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An accurate wholesale electricity market forecast h as become an essential tool in bidding and hedging 
strategies in competitive electricity markets. This  paper provides a dynamic asymmetric long memory 
heteroscedastic model to account the high volatile daily wholesale electricity markets in New England 
and Louisiana. This model implemented power Cox-Box  transformation (Tse, 1998) under the Chung’s 
(1999) model specification to the time-varying vola tility. The model is able to capture various empiri cal 
stylized facts that commonly observed in electricit y markets including clustering volatility, news 
impact, heavy-tailed and long memory volatility. Un der the forecast evaluations, the long memory 
model outperformed the traditional model in all the  forecast time-horizons. Finally, the outcome of th e 
analysis is further applied in quantifying the mark et risk in term of value-at-risk.  
 
Key words: Electricity markets, long memory generalized autoregressive conditional heteroskedasticity 
(GARCH), value-at-risk, time series analysis.  

 
 
INTRODUCTION 
 
Price forecasting is an essential tool in pool bidding and 
bilateral contract systems of electricity-market 
deregulation. The deregulated market has created 
competition among the electricity producers and also 
great opportunities to increase their sales and profits. In 
bidding system, an accurate poll price forecast is 
important for the producers or retailers to optimally 
arrange their production schedule and costs. The future 
pool price provides valuable information for producers to 
hedge against the market volatility through bilateral 
contracts. Besides price level, the underlying data 
generating processes of price changes and volatility are 
also important in forecast evaluation of electricity 
markets.  

In recent years, time-varying volatility forecasting in 
deregulated electricity markets has received considerable 
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attentions from researchers and practitioners. 
Autoregressive conditional heteroscedastic (ARCH) 
modelling (Engle, 1982) is among the famous method 
that has been widely used to capture the clustering 
volatility in energy markets. Carcia et al. (2005) has 
proposed a generalized ARCH to forecast hourly prices in 
the deregulated electricity markets of Spain and 
California. They reported that, the average forecast errors 
for both the markets are around 9%, depending on the 
studied month. Leme et al. (2008) using a similar 
generalized ARCH model to study the weekly Brazilian 
energy market. They found that four of the studied market 
regions have heteroscedastic effect in their volatility. Li et 
al. (2008) proposed a nonparametric generalized 
autoregressive conditional heteroskedasticity (GARCH) 
model and applied it on the power price in California 
market. Nunes et al. (2008) focused on the daily Spanish 
electricity market using seasonal autoregressive 
integrated moving average (ARIMA)-GARCH. They 
reported this model is capable to evaluate and predict the 
prices from January 1998 to August 2005. Besides ARCH  
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model, other approaches such as artificial intelligent 
(Amjady, 2006; Gao et al., 2000; Xu et al., 2004), and 
wavelet analysis (Conejo et al., 2005; Pindoriya et al., 
2008) have also addressed the same problem.  

In order to obtain accurate forecasts, the statistical 
model should able to capture numerous financial market 
stylized facts (Cont, 2001). One of the interesting stylized 
facts is the long memory behavior which has been 
observed in most of the worldwide financial markets. 
Long memory processes are often observed in the field of 
hydrology, internet traffic analysis, finances and 
cardiology. One of the earliest studies is investigated by 
Hurst (1951) who observed the long-term storage 
capacity of Nile’s river reservoirs and discovered the 
presence of long memory in hydrology. Mandelbrot 
(1967) on the other hand explained on how the length 
measurements of the United Kingdom coastlines are 
dependent on the scale measurements in term of long 
memory structure. Granger and Joyeux (1980) and 
Hosking (1980) reported the data generating processes 
that underlied the financial time series are long memory 
using the fractional differencing parameter estimation. In 
the world-wide-web traffic analysis, Leland et al. (1994) 
demonstrated that the Ethernet local area network (LAN) 
traffic is statistically long memory with millions of high 
quality Ethernet traffic measurements collected between 
year 1989 and 1992. Besides this, long memory 
processes are also found in the DNA nucleotide 
sequences (Lopes and Nune, 2006). The presence of 
long memory phenomenon in the electricity market can 
be explained using the heterogeneous market (Cheong, 
2010; Docorogna et al., 2001) concept where the retailers 
and consumers are different from geographical location, 
preference to the type of energy, degree of energy 
information, wealth constraint, nature of consumption 
(commercial or home) and awareness of energy crisis. 
The combinations of these dissimilar time-response 
volatilities among the heterogeneous market participants 
are believed to produce hyperbolic autocorrelation 
decays or long memory in the return volatility. Besides 
this, the implemented model also should able to account 
the possible leverage effect (volatility response to upward 
and downward prices), dynamic power of volatility 
representation (common specification is in conditional 
variance (Bollerslev, 1986) or conditional standard 
deviation (Taylor, 1986) and skewed-heavy tail distribution 
assumption. 

