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In this paper, a new approach of the iterative method is developed to handle nonlinear differential 
equations of fractional order. For this reason, an efficient modification of iterative method, namely 
iterative-Laurent method, is introduced based on iterative method and Laurent series expansion. The 
proposed approach is capable of reducing the size of calculations and easily overcome the difficulty 
arising in calculating complicated integrals. Furthermore, the new approach is compared with the 
variational iteration method and Adomian decomposition method in various nonlinear fractional 
differential equations and the obtained results reveal that the proposed method is more accurate and 
efficient. 
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INTRODUCTION  
 
Fractional order ordinary differential equations, as gene-
ralizations of classical integer order ordinary differential 
equations, are increasingly used to model problems in 
fluid flow, mechanics, viscoelasticity, biology, physics and 
engineering and other applications. Fractional derivatives 
provide an excellent instrument for the description of 
memory and hereditary properties of various materials 
and processes. Half-order derivatives and integrals 
proved to be more useful for the formulation of certain 
electrochemical problems than the classical models 
(Podlubny, 1999). Fractional differentiation and inte-
gration operators are also used for extensions of the 
diffusion and wave equations (Schneider and Wyess, 
1989). Most nonlinear fractional differential equations do 
not have exact analytic solutions, therefore approximation 
and numerical techniques must be used. The variational 
iteration method (VIM) and  the  Adomian  decomposition  
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method (ADM) and their modifications (Jafari et al., 2011; 
Ghorbani, 2008; Jafari and Gejji, 2006; Lensic, 2005; 
Momani and Odibat, 2007; Odibat and Momani, 2006) 
are relatively new approaches to provide an analytical 
approximation to linear and nonlinear differential equa-
tions of fractional order.  

The ADM and VIM are limited, that the former has com-
plicated algorithms in calculating Adomian polynomials 
for nonlinear problems and the latter has an inherent 
inaccuracy in identifying the Lagrange multiplier for 
fractional operators, which is necessary for constructing 
variational iteration formula. Gejji and Jafari (2006) 
employed the basic ideas of decomposition method to 
propose a general method for nonlinear functional 
equations, namely the iterative method (IM). The IM was 
successfully applied to solve several types of nonlinear 
problems such as nonlinear fractional differential equa-
tions (Bhalekar and Gejji, 2008; Gejji and Jafari, 2006). 
The aim of present paper is to introduce reliable 
approach of the IM to handle nonlinear fractional diff-
erential equations. The main advantage of this approach 
is the capability to reduce the computational work and to 
overcome the difficulty that arising in calculating com-
plicated integrals. Moreover, this method is examined by 
comparing the results with the VIM  and  ADM. Numerical 
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results show the efficiency of the proposed method of this 
paper. 
 
 
Basic definitions  
 
We give some basic definitions and properties of the 
fractional calculus theory (Ghorbani, 2008) which are 
used further in this paper. 
 
 
Definition 1 
 

A real function  is said to be in the space 

 if there exists a real number  such that 

 where . Clearly 

 if . 

 
 
Definition 2 
 

A function  is said to be in the space 

 if . 

 
 
Definition 3 
 
The Riemann-Liouville fractional integral operator of 

order  of a function,  is defined 

as 
 

          (1) 

 

                        (2) 

 

Here, we have (Miller and Ross, 1993). 
 

            (3) 

 

           (4) 

 

             (5) 

 

where  and . 

 
 
Definition 4 
 

The fractional derivative of  in the Riemann-Liouville  

 
 
 
 
sense is defined as 
 

    (6) 

 

where  and satisfies the relation 

 and . 

 
Properties of the operators can be found in (Podlubny, 
1999), we mention only the following: 
 

            (7) 

 

where  and . 

 
The Riemann–Liouville derivative has certain disadvan-
tages when trying to model real-world phenomena with 
fractional differential equations. Therefore, we shall 

introduce a modified fractional differential operator  

proposed by Caputo in his work on the theory of 
viscoelasticity (Caputo, 1967). 
 
 
Definition 5 
 

The fractional derivative of  in the Caputo sense is 

defined as 
 

       (8) 

 

for  and . 

 
Also, we need here two of its basic properties. 
 

