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The optimality in heat conduction processes in solid materials is studied analytically. Based on the 
second law of thermodynamics and the definition of entropy a new thermodynamic property, temheat, 
is introduced.  A balance equation relevant to temheat is derived by modifying the entropy balance. 
Principle of temheat destruction minimization is applied to several steady heat conduction problems. It 
is shown that for all steady heat conduction problems, the thermodynamic quantity, the rate of total 
temheat destruction, is always minimized. The principle of temheat destruction minimization helps to 
better interpret the natural heat conduction phenomena and to obtain numerical solutions in heat 
conduction problems.  
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INTRODUCTION 
 
Optimization of thermal systems has been a vital focus 
area since the realization of the importance of 
sustainability in energy and flow related issues. Scientists 
make close observations of the natural phenomena and 
try to imitate highly efficient natural systems and 
creatures in order to develop and improve the technical 
and industrial systems. When we look at the natural flow 
systems, we observe a striking similarity among them. 
Therefore the governing equations to describe most of 
the flow processes are the same. For example, Laplace 
equation is used in the fields of electromagnetism, 
astronomy, fluid mechanics, heat and mass transfer, 
elasticity, electrostatics and other areas of physics and 
engineering  to describe the behavior of electric, 
gravitational, and fluid potentials and steady-state heat 
conduction (Evans, 2010). Similarly, the Poisson 
equation is used to describe the problems associated 
with mechanics and physics such as heat and fluid flow in 
porous media and theory of gravitation (Slevadurai, 
2000). The transient heat equation (parabolic) is not only 
used in conduction of heat but is also used to describe 
the processes in diffusion of mass, diffusion of neutrons, 
diffusion of vorticity, telegraphic transmission, electro-
magnetic theory, hydrodynamics, and evolution of 
probability distributions in random processes.  

On the other hand, there is a common understanding 
that natural phenomena are highly sustainable and 
optimum within the constraints they occur. One of the 

important discoveries that explain how nature works is 
the constructal law introduced by Bejan in 1996. It 
explains the generation of flow configuration in the nature 
as a universal phenomenon (Bejan, 1996a, b; Bejan and 
Lorente, 2010). In all real processes, there is some 
degree of irreversibility. There is no real process even 
among the natural ones that can be considered totally 
reversible or ideal. Then, there may be a lower limit to the 
irreversibility in natural systems. Investigating this 
minimum has become the motivation of the current work. 
Betrola and Cafaro (2008) discussed critically the 
principle of minimum entropy production which means; “a 
steady state has the minimum rate of entropy production 
with respect to other possible states with the same 
boundary conditions”. They stated that this principle was 
originated in Rayleigh’s least dissipation principle 
(Rayleigh, 1873, 1877), was provided with a proof by 
Onsager (1931) based on his reciprocity relations and 
was made famous by Prigogine (Prigogine, 1947, 1962; 
Glansdorff and Prigogine, 1964), who derived the 
property of minimum entropy production for discontinuous 
systems.  By providing analysis of two examples (the 
heat conduction in a fluid at rest and the combined shear 
flow and heat conduction in an incompressible fluid), 
Betrola and Cafaro (2008) showed that the principle of 
minimum entropy production cannot be considered as a 
general variational principle, but at best an approximation 
method,   which  converges  to  the  exact  solution as the  
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Figure 1. Heat conduction in a solid wall 
with fixed surface temperatures. 

 
 
 
system converges to equilibrium. They were unable to 
find any special assumption on the temperature 
dependence on the phenomenological coefficients (such 
as thermal conductivity and dynamical viscosity) under 
which a general agreement between standard balance 
equations and balance equations determined by the 
minimum entropy production principle can be stated 
(Bertola and Cafaro, 2008). 

Considering the Second Law of Thermodynamics and 
the definition of entropy as a property, Sahin (2011) 
introduced a new thermodynamic property and named it 
“temheat” because it carries the unit of ‘temperature 
times heat transfer’. He showed that “the natural heat and 
fluid flow phenomena occur in such a way that the rate of 
volumetric total temheat destruction approaches a 
minimum value at the steady state condition.” In the 
present work, several applications of the temheat 
destruction minimization principle on the conduction heat 
transfer problems are discussed.  
 
