al. (1995) derived this. RMP directly 
from matrix mechanics. Following the arguments 
presented by Gray et al. (1996), it will be demonstrated 
here that RMP is the classical limit of quantum variational 
principle given by Rajput (2005), 
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which turns in to RMP for large quantum number n. For 
simplicity, let us consider a one dimensional periodic 

motion, where the state 〉n  corresponds to a classical 

periodic trajectory with precisely the same energy nE . 

Using the WKB approximation for the trial wave functions 

,)( 〉= nqnψ  

 

we have 
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where v  is the velocity, C is a constant and τ is the 

period of motion. Under the same approximation, we 
have: 
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For one dimensional periodic motion, the constraint on 

the energy for an allowed state n  for large n is 

 

∫ == nhpdqcycleW )(                                              (19) 

 
which is famous Bohr-Sommerfeld-Wilson quantization 
rule (Rajput, 2005b). It shows that for fixed n the action 

W is to be kept fixed. Hence for fixed large value of 

,n the quantum variational principle (16) reduces to 
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for fixed  W , that is, 0)( =
W

Eδ  showing that the 

quantum variational principle (16) transforms in to RMP 
for one dimensional periodic motion. It may also be 
demonstrated (Percival, 1974), that such transformation 
is valid for quasi-periodic case also. 



 

 
 
 
 
APPLICATIONS OF MVP AND RMP  
 
Reformulated MVP and RMP are the new and very useful principles 
of classical mechanics. Gray et al. (1996) have established the link 
of MVP and RMP with Hamilton variational principle (HP) and 
reciprocal Hamilton principle (RHP) and applied RMP to simple 
problems of physical interest. Here we shall demonstrate the wider 
applicability of RMP by applying it to the following problems. 
 
 
Linear oscillator 

 
Let us start with the following Hamiltonian for linear oscillator 
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2
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which corresponds to a simple pendulum, in square approximation 
of cosine term, for 
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Let us choose the trial trajectory as: 
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where 0=q at 0=t and  τ
ω

π
==

2
t  (at the end of the 

cycle). Using Equation (2), we have the action as: 
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Using Equation (5), the average energy for this case may be written 
as: 
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Where we have used relation (24).  

Now applying RMP and treating ω  as a variational parameter in 

relation 
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we get 
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which leads to the following well known relation for the period of 
linear oscillator 
 

k

m
πτ 2=                                                                               (26) 

 
which reduces to the standard relation for the time period of simple 
pendulum on using relation (22). 
 
 
Anharmonic oscillator 
 
Let us consider the following Hamiltonian for a one dimensional 
anharmonic oscillator (Rajput, 2005c) 
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reduces to the Hamiltonian of a plane pendulum in quadratic 
approximation of cosine. 

We choose the same trial trajectory as given by Equation (23) 
and then we have: 
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Then RMP (6) gives: 
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Where .
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=ω  For 0=λ ,  we  get  the  frequency  of  simple 
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pendulum that is, 
0

ωω = . For plane pendulum with 
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with the period given by: 
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This relation gives 
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which is correct to the order of 
2

B . For better accuracy we can 
take a more elaborate trial trajectory with more parameters. 
 
 
A Chaotic system 
 
Chaotic systems that is, non-integral systems have their own 
difficulties in finding their solutions. To demonstrate the applicability 
of the method of RMP to such systems, let us consider the case of 
2D-quadratic oscillator with the Hamiltonian given by Dahlquist and 
Russberg (1990) 
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where c is a constant. Let us choose the following quasi periodic 
anisotropic harmonic trajectory so that the semi-classical 
quantization via Einstein-Brillouin-Keller (EBK) rule (Percival, 1974) 
becomes simple; 
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where, in general, 
21

ωω and  are not equal.  