                        (9) 

 

. (10) 

 
 
The ADM, VIM and IM 
 
In recent years, ADM has been applied to a wide class of 
stochastic and deterministic problems in many areas of 
mathematics and physics. This computational method 
yield analytical solutions and has certain advantage over 
standard numerical methods. Recently (Jafari and Gejji, 
2006; Lensic, 2005), the solution of fractional ordinary 
differential equations has been obtained through the 
Adomian decomposition method. To illustrate the decom-
position procedure of the ADM, we consider the following 



 
 

 
 
 
 
nonlinear fractional differential equation (more general 
form can be considered without loss of generality): 

 

   (11) 

 

where the fractional differential operator  is defined as 

in Equation (8),  is a 

nonlinear functional of , and  is an unknown function to 

be determined later. Applying the operator , the 

inverse of the operator , to both sides of (11) yields 

 

        (12)  

 
The ADM suggests the solution be decomposed into the 
infinite series of components 
 

           (13) 

 
And the nonlinear function in (12) is decomposed into a 
series of the so-called Adomian polynomials and is as 
follows: 
 

         (14) 

 
which the terms can be calculated recursively form 
 

         (15) 

 
Substituting (13) and (14) into both sides of (12) gives 
 

 (16) 

 
From this equation, the iterates are determined by the 
following recursive way: 
 

  

         (17) 

 

Finally, we approximate the solution by the truncated 
series 
 

 and .   (18) 

 
The VIM was first proposed by the Chinese 
mathematician, He. It has been shown that this 
procedure is a powerful tool for solving various kinds of 
problems. To illustrate its basic  idea  of  the  method,  we  
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consider (11) as 
 

         (19) 

 
The basic character of the method is to construct a 
correction functional for (19). He (1998) constructed the 
following correction functional for (19): 
 

 (20) 

 

Where  is a Lagrange multiplier which can be identified 

optimally via variational theory (He, 1997),  is the th 

approximate solution, and  denotes a restricted 

variation, that is. . To approximately identify the 

Lagrange multiplier when there does not exist a 
derivative with an integer order, there is no way to directly 
obtain the stationary conditions from a functional with 
fractional integrate, so, in order to approximately identify 
the multiplier, one has to find a minimal integer 

 or a maximal integer 

. Therefore, the correction 

functional (20) can be approximately expressed as 
follows: 
 

    (21) 

 
and 
 

 (22) 

 
The multiplier, therefore, can be determined by the VIM, 
substituting the identified Lagrange multipliers, 
respectively, into (20) resulting in the following iteration 
procedures: 
 

    (23) 

 

 (24) 

 
or 
 

 (25) 

 

where  and  are weighted factors with . It 

should be emphasized that the aforementioned process 

was only suggested for  (He, 1998). For 

instance, Momani and Odibat (2007) and Odibat and 
Momani (2007) have constructed the correction functional 
for (19) as follows: 
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  (26) 

 

Therefore, the multiplier can be obtained by the VIM, 
substituting the identified Lagrange multiplier into (26) 
results in the following iteration procedure: 
 

    (27) 

 

Now we can start with the given initial approximation and 
by the above iteration formulas we can obtain the 
approximate solutions. Consequently, the exact solution 

may be obtained by using , 

(Ghorbani, 2008). The IM has been successfully applied 
to solve several types of nonlinear problems (Bhalekar 
and Gejji, 2008; Gejji and Jafari, 2006).  To illustrate its 
basic idea of the IM, we consider (11). Applying the 

operator , the inverse of the operator , to both 

sides of (11) yields 
 

        (28)  

 

The iterative method suggests the solution be decom-
posed into the infinite series of components 
 

,                       (29) 

 

And the nonlinear function in (12) is decomposed as 
 

  (30) 

 
Now substituting (29) and (30) into both sides of (28) 
gives  

 

    (31) 

 
From this equation, the iterates are determined by the 
following recursive way: 

 

, 

 

 (32.a)  

 
And in general 

 

 (32.b)  

 
 
 
 
Finally, we approximate the solution by the truncated 
series 

 

 and . (33) 

 
From here, we can clearly conclude that the main demerit 
of the ADM is to calculate Adomian polynomials for a 
nonlinear operator where the procedure is very complex 
and the main demerit of the VIM is to identify the 
Lagrange multiplier for a fractional operator which is 
merely approximate. The main demerit of the IM is to 

calculate the components , in (32), and it may also 

requires a large amount of computational work in 
determining these components. In order to overcome 
these disadvantages, subsequently, we propose a new 
approach of the IM for solving nonlinear fractional 
differential equations where there is no complicated 
process. The procedure solution becomes easier and 
more straightforward. 
 
 
ANALYSIS OF THE NEW METHOD 

 
Although the IM has many advantages such as simple solver and it 
does not require using the Adomian polynomials, it may be difficult 

to calculate the components  and it may also require a large 

amount of computational work in determining these components. 
Here, a new approach of the IM using the Laurent series 
expansion, namely Iterative- Laurent method (ILM) is proposed to 
overcome these difficulties. Main idea of the method proposed is to 
be used the Laurent series expansion in (32). Here, for a given 

function , we denote its -order Laurent series expansion at 

zero by . Let us replace the right hand side functions of 

(32) with their -order Laurent series expansion, then we have 

 

, 

 

 (34.a)  

 
And in general 

 

(34.b)  

 
Finally, we approximate the solution by the truncated series 

 

 and .  

