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The nonlinear behavior is approximated as a sequence of successively changing linear systems over a 
short time interval. Solution of nonlinear equations needs to iterative method such as Iterative 
algorithm. Iterative method attempts to solve a problem by finding successive approximations. The 
present study is concerned with methods of nonlinear static and dynamic analysis of structures, 
particularly for application to geometrically nonlinear space structures. The basis of the proposed 
method is a step-by-step procedure of parametric solution continuation using a predictor–corrector 
scheme. The prediction is made with help of some interpolation procedure. In this paper a simplex 
method of nonlinear dynamics response analysis is developed. 
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INTRODUCTION 
 
The Analytical method is amongst the most efficient 
methods known for finding null spaces, which is the final 
stage in integer factorization algorithms such as the 
quadratic sieve and number field sieve, and its develop-
ment has been entirely driven by this application. The first 
iterative method for solving a linear system appeared in a 
letter of Gauss. The Analytical method is an iterative 
algorithm that is an adaptation of power methods to find 
Eigen values and eigenvectors of a square matrix or the 
singular value decomposition of a rectangular matrix 
(Brezinski and Sadok, 2002; Ghafari, 2008). Minimum 
potential dynamic energy asserts that a structure or body 
shall deform or displace to a position that minimizes the 
total potential energy, with the lost potential energy being 
dissipated as heat. The tendency to minimum total 
potential energy is due to the second law of thermo-
dynamics, which states that the entropy of a system will 
maximize at equilibrium. The design process for non-
linear structure is a relatively complex problem. Indeed 
the equilibrium configuration is an unknown in the 
analysis of this kind of structures. The nonlinear structure  
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may be analyzed as discrete system or continuous 
membrane (Silva and Vellasco, 2008).  
 
 
PARTIAL DIFFERENTIAL EQUATION (PDE)  
 
Nonlinear structural analysis uses analytical method 
under a partial differential equation (PDE) that it is a 
differential equation in which the unknown function is a 
function of multiple independent variables and the equa-
tion involves its partial derivatives. The partial differential 
equations are broadly classified as linear and nonlinear 
(George, 2009). The coefficients of the unknown function 
and its derivatives in a linear differential equation are 
allowed to be (known) functions of the independent 
variable or variables. Nonlinear differential equations can 
exhibit very complicated behavior over extended time 
intervals [Huu-Tai, 2010]. The procedures to solving 
nonlinear differential equation will be rapidly by 
minimizing of potential dynamic method. 
 
 
EQUATION OF MOTION FOR MULTI DEGREE (MDOF) 
 
Equations  of  motion  are  equations  that   describe   the  
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behavior of a system. The equation of motion for a multi 
degree of freedom (MDOF) system can be written as 
(Liqus, 2003): 
 

M + C (t)  + K (t) x = P (t)  
                              (1) 

 

Where; M= mass matrix; C (t) = damping matrix; K (t) = 
stiffness matrix; x = displacement vector; x = velocity 
vector; x  = acceleration vector; P (t) = Load vector 
 
The assumption of a constant mass in the case of MDOF 
systems is arbitrary as it could be represented as a time 
varying quantity (Sundar, 2000). 

Since m is a non-zero constant value, both sides of 
Equation (1) can be divided by m, as follows; 
 

P=    

Q=   

F=   

Eq. (1) can be written as: 
 

+ P  + QX = F                                                     (2) 

 
The mathematical solution of Equation (2) depends on 
the values of P, Q and F. Equation (2) is a linear 
differential equation if P and Q are independent of x and 
remains so even if P and Q are functions of t (Jian-Bing, 
2007). 
 
 

THE EXPRESSION FOR THE TOTAL POTENTIAL 
ENERGY 
 

The total potential energy is written as: 
 
W=U+V                                                                      (3) 
 
Where;  
W= the total potential energy 
U= the strain energy of the system, and 
V= the potential energy of the loading. 
 