Over a long period τ  the action becomes 
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Where: 
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are the one cycle actions for 
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average energy for this case is 
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For simple trajectory like that given by Equation (35), the mean sub 
actions are  
 

2211
, WWWW ==  

 

and for this trajectory, extremizing E  at fix W is equivalent to 

extremizing it at fixed 
21

, WandW  treating 
21

, ωω and as 

variational parameters. Thus applying RMP on E  given by 
Equation (37), we have: 
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These equations give 
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Substituting these relations in to Equation (38), we get the following 

relations for  parameters  
1

ω   and  
2

ω   of  the  periodic  harmonic 



 

 
 
 
 
trajectory given by Equation (35); 
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Substituting these values in to Equation (37), we get 
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which is the same result (with different numerical coefficients) as 
derived by Martens et al. (1989) by using the adiabatic 
approximation. 
   In order to get the semi classically quantized average energy from 
Equation (41) obtained on applying RMP on a chaotic system, let 
us substitute  
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into Equation (41). Thus we get 
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which is the same result as obtained by Gray et al. (1996). This 
result when compared with exact results obtained by the method of 
numerical calculation (Gray et al., 1996) shows the exciting 
accuracy for the lowest fifty levels. Thus the method of RMP can be 
applied to get almost accurate results even for the non-integrable 
(chaotic) systems. Other variable principles, known in classical 
mechanics, do not have this capability. This principle (RMP) for 
special cases for periodic and quassi-periodic motions is equivalent 
to Percival’ principle of invariant tori (Percival, 1977). 
 
 
DISCUSSION 
 
The variational principles MP, RMP and UMP given by 
Equations (4), (6) and (7) respectively, have been derived 

classically in the form of Equations (15) and (7) using δ -

variation and also quantum mechanically for one 
dimensional periodic motion as the as the classical limit 
of quantum mechanical principle (16). It may also be 
demonstrated (Percival, 1977), that such transformation 
is valid for quasi-periodic motion also. These new 
principles are the concise statements of laws of  classical 
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mechanics. For instance, the energy conservation is the 
consequence of MP given by Equation (4). The RMP 
given by Equation (6) is also very useful principle of 
classical mechanics. Gray et al. (1996) have established 
the link of MP and RMP with Hamilton variational 
principle HP and its reciprocal RHP and also 
demonstrated that for quasi-periodic motion the RMP is 
equivalent to Percival’s principle for invariant tori 
(Percival, 1977). Equation (26) shows that the variational 
principle RMP, when applied to the linear harmonic 
oscillator with the Hamiltonian given by Equation (21), 
gives the well known period which gives the standard 
relations (32). The RMP when applied to anharmonic 
oscillator with the Hamiltonian given by Equation (27), 
leads to the expression for angular frequency in the form 
of Equation (30). This relation leads to Equation (33) for 
the time period of plane pendulum in quadratic 
approximation of cosine. This result when compared with 
that computed directly through an elliptical integral is 

correct to the order of 
2

B . This accuracy order  )(
2BO  

is expected with the trajectory Equation (23). For the 
better accuracy one can take a more elaborate trial 
trajectory with more parameters but then this method will 
become complicated mathematically. 

 Relation (41), obtained for the average energy on 
applying the variational RMP on a chaotic system like 
anisotropic 2D quartic oscillator with  the Hamiltonian 
given by Equation (34), is similar, with slightly different 
numerical coefficient, to that obtained by Martens et al. 
(1989), by using the adiabatic approximation. The 
classically quantized energy, given by Equation (43) for 
this chaotic system, is exactly similar to that obtained by 
Gray et al. (1996). This result when compared with exact 
results obtained by the method of numerical calculations 
(Marten et al., 1989), shows the exciting accuracy for the 
lowest fifty levels. Thus the method of RMP can be 
applied to get the approximate results even for non-
integrable systems (that is, chaotic systems). Applying 
this method of variational RMP on the central force 
problem with inverse square potential, it may be 
demonstrated (Singh, 2008), that for the force constant of 

the potential 
2EbC ≥ , where b is the impact parameter 

and E is the incident energy, there is no scattering under 
this attractive potential and the path becomes an 
equiangular spiral. Thus the method of variational RMP is 
a powerful classical method for solving the problems of 
linear, non-linear and chaotic oscillators. Recently, 
homotopy perturbation method and some non-
perturbative methods have been developed

 
(Ozis and 

Yildirim, 2007a, b, c, d; Yildirim and Momani, 2010) for 
linear as well as non-linear oscillators. 
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