This study aims to evaluate one day-ahead forecast of 
price changes with long memory volatility using a 
dynamic asymmetric long memory ARCH model. We 
adopt the fractionally integrated asymmetric power 
autoregressive conditional heteroscedastic (FIAPARCH) 
introduced by Tse (1998). However, due to the drawback 
of model parametrization that will cause difficulty in both 
estimation and the interpretation of estimated results, the 
Chung’s (1999) model specification has been selected. In 
order to capture possible heavy-tailed and skewness 
behaviors, a skewed student-t distribution is  used  in  the  

 
 
 
 
studied electricity markets. It is worth noted that most of 
the ARCH applications in electricity markets (Carcia et 
al., 2005; Leme et al., 2008; Nune et al., 2008; Xiong et 
al., 2008) have considered conditional mean equation as 
logarithm prices (pt). As a result, the pt suffers from long 
order of autoregressive (AR) lags which against the Box-
Jenkins parsimonious principle, for example Garcia et al. 
(2005) reported 12 lags for Spanish and California 
markets. An alternative to lessen this shortcoming is by 
redefining the log prices as log price changes or more 
commonly named as continuous compounded return. 
This definition is a scale-free summary of possible profit 
opportunity and provides the stationarity condition of time 
series.  

For empirical study, the daily wholesale data NEPOOL 
mass and Entergy hubs for the New England and 
Louisiana are selected respectively for discussion and 
analysis. The forecast evaluations are compared 
between the long memory ARCH model and traditional 
ARCH models. Finally the forecast results are 
implemented in the risk quantification in term of value-at-
risk (Jorion, 1997).  
 
 
METHODOLOGY 
 
Fractionally integrated asymmetric power autoregressive 
conditional heteroscedastic (ARCH)  
 
The joint-estimation of ARMA-ARCH model consisted of two 
components, the conditional mean and time-varying volatility 
equations. Let rt be a general percentage compounded return 

stochastic process with )log(100
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serially uncorrelated, but not independent in higher moment such 
as variance. For a given historical data It-1 available at time t−1, the 
price changes rt (conditional mean equation) is defined as 
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To accommodate the possibility of long memory volatility, the 
fractionally integrated (FI) ARCH is introduced by Baillie et al. 
(1996), Engle and Lee (1999) and Tse (1998). Long memory 
processes often relate to their autocorrelation functions. For 
example, a fractionally integrated ARMA is said to be long memory 
when its autocorrelation functions are not summable 
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0.5 (Cheong, 2010). Under the Robinson and Henry (1999) 

specification, the squares of shock 
2
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for d∈(0,0.5) with the fractional-differencing operator (1−B)d. More 

precisely, the autocorrelations }1),({ 2 ≥hathρ decays at a slow 
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For long memory electricity time series, the FIAPGARCH model 
(Tse, 1998) is used to accommodate the various statistical 
properties of price changes and time-varying volatility in the 
electricity markets. The aforementioned model is a combination of 
Ding et al. (1993) asymmetry power ARCH and Granger and 
Joyeux (1980) fractionally integrated filter with the following 
specification: 
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denotes the fractional integrated operator; γ =log(φ)∈(-1,1) denotes 
the asymmetric effect, for example, a negative γ indicates negative 
shocks give rise to stronger volatility than positive shocks at a same 
magnitude   or   sometimes   refers   to   leverage  effect  in  finance  
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perspective; δ indicates the Box-Cox transformation for the most 
appropriate volatility representation. The term ‘dynamic’ refers to 
the any possible real value of δ.  