Taking the unloaded position of the assembly as datum, 
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Where; 
     M= total number of members, 
     J  = total number of cable joints, 
     Fj i= external applied load on joint j in direction i, and 
     Xji= displacement of joint j in direction i. 
 
The condition for  structural  equilibrium  is  that  the  total  

 
 
 
 
potential energy of the system is a minimum, that is to 
say (Laier, 2010).       
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Thus at the solution the gradient vector of the total 
potential energy function is zero (Hashamdar et al., 2011). 
 
 
The gradient of the total potential energy  
 
Differentiating Equation (12) with respect to Xji gives the 
gji element of the gradient vector g as; 
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Let 

T =
° jn

the initial tension in member jn, 

T =
jn

 the instantaneous tension in member jn, 

e =
jn

 elastic elongation of member jn, 

E =    young Modulus of Elasticity, 
A =    cross-sectional area of cable, 

L =
jn

 length of member jn, and 

Q =    number of member meeting at joint j  
 

The expression for g
ji

 can then be written as: 
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The strain energy of member jn is given as: 
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Differentiating 
jn

U  with respect to 
jn

e  yields 
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The initial and elongated length of member jn may be 
expressed as: 
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Where 
ji

X  is the coordinate of joint j in direction i. 

Simplifying Equation (19) and substituting for L
jn

from 

Equation (18) yields the following expression for e jn  
[Man-Chung, 2005]: 
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Differentiating Equation (12) with respect to 
ji

X  yields 
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Substituting Equations (12) and (11) into Equation (13) 
yields the expression for the gradient as [Peterson, 
2008]: 
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Where; )(
jnjnjnjn

eLTt +=  is the tension coefficient of 

member jn. 
 
 
Minimum total potential energy  
 
The correct value of X for which W is a minimum, that is, 
g = 0 can now be found by the iterative process.  
 

)()()()1( kjikkjikji VSXX +=
+                                 (15) 

 
Where the suffices (k) and (k+1) denote the (k)th and 
(k+1)th iterate respectively and where (Benner and 
Martin, 2010). 
 

ji
V = the element of the direction vector, and 

S
)(k
= the step length which defines the position along 

)(kji
V where the total potential energy is a minimum. 

 

The expression for 
ji

V  is used, given by:  
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The stationary point in the direction of descent can be 
found by expressing the total potential energy as a 

function of the step length along 
ji

V . Thus the required 

value of S
)(k
 can be determined by the condition. 
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Calculation of the step length 
 
The required polynomial for step length is found by 

substituting the expression for 
)1( +kji

X  given by Equation 

(23) into a suitable expression for the total potential 
energy w. 

Writing the strain energy term in Equation (12) as a 
function of the elongation, Equation (16), and at the same 

time substituting for 
ji

X  using Equation (17) lead to; first 

the expression for the elongation as a function of S 
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Where; 
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And secondly to the expression for W in terms of the step 
length S and its derivative with respect to S as given 
below: 
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Where; 
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The diagram of frame made and members at joint are 
shown in Figures 1and 4. The graph about vector decent 
is shows in Figure 2, and Figure 3 and it show that how of 
vectors decent to reach the minimum of energy are 
shown.  
 
 
ANALYTICAL TEST 
 
The development of a mathematical control to ensure 
stability when using larger time steps is desirable. The 
mathematical model chosen is a circle flat net with 39 
degrees of freedom. The circle flat net was also built as a 
finite element model and tested in order to verify the 
optimizing Analytical method theory given in this paper.  
The mass density influence the stability limit, under some 
circumstance scaling the mass density can potentially 
increase the efficiency of an analysis and the explicit 
dynamic uses a central difference rule to integrate the 
equation of motion explicitly through time. 

From Table 1, comparisons are made by deflections 
due to concentrated load at node 4 and the results are 
similar to other of finite element modeling. A mode shape 
describes the expected curvature of a surface vibrating at 
a particular mode.  

The damping matrix used an orthogonal damping 
matrix in which the damping ratio could be varied in the 
different mode. Figure 5 shows the displacement of node 
increase with distance to center of circle flat net. 

