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Reversible logic circuits are emerging as a promising technology for power minimization. Parity 
preserving reversible circuits design will be very important for development of fault tolerant reversible 
systems in nanotechnology. In this paper, a fast fault tolerant reversible signed multiplier is proposed. 
In order to construct the multiplier, five variables parity preserving gate (F2PG) and modified new fault 
tolerant (MNFT) are designed, which are parity preserving reversible gates. The most significant aspect 
of F2PG is that it can work independently as a reversible fault tolerant full adder. Meanwhile, it can 
implement all Boolean functions. MNFT can reduce cross redundancy. The quantum implementations of 
F2PG and MNFT are also given. Otherwise, a new quantum implementation of the modified Islam gate 
(MIG) is presented. The Wallace tree is applied to improve the operating speed of the multiplier, which 
can implement the multiplication of two 5-bit binary signed numbers. Simulation and evaluation results 
indicate that the multiplier logic structure is correct with excellent performance. 
 
Key words: Parity preserving reversible gate, fault tolerant, five variables parity preserving gate (F2PG), 
modified new fault tolerant (MNFT), reversible signed multiplier. 

 
 
INTRODUCTION 
 
Energy loss is an important consideration in digital 
design. R. Landaner showed that for irreversible logic 
computations, each bit of information loss generates 
KTln2 joules of energy, where K is Boltzmann’s constant 
and T is the absolute temperature during computation 
(Landauer, 1961). Theoretically, a reversible logic circuit 
dissipates zero power since the input vector of reversible 
circuit can be uniquely recovered from the output vector. 
Bennett (1973) showed that zero energy would be 
possible if and only if the network consists of reversible 
gates. Consequently, reversibility will be an essential 
property of the future circuit designs. 

Reversible computation is a promising study area with 
regard to the further technological advances. Applied in 
many applications, such as low power complementary 
metal-oxide-semiconductor (CMOS) design (Burr and 
Peterson, 1991), optical computing (Knil et al., 2001), DNA 
computing (Moore,  1998),  quantum  computing  (Nielsen  
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and Chuang, 2002), thermodynamic, bioinformatics and 
nanotechnology (Merkle, 1993), it has received significant 
attentions in recent years. It is very clear that reversible 
computation will play a dominated role in future 
technologies.  

A circuit (gate) is reversible if there is a one-to-one 
correspondence between the inputs and the outputs. 
Neither feedback nor fan-out is allowed (Perkowsi et al., 
2001). In reversible logic design, an efficient design 
should minimize the followings (Islam et al., 2009): 
  
Gate count: The number of gates used to realize the 
system.  
Garbage outputs: The number of unused outputs in a 
reversible logic.  
Constant inputs: The number of inputs kept constant at 
either 0 or 1.  
Hardware complexity (Total logical calculation): The 
number of basic gates (NOT, AND and EX-OR gate) used 
to synthesize the given function. 
Quantum cost: The cost of the circuit in terms of the cost 
of a primitive gate. 

Fault  tolerance  is  one  property  that  the  system  still
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Figure 1. 3×3 F2G gate: (a) symbol and functionality, (b) quantum equivalent representation. 
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Figure 2. 3×3 FRG gate: (a) symbol and functionality, (b) quantum equivalent representation. 

 
 
 

continues to use in operating properly even if some 
components fail. In communication and many other 
systems, fault tolerance is achieved by parity. Parity 
check is one of the widely used mechanisms for detecting 
single level fault. Thus, parity preserving reversible 
circuits design will be very important for the development 
of fault tolerant reversible systems in nanotechnology. A 
gating network will be parity preserving if its individual 
gate is parity preserving (Parhami, 2006; Islam and 
Begum, 2008). The synthesis of reversible logic circuit is 
significantly more complex than the conventional logic 
synthesis. It is also more difficult to make a fault tolerant 
reversible circuit than a conventional logic circuit. 
Therefore, it is necessary to search parity preserving 
reversible gates in order to construct parity preserving 
reversible circuits.  

Multiplier circuits are of special importance because of 
the fact that they are the integral components of computer 
systems, cellular phones and most of the digital audio/ 
video devices, etc. There is one proposed reversible 
signed multiplier circuit in previous paper (Akbar et al., 
2011). However, the available research results on fault 
tolerant reversible signed multiplier are very few. In this 
paper, two parity preserving reversible logic gates, five 
variables parity preserving gate (F2PG) and modified new 
fault tolerant (MNFT) are proposed. They can be used to 
design fault tolerant reversible logic circuits such as 
signed multiplier. 

This paper is organized as follows: the brief introduction 
of the fault tolerant reversible logic gates required for the 
present work, new parity preserving reversible gates and 
their quantum implementation in detail, the description and 
simulation of fault tolerant signed multiplier and its evalua-
tion. Finally, some conclusions and future work are depicted. 