This specification covers a series of ARCH model under specific 
conditions, for example the GARCH (Bollerslev, 1986) model with 
γ=0, δ=2 and d=0; the Ding et al. (1993) asymmetric power (AP) 
GARCH with γ, δ and d=0; the BBM (1996) FIGARCH with γ=0, δ=2 
and FIAPGARCH (Tse, 1998) with γ, δ and d. It is worth noting that 
the Baillie, Bollerslev and Mikkelsen (BBM) type FIGARCH 
(including FIAPGARCH by Tse, 1998) suffers from the model 
parametrization (Chung, 1999) which causes difficulty in both 
estimation and the interpretation of estimated results. The FI model 
is structurally different from the original ARFIMA (Granger and 
Joyeux, 1980). However, according to Chung (1999), a simple 
rearrangement of the long memory volatility can avoid such 
discrepancy in the FIGARCH parameterization. Similar approach 
can be implemented to FIAPGARCH model based on Equation 6 as 
follow:  
 

   
                                                                                                       (7)   
 
Although this specification is quite similar to the ARFIMA, it does 
not fully replicate the exact structural form of ARFIMA (for example, 
a stationary and invertible ARFIMA, its d lies between -0.5 and +0.5 
while for FIAPGARCH, the d is permitted to exceed 0.5 however 
less than unity).  
 
 
The flow of analysis 
 
The procedures of preliminary analysis, model identification, 
estimation, diagnostic and forecasting follows the standard Box-
Jenkins framework as follow: 
 
Step 1: Preliminary analysis focuses on the graphical illustration, 
descriptive statistics and normality tests; 
Step 2: The subset models for conditional mean is identified using 
autocorrelation function (ACF) and partial ACF whereas the time-
varying volatility specification is detected by the Engle Lagrange 
multiplier and Ljung-Box statistics. Next, the presence of long 
memory processes is identified using ACF, variance-time plot and 
rescaled-range analysis of volatility proxies.  
Step 3: After the functional form models have been initiated, the 
joint estimations (vector parameter, ψ) involves the conditional 
mean parameters ω’ = (a0, a1,…, b1, b2,…) and the density function 
parameters g’, as well as the conditional variance parameters, θ’ = 
(α0, α1,…, γ, δ, d, β0, β1.,…), all set at time t and 
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which is in line with the common BBM (Baillie et al.,1996) setting. 
Due to the nonlinearity condition, the iterative optimization algorithm 
is used instead of analytical derivative approach with the log- 
likelihood function LN as follows:  
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For asymmetric (non-zero skewness) and heavy-tailed (kurtosis 
exceeded 3) price changes shock, a standardized skewed student-t 
(Lambert and Laurent, 2001) log-likelihood is used as follows: 
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skew and v denote the skewness parameter and degree of freedom 
from the extended student-t distribution. It is obvious that, when 
skew equivalent to 1, the distribution reduces to symmetric 
standardized student-t distribution. 

 Step 4: All the models are diagnosed using the Ljung-Box 
statistics for both standardized and squared residuals. The 
acceptance of the test statistics indicated no significant 
autocorrelation in the conditional mean and variance equations. For 
heteroskedastic effect, the Engle LM ARCH test is used upon the 
squared standardized residuals. The adequacy test is further 
examined by the Engle and Ng (1993) test to check the asymmetry 
volatility impact response to good/bad news. The negative/positive-
size-bias tests examined whether the squared standardized 
residuals are indeed i.i.d. If the information at-1 provides predictive 
component to  residuals,  then  the  conditional  variance  are  miss- 

 
 
 
 

specified. Let 
−
tS be a dummy variable that takes value of 1 if at-1 is 

negative and zero otherwise. Also, let 
+
tS =1− −

tS . The negative 

and positive size-bias test statistics are defined as the t-ratio for the 
coefficients γ12 and γ22 in the regression models: 
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where the εt is a white noise error.  Step 5: Each volatility model is 
estimated H times bases on fix period of T1 observations in the 
selected time period. A rolling parameter estimations are 
implemented, for example, a first one-day ahead forecast at t= T1+1 
is using the estimation t=1 to T1 while the estimation from t=2 to 
T1+1 is used to forecast the volatility at t= T1+2. Therefore, H one-
day ahead volatility forecasts can be obtained by using the rolling 

estimations procedures for 2
),(ˆ thσ , where h=1,…, H. For forecast 

evaluation two loss functions are used to evaluate the predictive 
accuracy of a volatility model:  
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CASE  STUDIES, ANALYSIS  RESULTS 
 