 
ENTROPY GENERATION MINIMIZATION IN 
CONDUCTION OF HEAT  
 
Let us first discuss whether the entropy generation is 
minimized in steady conduction heat transfer through a 
slab. Accordingly, consider the slab of thickness L with 
fixed surface temperatures, T1 and T2 respectively, as 
shown in Figure 1. In the absence of volumetric heat 
generation and for uniform thermal conductivity, the 
temperature distribution in the slab is linear and is given 
by  
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The local entropy generation rate in the slab as a result of 
heat conduction is (Bejan, 1996): 
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The volumetric rate of total entropy generation is 
obtained by integrating the local entropy generation rate 
given in Equation (2) through the volume of the slab, that 
is, 
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The linear temperature variation given in Equation (1) 
which yields the steady rate of total entropy generation 
given in Equation (3) may not be the optimum 
temperature variation, because the total entropy 
generation given in Equation (3) may not be a minimum. 
Now, let us search for the possible optimum temperature 
variation which minimizes the entropy generation rate. 
The rate of total entropy generation in the slab is given by 
 

∫∫ 






==
LL

Adx
dx

dT

T

k
Adxs

0

2

2
0

'''σ       (4)  

      
According to the principles of calculus of variations, the 
optimum temperature variation that minimizes the total 
entropy generation given in Equation (4) must satisfy the 
Euler equation 
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the algebra in Equation (5), the required temperature 
distribution is found to satisfy the differential equation 
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which yields a temperature distribution in the 
transcendental form  
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Indeed the rate of total entropy generation becomes a 
minimum when the temperature distribution in the slab is 
given by Equation (7). However, the transcendental 
temperature distribution given in equation (7) 
corresponds to the case of heat conduction with internal 
heat generation (sink), according to equation (6), in the 
form 
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In this case, the local entropy generation rate becomes 
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that means, it is possible to minimize (eliminate) the 
entropy generation rate in the slab by introducing a heat 
sink given by Equation (8). The temperature variation in 
this case is given by Equation (7).  

We are faced with a dilemma here. Minimization of 
entropy generation in steady conduction of heat in a slab 
required the transcendental temperature variation given 
in Equation (7). On the other hand we know that the 
steady temperature variation in a slab is linear (not 
transcendental) and linear temperature distribution yields 
a finite entropy generation as given in Equation (3) which 
is not in agreement with the entropy minimization 
problem carried out by means of calculus of variations.  
Then the following question arises: If the rate of the total 
entropy generation is not minimized in steady heat 
conduction problems, then is there any other thermo-
dynamic quantity that is exactly minimized in such steady 
natural heat conduction processes? This question was 
the motivation for the current work. It turns out that there 
is a thermodynamic quantity, the rate of total temheat 
destruction, which is always minimized in steady heat 
conduction problems as discussed in the following.  
 
 
PRINCIPLE OF TEMHEAT DESTRUCTION 
MINIMIZATION 
 
Entropy generation during a thermal process is given by 
the equation 

 
 
 

T

Q
dSS gen

δδ −=                  (11)  

       
Multiplying both sides of Equation (1) by T2 we obtain 
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The first term that appears on the right hand side of 

equation (12) namely dST 2  is a thermodynamic property 
and named “temheat” by Sahin (2011). In other words, 
using the notation M for this new thermodynamic 
property, the temheat change is 
 

dSTdM 2≡                      (13) 
        
The entropy change is defined as (Cengel and Boles, 
2007) 
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Therefore the temheat change becomes 
 

( ) revint QTdM δ=   (15)   
         
where the subscript “int rev” is used to indicate that the 
temheat change is defined along an internally reversible 
process, exactly the same way the entropy change is 
defined.   

The term on the left hand side of Equation (12) 

genST δ2  is named the temheat destruction which is 

always positive due to the second law of 
thermodynamics. Thus Equation (12) is referred as the 
“temheat balance”. It was shown that the rate of total 
temheat destruction is always minimized in all kinds of 
steady flow problems (Sahin, 2011). To illustrate the 
application of the principle of the temheat destruction 
minimization in heat conduction problems we consider 
the rate form of the temheat balance. 

Equation (12) can be written in time rate form as  
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where   gend STM && 2=    is the rate of temheat destruction. 

For steady state process, the term 
dt

dM  vanishes and we 

have 
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where the term QT &
is the rate of temheat transfer 

accompanying heat transfer.  
It should be noted that the temheat transfer 

accompanying heat transfer is also named entransy or 
heat transport potential capacity in recent literature (Guo 
et al., 2007; Chen et al., 2009). At this point, it is 
important to clarify the distinction between entrancy 
(temheat transfer accompanying heat transfer) and 
temheat. Entransy and temheat are two different 
concepts, because 
 
1. Entransy is “a physical quantity” that describes the 
heat transfer ability (Guo et al., 2007), but temheat is a 
“thermodynamic property”.  
2. Entransy is a path dependent quantity, but temheat is 
independent from the actual path (process). 
3. Entransy is defined along an actual (real) process, but 
temheat is a thermodynamic property similar to entropy 
and is defined for internally reversible (ideal) process 
(Equation 15). 
 