          
Generally speaking, the presented method will show the simplicity 
and accuracy in solving various fractional problems, as well as the 
rapid convergence of approximations to accurate solutions. 

Furthermore, the solution procedure is much more fascinating and 
straightforward. 



 
 

 
 
 
 
CONVERGENCE ANALYSIS 
 
Consider the general functional equation 
 

                                                          (35) 

 

where  is a nonlinear operator from a banach is space  

and  is a known function. Suppose that  having the series form 

 and  , be a contraction, that is,  

 

 
 
Then 
 

 
 

So the series    which is obtained by the ILM converges to 

the unique solution of Equation (35) absolutely and uniformly, in 
view of the Banach fixed point theorem (Jerri, 1999). 

 
 
APPLICATION OF ITERATIVE-LAURENT METHOD (ILM) 

 
Here, for the sake of comparison, we have selected some examples 
where the exact solution already exists, which will ultimately show 
the simplicity, effectiveness and exactness of the proposed method. 
Maple 12 is used for computations here. 
 
 

Example 1 
 

Consider the following nonlinear fractional differential equation 
(Ghorbani, 2008). 
 

 (36) 

 

With the initial conditions 
 

           (37) 

 

And the exact solution .  

 
 

Solution by the IM 
 

Applying the operator , the inverse of the operator , to 

both sides of (36) yields 
 

  

          (38) 

 

Starting with the initial approximation. 
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We get 
 

  

  

 

  

 

  

  

  

         (39) 

 

Here, calculating , for , require a large amount of 

computational work.  
 
 

Solution by ILM 
 

For this example we choose . According to (34) and (38), 

we have 
 

  

   

 

  

  

 

 , 

  

 

 
, 

, 

                                                                                                    
(40) 

 

The -approximate solution of the ILM is, 

 

.       (41)
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     x  
 

Figure 1. Approximate solutions for example 1 using ILM: Dat, ADM: Dash, VIM: dash dat and 

exact solution is : solid line. 

 
 
 

 
Solution by the VIM: According to relations (26) and (27), we have 
the following variational iteration formula for solving (36): 
 

     (42) 

 

We start with the initial approximation . Therefore, we 

obtain 
 

, 

 

  

 
, 

  

, 

, 

 
              (43) 

 
Solution by the ADM  
 
In accordance with the ADM, we have 
 

, 

 

 

, 

, 

 

, 

 

 
                                                                                                    (44) 

 

where  are A domian polynomials for nonlinear operator 

. The -approximate solution of the ADM is 

stated as: 

 

.  (45) 

 
In Figure 1, the approximation solutions  of  the  



 
 

 
 
 
 
ILM and ADM and the approximation solution  of the VIM 

have been plotted. We observe that the obtained solution using the 
ILM coincide with the exact solution. It is noteworthy that the 
obtained results confirm the proposed ILM is easier, more effective 
and much more accurate than the IM, VIM and ADM. 

 
 
Example 2 

 
Consider the nonlinear differential equation of the fractional order 
(Ghorbani, 2008): 
 

                   (46) 

 
With the initial conditions 
 

.                                    (47) 

 

And the exact solution, . 

 

 
Solution via the IM 
 

Applying the operator , the inverse of the operator , to both 

sides of (46) yields 
 

, (48) 

 

It is easy to verify that to compute , for  require a large 

amount of computational work.  

Solution via ILM: With selecting  and According to (34), 

we have 
 

,  

 

  

,  

  

 
, 

                                           
                    (49) 

 
The -approximate solution of the ILM is stated below. 

 

. (50) 

 
Solution via the VIM: According to relations (26) and (27), we have 
the following variational iteration formula for solving (46): 
 

. (51) 

 

We   start   with   the   initial   approximation    and  the  
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approximation solution  of (51) is stated below, 

 

 
.            (52) 

 
 
Solution via the ADM: According to the ADM, we have 
 

  

, 

 
, 

 

The -approximate solution of the ADM is stated below. 

 
.  (53) 

 
In Figure 2, the approximation solutions  of 

the ILM and ADM and the approximation solution  of the 

VIM have been plotted. We observe that the obtained solution using 
the ILM is much more accurate and efficient than the approximate 
solutions obtained using the VIM and ADM. 
 
 
Example 3 
 

Consider the following nonlinear fractional differential equation with 
variable coefficient (Ghorbani, 2008). 
 

           (54) 

 

With initial condition 
 

.                                           (55) 

 
And the exact solution. 
 