Applied data  
 
In the empirical study, the Louisiana and New England 
daily wholesale electricity data are selected in the long 
memory ARCH implementation. Figure 1 illustrates the 
price level and return series for both the markets. The 
wholesale pricing is once belongs to exclusive domain for 
large retail supplier, however due to market liberalization 
it is now open up to end-users such as New England. 
Both data sets commence from January year 2002 until 
the end of December year 2008 with a total of 1762 and 
1601 observations for Louisiana and New England 
respectively. The aforementioned data are used for 
estimations and the observations in year 2009 are 
reserved for forecast and forecast evaluations. The daily 
wholesale data can be obtained from the Intercontinental 
Exchange (ICE) which updated biweekly by the Energy 
Information Administration (EIA). The ICE 
(https://www.theice.com) is a major execution venue for 
over-the-counter (OTC) trading. These power indices are 
taken directly from transactions executed on the ICE 
platform representing approximately 70% of next day 
trading activity. 
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Figure 1.  Price level and return series from January 2002 to December 2008. 

 
 
 
Table 1 presents the descriptive statistics report for 
mean, standard deviation, skewness and kurtosis of the 
unconditional returns. All the returns are deviated from 
normal distribution with non-zero skewness and excess 
kurtosis. Normality test using Jarque-Bera statistic bases 
on these two measurements show that all the return 
series reject the normality condition with zero skewness 
and kurtosis exceed three.  

In addition, a series of quantile-quantile plots with 
normality against all the series do not follow a straight 
line especially at both tails. However, better results are 
observed when the normal distribution is replaced by 
student-t distribution. Figure 2 illustrates the aforemen-
tioned arguments. As a result, the normality assumption 
for return series may underestimate the empirical returns 
series with significant number of extreme values. Thus, a 
heavy-tailed distribution is more preferable in the model 
specification. 
 
 
Identification result 
 
For the subset model of mean equation, the ACF and 
PACF suggest that both  the  return  series  follow  ARMA 

(2,1) with the specification  
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The time varying volatility is studied by examining the 
possible serial correlation and dependence analysis in 
the   volatility proxy. Table 2 reports that all the series 
reject both the null hypotheses with serial correlation and 
dependence  in   the   first   six  lag.  In  other  words,  the
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Table 1.  Descriptive statistics for return series. 
 

Statistics Louisiana New England 

Mean 0.026037 0.035846 
Std. Dev. 8.936963 12.19540 
Skewness 0.244830 0.364211 
Kurtosis 9.014292 14.40199 
Jarque-Bera 2673.209 8707.843 
P-value 0.000000 0.000000 
Observations 1762 1601 

 
 
 

 
 
Figure 2.  Quantile-quantile plots for Louisiana market and New England market. 

 
 
heteroscedastic effects are evidenced in both the 
electricity markets. Variance-time (VT) and rescaled-
range (R/S) plots are based on the regression as follows: 
 
VT: log(V[x(n)]) = log(V[x]) - (2H-2) log(n),  

∑
−−=

=
kn

nkni
i

n
k x

n
x

)1(

)( 1

 

-40

-30

-20

-10

0

10

20

30

40

-80 -40 0 40 80

Quantiles of return (Louisiana)

Q
ua

nt
ile

s 
of

 N
or

m
al

-120

-80

-40

0

40

80

-80 -40 0 40 80

Quantiles of return (Louisiana)

Q
ua

nt
ile

s 
of

 S
tu

de
nt

's
 t

-60

-40

-20

0

20

40

60

-100 -50 0 50 100 150

Quantiles of return (New England)

Q
ua

nt
ile

s 
of

 N
or

m
al

-200

-150

-100

-50

0

50

100

150

200

-100 -50 0 50 100 150

Quantiles of return (New England)

Q
ua

nt
ile

s 
of

 S
tu

de
nt

's
 t



Cheong et al.          7155 
 
 
 

Table 2.  Heteroscedastic test. 
 

Market Engle LM statistic, LM(6) Ljung-Box statisti c, Q(6) 

Louisiana 48.94964(0.000) 402.07(0.000) 
New England 30.40733(0.000) 247.11(0.000) 

 
 
 

Table 3.  Long memory hurst’s parameter. 
 