Since the rate of temheat destruction dM&  is always 

positive for an actual (irreversible) process then the rate 

of temheat transfer accompanying heat transfer QT &
 is 

always negative. Accordingly, the rate form of temheat 
balance for a control volume and steady state process 
follows 
 

( ) ( )outind QTQTM &&& −=  .  (18) 

        
In the following, the principle of temheat destruction 
minimization is illustrated for heat conduction problems 
through several examples.  
 
 
Example 1: Heat conduction through a solid slab 
 
The rate of local temheat destruction in a solid material 
during steady heat conduction is the product of 
temperature square with the local entropy generation 
rate. Making use of the local entropy generation rate for 
the one-dimensional heat conduction process (Bejan, 
1996), the rate of local temheat destruction (per unit 
volume) becomes 
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where k is the thermal conductivity. The rate of total 
temheat destruction is obtained by integrating Equation 
(19) throughout the volume of the solid material as 

Sahin          7831 
 
 
 

dV
dx

dT
kM

V

d ∫∫∫ 






=
2

&    (20) 

 
The rate of total temheat destruction given in Equation 
(20) becomes a minimum for the steady heat conduction 
process. So the temperature distribution that minimizes 
the rate of total temheat destruction given in Equation 
(20), according to the principles of the variational 
calculus, must satisfy the Euler equation 
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where the function F is 
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and  
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Substituting function F into Equation (21) and carrying out 
the algebra, it can be shown that the temperature 
distribution that yields a minimum rate of total temheat 
destruction must satisfy the differential equation 
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which is the well known steady state heat conduction 
equation (Laplace equation). Although the cartesian 
coordinate system has been used in this example to 
illustrate the principle of minimum rate of total temheat 
destruction, it can easily be shown that the principle 
equally applies to the radial heat conduction problems 
using the cylindrical or spherical coordinate system 
shown subsequently. The method can also be extended 
to multi-dimensional heat conduction problems. 
 
 
Control volume approach 
 
Considering the infinitesimal control volume shown in 
Figure 2, the temheat balance for steady state heat 
conduction using Equation (18) is 
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Figure 2. Control volume in one-dimensional heat 
conduction. 

 
 
        
Conservation of energy requires that dxxx AqAq +=  , 

therefore 
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where 
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control volume is AdxdV = . Therefore,  
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The total rate of temheat destruction is obtained by 
integrating Equation (27) over the volume of the solid as 
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which is identical to the rate of total temheat destruction 
given in Equation (20).  
 
 
Example 2: Heat conduction with internal energy 
generation 
 
Consider the problem of steady heat conduction through 

a slab with uniform internal heat generation q&  as shown 
in Figure 3. The internal heat generation plays a role of  a 
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Figure 3. Temperature distribution in a slab with 
internal heat generation.  

 
 
 
constraint in the principle of temheat destruction 
minimization. The local rate of temheat destruction is 
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The rate of total temheat destruction is obtained by 
integrating Equation (29) throughout the volume, that is, 
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The total volumetric rate of internal heat generation is 
constant for steady-state heat conduction. Therefore the 
rate of total temheat addition that must be used as a 
constraint for the minimization problem is 
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In this case, the Euler equation becomes  
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in which the constant λ is a Lagrange multiplier. It can be 
shown that Equation (32) yields the Poisson equation 
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The constant Lagrange multiplier λ in Equation (34) can 
be determined from the boundary condition, that is, the 
energy balance on the boundary. For symmetrical heat 
conduction problem shown in Figure 3, all the heat that is 
generated within the half of the volume of the slab 
crosses through one of the surfaces by conduction, that 
is, 
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Integrating Equation (34) once and applying the boundary 
condition (Equation 35), the value of the Lagrange 
multiplier λ is obtained to be -2. Substituting λ = -2 in 
Equation (34), the differential equation for the heat 
conduction with uniform internal heat generation is 
obtained:  
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The analysis can easily be extended to steady multi-
dimensional heat conduction with internal heat gene-
ration.  
 