The maximum amplitudes of response of the whole 
node are in the Z-direction on node 4. This size of time 
step coming from Analytical method was proved to be 
adequate. When the solution becomes unstable, the  time  
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Figure 1. Number of member meeting at joint j. 

 
 
 

 
 
Figure 2. Geometric representation of decent vector. 

 
 
 

 
 
Figure 3. Geometric representation of potential dynamic 

work for a function of two variables. 
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Table1. Deflections due to concentrated load at node 4. 
 

LOAD(N) = 1000 Opt. Lanczos  (T) Finite element (E) ( T – E ) / T*100 

Z AXIS DEFLECTIONS(m) 

NODE 2  ( LVDT ) 
178.6E-03 177.6E-03 0.56 

    

 Z AXIS DEFLECTIONS(m)  

NODE 3 ( LVDT ) 
129.3E-03 127.9E-03 1.08 

    

Z AXIS DEFLECTIONS(m) 

NODE 4  ( LVDT ) 
50.75E-03 50.11E-03 1.26 

    

Z AXIS DEFLECTIONS(m) 

NODE 5  ( LVDT ) 
127.9E-03 127.15E-03 0.59 

    

Z AXIS DEFLECTIONS(m) 

NODE 6  ( LVDT ) 
50.75E-03 50.15E-03 1.18 

    

Z AXIS DEFLECTIONS(m) 

NODE 9  ( LVDT ) 
25.83E-03 24.33E-03 5.81 

    

Z AXIS DEFLECTIONS(m) 

NODE 10  ( LVDT ) 
74.46E-03 72.56E-03 2.55 

    

Z AXIS DEFLECTIONS(m) 

NODE 11  ( LVDT ) 
135.7E-03 133.25E-03 1.81 

    

Z AXIS DEFLECTIONS(m) 

NODE 12  ( LVDT ) 
135.7E-03 134.99E-03 0.52 

 
 
 

 
 
Figure 4. Diagram of frame made. 

 
 
 

history response of solution variable such as displace-
ments will usually oscillate with increasing amplitude  and  

also the mass scaling was controlled by time 
incrimination.  

In order to results, the proposed method for the non-
linear dynamic response analysis of structures is based 
upon the minimization process. The size of the time step 
used for the dynamic response analysis was in all cases 
equal to half the smallest periodic time of the net 
concerned. The Figure 6 shows the 95% of mass attend 
to analyzing in preliminary 5 modes. 

The differential percentage results are given in Table 2. 
Participation of frequency is given in Figure 7 for the 
whole of the mode in structures. Figure 7 shows the 
amount of frequency dramatically increases from mode 1 
until mode 30. 

In Figure 7 shows the frequencies appeared to level off 
between mode 1 and mode 2. From this mode onwards, 
the deflection dramatically climbed to reach mode 5.  
 
 
CONCLUSIONS  
 
Advantages of simplex method are such as, it solves the 
complex non linear Eigen value problem and it is able to 
account  for  a  strong   variation   of   the   modulus   with  
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Figure 5. The displacements according to nodes. 

 
 
 

 
 
Figure 6. Distribution of general mass over of modes. 
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Table 2. Differences frequency results in 5 mode shapes. 
 

Mode 
Frequency 

renovation explicit 

Frequency (Hz) 

finite element 
Differentials percentage 

1 1.4083 1.4321 1.69 

2 1.42645 1.4151 0.8 

3 1.5645 1.4945 4.47 

4 1.7224 1.7041 1.06 

5 2.1568 2.0823 3.45 

 
 
 

 
 
Figure 7. comparison graph for finite element and optimization of 
energy. 

 
 
 
frequency. The object of this work was principally to 
develop an Analytical method analysis theory and verify 
the theory by numerical and finite element testing. The 
propose method was found to be stable for time steps 
equal to less or less than half the smallest periodic time 
of the system. Comparison of finite element and 
theoretically predicted values showed that the deflection 
calculated by the proposed theory gives reasonably 
accurate results.  
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