Proxy Absolute return 
Hurst parameter Variance-time plot R 2 R/S R2 
Louisiana  0.659 0.9863 0.686 0.9921 
New England 0.652 0.9585 0.683 0.9938 
     
Proxy Square return 
Hurst value Variance-time plot R 2 R/S R2 
Louisiana  0.643 0.9921 0.674 0.9975 
New England 0.635 0.9771 0.673 0.9964 

 

Notes: R2 denotes the coefficient of determination. 
 
 
 

 
 
Figure 3. R/S and VT plot for square-return. 

 
 
 

R/S: )()ln()/ln( NeNHCSR ++= , 








 −









−−








−

=

∑

∑∑

=

=≤≤=≤≤

N

k
k

j

k
k

Nj

j

k
k

Nj

LMX
N

LMXLMX

S

R

1

2

1
1

1
1

))((
1

))((min))((max
 

 
Next, the existence of long memory processes in volatility 
(proxies by absolute and square return) is examined 
using VT and R/S analysis. Table 3 presents the esti-
mated Hurst’s parameters are approximately equivalent 
to 0.6500 under the regression analysis. Figure 3 
illustrates the regression plots  for  both  proxies, squares 

and absolute return. Overall, the R/S provides more 
accurate estimations compares to VT method under the 
coefficient of determination measurements. Both the long 
memory volatilities are evidence with Hurst values 
between 0.5000 to 1.0000 in the series. Due to this, it is 
more suitable to include long memory property in the 
GARCH model specification.  
 
 
Estimation result and diagnostic checking  
 

Table 4 presents the results of maximum likelihood for 
joint-estimation ARMA-GARCH based on Equation 6 to 
10. The result and implication for each coefficient is 
explained as follows:  
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Table 4.  Maximum likelihood estimation. 
 

Estimation 
Louisiana New England 

Mean 

Constant, θ0 0.100774 (0.9971) 0.157135*(1.371) 

AR(1), θ1 0.829295 *(14.24) 0.624152*(11.68) 

AR(2), θ2 -0.178100 *(-6.946) -0.111695*(-4.212) 

MA(1), ϑ1 -0.789449 *(-14.16) -0.701472*(-13.73) 

   
Variance   

Constant, α0 132.639274 (1.905) 48.69815*(2.556) 

ARCH, α1 0.206930(1.381) 0.108793 (0.5970) 

GARCH, β1 0.436339 *(2.361) 0.268781*(1.357) 
Long memory, d 0.430906* (5.268) 0.377616 *(8.118) 

News impact, γ -0.495339 (0.7108) -0.613679*(-4.680) 

Power, δ 1.880342*(10.64) 1.487252*(13.33) 

   
Tail property   
Tail index, v 4.861406*(9.198) 4.385438*(9.930) 
Skewness, skew 0.083231*(2.672) 0.263467*(7.653) 

 

The value in the parenthesis denotes the t-value. 
 
 
 
The return series for California market is fitted by an 
ARMA(2,1) for both the Louisiana and New England 
markets. This implies that, the historical price changes for 
both the markets have impacts to the current electricity 
price changes.  

Instead of prefixing the power transformation (δ ) of 
volatility, the dynamic δ is selected based on the optimal 
log-likelihood function in the iterative searching algorithm. 
The Louisiana market indicates δ equivalent to 1.882137 
which is in favor of the Bollerslev’s volatility specification 
with conditional variance. On the hand, the New England 
market is indifferent in either Taylor’s or Bolleslev’s 
specification with δ equivalent to 1.487252.  

The tail-index vs for both markets are 4.861406 and 
4.385438 with the fatter tail for New England market than 
Louisiana market. Besides this, the error terms for the 
density function for all the markets are positively skewed 
which implies that most the observations are 
concentrated at the negative side of the distribution.  

The long memory parameter d documents 0.430906 
and 0.377616 for Louisiana and New England markets. In 
short, the New England market indicates higher long 
memory intensity over New England markets. The 
presence of long memory phenomenon in the electricity 
market can be explained using the heterogeneous market 
(Cheong, 2010; Dacorogna et al., 2001) concept where 
the retailers and consumers are different from 
geographical location, preference to the type of energy, 
degree of energy information, wealth constraint, nature of 
consumption (commercial or home) and awareness of 
energy crisis. The combinations of these dissimilar time-
response volatilities among the heterogeneous market 

participants are believed to produce hyperbolic 
autocorrelation decays or long memory in the return 
volatility.  
Only the New England’s volatility asymmetry parameter 

φ indicates the news impact is asymmetric. In short, the 
New England market implies that the upward movement 
(rise in price) has a stronger impact on the next day 
volatility than a plunge of the same magnitude. However, 
this phenomenon is not observed in the Louisiana 
markets. 