 
Control volume approach 
 
Considering the infinitesimal control volume shown in 
Figure 2, the temheat balance for steady state heat 
conduction (Equation 18) with the presence of the 
uniform internal heat generation is 
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or neglecting (dx)2 term 
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The total rate of temheat destruction is obtained by 
integrating Equation (40) over the volume of the solid as 
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which is identical to the rate of total temheat destruction 
given in Equation (30).  Making use of the constraint 
given in Equation (31), we arrive at the same differential 
equation for the heat conduction (Equation 36).  
 
 
Example 3: Heat conduction in radial systems 
 
In this case, consider the radial steady heat conduction in 
the control volume shown in Figure 4. The rate of local 
temheat destruction is given by 
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Integrating Equation (42) over the volume of the 
cylindrical solid material of unit length, the rate of total 
temheat destruction is obtained as 
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The rate of total temheat destruction is minimized during 
the heat conduction process. Consequently, the Euler 
equation must be satisfied, that is, 
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Figure 4. Control volume in one-dimensional radial 
heat conduction. 
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(44) we obtain the differential equation for radial one 
dimensional heat conduction 
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Control volume approach  
 
Considering the control volume shown in Figure 4 and 
applying the temheat balance  
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material is considered to be unity. Therefore,  
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The total rate of temheat destruction is obtained by 
integrating Equation (51) over the volume of the solid as 
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which is identical to the rate of total temheat destruction 
given in Equation (43).  
 
 
Example 4: Heat conduction in radial systems with 
internal heat generation 
 
In the case of radial heat conduction with internal heat 

generation q& , the temheat transfer due to the internal 
heat generation is considered to be a constraint in the 
optimization problem. Considering the infinitesimal 
control volume shown in Figure 4, the equations for the 
rate of local and total temheat destructions are the same 
as given in Equations (42) and (43), respectively. On the 
other hand, the total rate of temheat transfer due to the 
internal heat generation is  
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which is the constraint for the optimization problem. 
Therefore, the functional (that is, the rate of total temheat 
destruction with constraint) to be minimized is in the form
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For this optimization problem the Euler equation is 
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where the function F is 
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Substituting Equation (56) into Equation (55), the necessary 



 
 
 
 
condition for the optimization is obtained as 
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For a solid cylindrical bar of outer radius R with uniform 
heat generation all the heat generated within the volume 
leaves through the outer surface of the bar, that is, on the 
basis of unit length of the bar 
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Integrating Equation (57) once and substituting it into 
Equation (58) the constant Lagrange multiplier is 
obtained to be - 2. Therefore Equation (57) becomes, 
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which is the steady heat conduction equation for the 
radial one-dimensional system with uniform internal heat 
generation.  
 
 
Control volume approach 
 
Applying the temheat balance to the control volume 
shown in Figure 4, in the presence of uniform heat 
generation we have 
 

( ) ( ) TdVqQTQTM drrrd &&&& +−= +δ        (60)   
 
or 

 

TdVqqAdr
dr

dT
TqTAM drrdrrrrd && +







 +−= ++δ    (61)  

 
Conservation of energy requires that 

drrdrrrr qAdVqqA ++=+ & , where rdrdV π2= . 

Therefore Equation (61) becomes 
 

( ) TdVqdVqqAdr
dr

dT
TqTAM rrrrd &&& ++







 +−=δ      (62)  

 
or neglecting the (dr)2 term we have 
 

( )rd qdr
dr

dT
rM 







−= πδ 2&               (63) 

       

where 
dr

dT
kqr −=  and therefore,  
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dr
dr

dT
krM d

2

2 






= πδ &  .          (64) 

       
The rate of total temheat destruction is obtained by 
integrating equation (64) over the volume of the solid as 
 

dr
dr

dT
krM

R

d ∫ 






=
0

2

2π&
        (65)  

 
which is identical to the rate of total temheat destruction 
given in Equation (43). Employing the constraint due to 
the internal heat generation, Equation (53), we reach to 
the same result, that is, Equation (59).  

Although one-dimensional radial heat conduction 
system is considered in the present example, it can easily 
be shown that the analysis can be extended to multi 
dimensional cylindrical systems.  It can also be shown 
that the analysis is valid for the radial heat conduction 
using formulation in spherical coordinates. 
 