.                             (56) 

 

Applying the operator , the inverse of the operator , to 

both sides of (54) yields 
 

 (57) 

 
 
Solution by the IM 
 

Here, calculating  for , require a large amount of 

computational work. 
Solution by the ILM: As processed before, we obtain 

 

.   (58)  

 
where  is considered. 
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Figure 2. Approximate solutions for example 2 using ILM: Dat, ADM: Dash, 

VIM: Dash Dat and exact solution is : solid line. 

 
 
 

Solution by the VIM 
 

As before processing, we obtain 
 

  (59) 

 

And  
 

 
.       (60) 

 

where  is supposed.  

 
 
Solution by the ADM 
 

As processed before, we obtain 
 

, 

 

.                          (61) 

 

And 
 

  

.                                         (62) 

 

In Figure 3, the approximation solutions  of 

(58) of the ILM, the approximation solution  of (60) of the 

VIM and the approximation solution  of (62) of 

the ADM have been plotted.  

Example 4 
 

Consider the following nonlinear differential equation of the 
fractional order (Ghorbani, 2008). 
 

            (63) 

 

With initial condition 
 

.                             (64) 

 

And the exact solution (when ). 

 

.                            (65) 

 

Applying the operator , the inverse of the operator , to 

both sides of (63) yields 
 

            (66) 

 
 
Solution via the IM 
  

We have: 
 

, 

, 

  

,          (67) 
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Figure 3. Approximate solutions for example 3 using ILM: Dat, ADM: Dash, VIM: Dash 

Dat and exact solution is : solid line. 

 
 

 

Here, calculating , for  is difficult, when 10  . 

 
 

Solution via the ILM 
 

With selecting  and According to (34), we have  

 

,  

, 

, 

,  

                                                                                      (68) 

Here, 0n,yn  , can be easily calculate, when 10  . 

 
 
Solution via the VIM 
 
Since the integration of the nonlinear term in (66) is not easily 
evaluated, thus here we replace the nonlinear term with a series of 
finite components. Under this assumption, therefore, we consider 
the following fractional iteration scheme: According to (26) and (27), 
and the above assumption, we have the following variational 
iteration formula for solving (63): 
 

,   (69) 

 

where  is supposed. 

 
 
Solution via the ADM 
 
According to ADM, we have the following recursive relation: 
 

, 

,                          (70) 

 
where  
 

, 

, 

,                                 (71) 

 
Figure 4 shows the approximate solutions obtained for (63) using 

the ILM, VIM and ADM when    versus the exact solution, 

. The value of  is the only case for 

which we know the exact solution and our approximate solutions 

using the fractional iteration method are in good agreement with the 
exact values. It is to be noted that only three terms of ILM and ADM 
and third-term of VIM were used in evaluating the approximate 
solutions for Figures 4 and 5. From the numerical results in Figure 
4, it is easy to conclude that our approximate solution using the ILM 
is more accurate than the approximate solutions obtained using the 
VIM and ADM. Figure 5 shows the approximate solutions obtained 

for (63) using the ILM, VIM and ADM when  versus the 

exact solution of (63) when . The results demonstrate that 

the ILM is more effective and accurate than the IM, VIM and ADM in 
solving these nonlinear fractional problems. One of the biggest 
advantages the ILM has over the ADM, VIM and IM is that it 
overcomes the difficulty that arises in calculating the Adomian 
polynomials, in identifying the Lagrange multiplier, and in the 
difficulty arising in calculating complicated integrals, respectively. 

 
 
DISCUSSION AND CONCLUSIONS  

 
In this work, we carefully proposed an efficient modifica-
tion of the iterative method to handle nonlinear fractional 
differential equations. Efficient approximate solutions 
have been derived for fractional differential equations and 
the results have been shown remarkable performance.
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Figure 4. Approximate solutions for Example 4 when  using ILM: Dat, ADM: 

Dash, VIM: Dash Dat and exact solution: solid line. 

 
 
 

 
 

Figure 5. Approximate solutions for example 4 when  using ILM: Dat, ADM: 

Dash, VIM: Dash Dat and exact solution: Solid line. 

 
 
 
are two important points to make here. First, the 
proposed approach can provide the suitable approximate 
solution by using only a few numbers of iterations, as 
shown in Examples 1 to 4. Also it may be conclude that 
this approach require less computational work when 
compared with the standard iterative method as shown in 
Examples 1 to 3. Secondly, the new approach overcomes 
the difficulty arising in calculating complicated integrals, 
as shown in Example 4. Unlike ADM, the LIM method is 
free from the need to use Adomian polynomials. This 
method has no need for the Lagrange multiplier, 
correction functional, stationary conditions, the variational 

theory, etc., which eliminates the complications that exist 
in VIM.  
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