For the diagnostic checking, Table 5 indicates that all 
the models are adequate with no serial correlation, ARCH 
effect and asymmetric impact to the news at 1% 
significance level. 
 
 

Forecast and forecast evaluation results  
 

The one-day ahead return and volatility forecasts are 
conducted for Louisiana and New England electricity 
markets. The rolling forecasting is implemented in four 
different time horizons with 5, 20, 60 and 150 one-day 
ahead forecasts. A static forecasting is conducted by 
rolling re-estimation once a day from a fixed size of 1762 
and 1601 for Louisiana and New England respectively. 
Table 6 reports that, the return forecast evaluations with 
the measurement of mean absolute error (MAE) and 
mean squared error (MSE). Since the MSE is relatively 
more sensitive to extreme value in the series, it is 
observed that MSE are higher than MAE in all the time 
horizons forecast evaluations. Figures 4 and 5 illustrate 
the outcomes of the forecasts for both the markets using 
ARMA(2,1) models. It  is  worth  to  note  that,  the  return
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Table 5.  Diagnostic checking. 
 

Diagnose Louisiana New England 

ta~ ,Q(6) 7.24754 [0.0644127] 9.21628* [0.0265493] 
2

ta~ Q(6) 3.83943 [0.4281721] 1.12627 [0.8900827] 

ARCH(6) 0.68998 [0.6578] 0.18897 [0.9800] 
Negative bias 1.06996 0.28464 0.77987 0.43547 
Positive bias 0.21111 0.83280 0.00039 0.99969 

 

Notes: 
1. ta~ represents the standardized residual. Ljung box serial correlation test (Q-statistics) on 

ta~  and 2
ta~ : null hypothesis – no serial correlation; LM ARCH test: null hypothesis - no ARCH 

effect; 2. The parentheses values represent the standard error and p-value for model 
estimation and diagnostic analysis respectively; . (*) denotes 5% level of significance. 

 
 
 

Table 6.  Return forecast evaluations. 
 

Forecast 
Louisiana New England 

MAE MSE MAE MSE 
5 day-ahead 4.875109 45.7746 4.875109 45.7746 
20 day-ahead 6.493351 69.69166 14.96263 359.3206 
60 day-ahead 6.715448 69.57441 10.89982 228.9269 
150 day-ahead 6.394046 63.11644 6.953547 108.6783 

 
 
 

 
 
Figure 4. Return forecasts for Louisiana and New England market. 

 
 
 
forecast can be improved if other influential aspects 
(Torre et al., 2003) such as transmission line congestion 
or other relevant aspects. Tables 7 and 8 present the 
volatility forecast evaluations for long memory GARCH 
and inclusion of standard GARCH as comparison 
purposes. It is found that overall the forecast evaluations 
for long memory GARCH is better than the standard 
GARCH in the entire time horizon. Similar volatility 

forecast evaluation results are observed in where MSE is 
relatively more sensitive to extreme volatility than MAE. 
Thus, the error forecasts using the MAE is smaller. From 
Figure 5, the forecast volatility series are responsive to 
the actual volatility movements. As a conclusion, it 
appears that long memory model is out-performed the 
standard ARCH model for all the time horizon forecasts 
with smaller loss functions.  
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Figure 5.  Volatility forecasts for Louisiana market and New England market. 

 
 
 

Table 7.  Volatility forecast evaluations for Louisiana market. 
  

Model 
Long memory GARCH Standard GARCH 
MAE MSE MAE MSE 

5 day-ahead 146.958 22169.37 158.798 26043.9 
20 day-ahead 112.6326 23737.14 116.9692 24192.8 
60 day-ahead 84.1231 14320.88 85.66874 14491.07 
150 day-ahead 70.65394 9877.373 72.27973 9969.246 

 

 
 

Table 8.  Volatility forecast evaluations for New England market. 
  