 
Example 5: Heat conduction through extended 
surfaces 
 
In this case, we consider one-dimensional heat 
conduction through a fin of uniform cross-section as 
shown in Figure 5.  The rate of local temheat destruction 
is given by 
 

2
2








=′′′=′′′
dx

dT
kSTM gend

&&
  (66)  

 

 
The rate of total temheat destruction is obtained by 
integrating Equation (66) throughout the volume, that is, 
 

Adx
dx

dT
kMd ∫



















=
2

&               (67)   

 
where A is the cross sectional area of the extended 
surface. The rate of total temheat transfer associated with 
the steady convection heat transfer is 
 

.)( constpdxTTqc =−∫ ∞   (68)  

 
where p is the perimeter of the outer surface of the 
extended surface and )( ∞−= TThqc . Equation (68) 

can be used as a constraint in the optimization problem. 
In this case, the Euler equation becomes, 
 

0=








∂
∂−

∂
∂

xT

H

dx

d

T

H    (69) 
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dx
dx

dT
T+  T  

xq  dx
dx

dq
qq x

xdxx +=+

  dx 

x dxx+

cq  
∞T  

h 

  
Figure 5. Conduction heat transfer through an extended 
surface. 

 
  
 
where  

 

( )2
2

∞−+






= TThp
dx

dT
kAH λ  (70)  

 
in which the constant λ is a Lagrange multiplier. 
Substituting Equation (70) into Equation (69), it can be 
shown that Equation (69) yields the Poisson equation 
 

0)(
2

2

=−− ∞TT
kA

hp

dx

Td λ     (71)   

 
The constant Lagrange multiplier λ in Equation (71) can 
be determined from the boundary condition, that is, the 
energy balance at the base of the extended surface, that 
is   
 

∫ ∞
=

−=− pdxTTh
dx

dT
kA

x

)(
0

 (72)  

 
Solving Equation (71) and applying the boundary 
condition (Equation 72) the value of the Lagrange 
multiplier λ is obtained to be + 1. It should be noted that 
the value of the Lagrange multiplier is independent from 
the selected boundary condition at the tip of the extended 
surface. Substituting λ = + 1 in Equation (71), the 
differential equation for the steady one-dimensional heat 
conduction is obtained  

 
 
 
 

0)(
2

2

=−− ∞TT
kA

hp

dx

Td
             (73)   

 
 
Control volume approach 
 
Considering the infinitesimal control volume shown in 
Figure 5, the temheat balance for steady state heat 
conduction (Equation 18) with the presence of the 
uniform internal heat generation is 
 

csdxxxd qTAAqdx
dx

dT
TTAqM +







 +−= +
&δ         (74)   

 
where pdxAs =

 
is the outer surface area of the 

extended surface. Applying the energy balance we have 

dxxcsx AqqAAq +=+  , therefore 

 

( ) cscsxxd qTAqAAqdx
dx

dT
TTAqM ++







 +−=&δ
      (75)

 

 
or neglecting (dx)2 terms we have 
 

dxq
dx

dT
AM xd −=&δ                (76)   

 

Since 
dx

dT
kqx −=  , equation (76) becomes 

 

dx
dx

dT
kAM d



















=
2

&δ  .   (77)  

      
The total rate of temheat destruction is obtained by 
integrating Equation (77) over the length of the extended 
surface as 
 

∫ 






= dx
dx

dT
kAM d

2

&     (78)  

      
which is identical to the rate of total temheat destruction 
given in Equation (67).  Making use of the constraint 
given in Equation (68) we arrive at the same differential 
equation for the steady heat conduction in the extended 
surface (Equation 73). 

The aforementioned examples indicate that the rate of 
total temheat destruction is minimized during the steady 
heat conduction processes. The same analogy can be 
used to extend this principle to other flow problems in 
various areas of science including fluid mechanics, 
electromagnetism, astronomy, mass transfer, elasticity, 
and electrostatics.  



 
 
 
 
Conclusions 
 
The inherent optimality in flow systems and particularly in 
heat conduction has been investigated. A new 
thermodynamic property, temheat, has been introduced. 
The second law of thermodynamics was extended to 
present the temheat balance that included the temheat 
destruction. The principle of temheat destruction 
minimization was discussed. It is shown through several 
examples that the rate of total temheat destruction is 
minimized in steady heat conduction problems. The 
principle of temheat destruction minimization is a useful 
technique to better describe the heat conduction 
processes.  
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Nomenclature: A, Area (m2); H, heat transfer coefficient 
(W/m2K); K, thermal conductivity (W/mK); L, length (m); M, 

temheat (KJ); P, perimeter (m); q, heat flux (W/m2); q& , rate of 
internal heat; generation (W/m3); Q, heat transfers (J); R, radial 
coordinate (m); R, radius (m); S, entropy (J/K); Sgen, entropy 
generation (J/K); t, time (s); T, temperature (K); V, volume (m3); 
x, axial coordinate (m); 
 
Subscripts: c, convection; D, destruction; gen, generation; s, 
surface; ∞ , ambient. 
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