Model 
Long memory GARCH standard GARCH 
MAE MSE MAE MSE 

5 day-ahead 93.85406 10492.99 124.6625 17018.3 
20 day-ahead 392.1333 372194.3 403.9945 330081.7 
60 day-ahead 270.4836 251197.2 301.2774 245464.7 
150 day-ahead 131.2295 102442.7 145.2909 100518.2 

 
 
 
Application in market risk 
 
The estimated results have immediate application in 
market risk of electricity markets. One of the possible 
scenario is says a retailer earns a gross profit of $1million 
(by selling a certain volume of electricity) for a particular 
day. If the retailer would like to know the worst loss in the 
next five days under normal market condition, this market 
risk can be quantified using the definition of value-at-risk 
(Jorion, 1997). The VaR is normally define as the worst 
loss for a given confidence level (for instance 95%) which 
means one is 95% certain that at the end of a chosen risk 
horizon (for example, five day ahead for this specific 
study) there will be no greater loss, that is the VaR under 
normal market conditions. In portfolio analysis, the VaR 

often acts as a tool to alert investors for their possible 
expose risks under a particular portfolio. Consider the 
fitted model for Louisiana market, the estimated values at 
t = 1762 are r1762 = -33.4513 and σ2

1762 = 110.6999. Thus, 
the five days ahead forecasts are r1762(5) = 0.242063 and 
σ2

1762(5) = 110.7254. For lower tail 5% quantile, the value 
is rt + tα=0.05,(v=4.861406, skew=0.083231)σ = 0.242063 − 1.4954 × 
110.7254 = -15.4935% (negative sign indicates the loss). 
The 95% VaR for a position of $1 million is 
$1million×0.154935 = $154935, in this condition the long 
memory model still hold. In other words, with 95% 
confidence the potential loss of holding this position in 
next five day is $154935 or less. Similarly, the lower 1% 
quantile can be determined as rt + tα=0.01,(v=4.861406, 

skew=0.083231), σ = 0.242063 − 2.4531 × 110.7254 = -25.571%. 

  



 
 
 
 
This time, with higher confidence level 99% the maximum 
potential loss increases to $255710. It is worth to note 
that the VaR is directly influences by the parametric 
distribution assumption, for this specific study we used 
skewed student-t distribution. If other assumption such as 
normal distribution or generalized error distribution is 
used, the value of VaR will be varied based on the 
behaviour of the tail distribution.  
 
 
CONCLUSION 
 
This paper investigated the time varying volatility of two 
electricity markets for New England and Louisiana in 
terms of their long memory, asymmetric news impact and 
skewed heavy-tailed behaviors. The empirical findings 
that may attract the interests of academicians and 
researchers are as follows:  
 
First, the power transformation of time-varying volatility 
for Louisiana market is in favor of variance 
representation; whereas, it is indifferent for New England 
in either variance or standard deviation form. The type of 
volatility representation has important role in forecast and 
risk evaluations  

Second, both the markets indicated positively skewed 
and heavy-tailed distribution which implied the 
concentration of more negative returns in the studied 
duration. 

Third, only the New England market evidenced the 
presence of leverage effect.  

This implied that the downward movements (shocks) in 
the New England market are follow by greater volatilities 
than upward movements of the same magnitude. Fourth, 
both the markets indicated long memory behavior in 
terms of their time-varying volatilities. This suggested that 
the fluctuation of prices has permanent effects on its 
volatility. The long-persistence volatility can be explained 
in the micro manner where the heterogeneous market 
participants interpreted the same information differently 
according to their trading opportunities. The electricity 
markets which composed by participants with different 
reaction times to news (new information) have created a 
volatility cascade ranging from low to high frequencies. 
These combinations of dissimilar volatilities are believed 
to produce the very slow-decaying volatility in markets. 
Therefore, investors or policy makers should take into 
account this behavioral economic in their future research 
or investment. Fifth, the out-sample forecast evaluations 
indicated superior performance for long memory model 
over the standard GARCH models. In other words, the 
richer specifications of the implemented long memory 
model gained additional accuracy over the traditional 
model. One of the direct applications of estimated time-
varying volatility is the quantitative market risk measure-
ment using value-at-risk. From the economic point of view, 
the electricity market risk is a vital issue for financial 
institutes (including private  or  government  investments) 
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because a large amount of wealth can be lost due to 
failure of supervising and controlling the financial risks.  
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