PARITY PRESERVING REVERSIBLE LOGIC GATES 
 
Existing parity preserving reversible logic gates 
 
Here, we review some parity preserving reversible logic 
gates which are used in this paper. For the convenience 
of calculating hardware complexity, we define the 

following parameters: α, a two input EX-OR gate 
calculation; β, a two input AND gate calculation; δ, a NOT 
calculation; TC, total logical calculation. 

A reversible gate is called parity preserving reversible 
logic gate if its input parity matches the parity of its output. 
More formally, any K×K reversible logic gate where the 
EX-OR of the inputs matches the EX-OR of the outputs 
will be parity preserving (Islam and Begum, 2008). A few 
of the parity preserving reversible logic gates have been 
proposed in the literatures (Parhami, 2006; Fredkin and 
Toffoli, 1982; Hagpharast and Navi, 2008; Islam et al., 
2009). 

 
 
Feynman double gate 

 

 
Figure 1 shows a 3×3 Feynman double gate (Parhami, 
2006) (F2G). The quantum cost of a F2G gate is 2, and 
the total logical calculation TC is 2α. 

 
 
Fredkin gate 
 
Figure 2 shows a 3×3 Fredkin gate (Fredkin and Toffoli, 
1982) (FRG). The quantum cost of a FRG gate is 5, and 
the total logical calculation TC is 2α+4β+2δ.  
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Figure 3. 3×3 NFT gate: (a) symbol and functionality, (b) quantum equivalent representation. 
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Figure 4. Symbol and functionality of 4×4 IG gate. 

 
 
 

New fault tolerant gate 
 

Figure 3a shows a 3×3 new fault tolerant gate 
(Hagpharast and Navi, 2008) (NFT). The quantum cost of 
a NFT gate is 5, while in our opinion; it is 7 as shown in 
Figure 3b. The total logical calculation TC is 4α+3β+2δ. 
 
 

Modified Islam gate  
 

Figure 4 shows a 4×4 Islam gate (Islam and Begum, 
2008) (IG). Figure 5a shows a 4×4 modified Islam gate 
(Islam et al., 2009) (MIG). The quantum implementation 
of MIG is designed in a new method as shown in Figure 
5b. The quantum cost of a MIG gate is 7 because the 
quantum cost of a PG gate is 4 (Peres, 1985). Total 
logical calculation TC is 3α+2β+δ. The quantum cost of 
an IG gate is also 7. Total logical calculation TC is 
4α+3β+δ. 
 
 

New parity preserving reversible logic gates 
 

New 5×5 parity preserving reversible logic gate 
 

A 5×5 parity preserving reversible gate logic called F2PG 
is proposed and shown in Figure 6, its optimal quantum 
implementation by template matching and applying the 
moving rule (Miller et al., 2003) is revealed in Figure 7. 
The input vector is I (A, B, C, D and E) and the output 
vector is O (P, Q, R, S and T). The outputs are described 

as P= CBAC ⊕ = BC)BA( ⊕⊕ , Q=A⊕B, R=A⊕B⊕C, 

S=(A⊕B)C⊕AB⊕D and T= EBA ⊕ = EAAB ⊕⊕ . The 

optimized quantum cost of a F2PG gate is 14. Total 
logical calculation TC is 10α+3β. The corresponding truth 
table of the F2PG gate is as shown in Table 1. It can be 
verified from the truth table that the input pattern 
corresponding to a particular output pattern can be 
uniquely determined. The F2PG gate is also parity 

preserving, owing to A⊕B⊕C⊕D⊕E↔P⊕Q⊕R⊕S⊕T. 
Therefore, F2PG gate is parity preserving reversible logic 
gate. 

The F2PG gate can implement any Boolean functions, 
AND, OR, NOT, XOR, etc. Boolean functions can be 
obtained as depicted in Figure 8a to d. One of the most 
prominent features of F2PG gate is that it can work singly 
as a fault tolerant reversible full adder unit. The full adder 
using F2PG is acquired with D=0, E=0 and C=Cin as 
shown in Figure 9. 
 
 
Modified new fault tolerant logic gate  
 
In this paper, in order to decrease cross redundancy, the 
NFT gate (Hagpharast and Navi, 2008) is modified and 
called the MNFT gate as shown in Figure 10. The input 
vector is I (A, B and C) and the output vector is O (P, Q 

and R). The outputs are described as P=AC ⊕ＢＣ＝ 

(A⊕B)C⊕A,Q=A⊕B and R=AC  ⊕ B C=(A⊕B)C⊕A⊕C. 

The quantum cost of a MNFT gate is 5 as shown in 
Figure 11. Its total logical calculation TC is 5α+β. The 
corresponding truth table of the MNFT gate is as shown in 
Table 2. It can be verified from the truth table that the 
input pattern corresponding to a particular output pattern 
can be uniquely determined. It is noted that the MNFT 

gate is parity preserving, because of A⊕B⊕C ↔ P⊕Q⊕R. 

 
 

THE APPLICATION OF NEW PARITY PRESERVING 
REVERSIBLE LOGIC GATES 
 

Fault tolerant adder circuit based on F2PG 
 

Fault tolerant full adder circuit 
 

Reversible logic implementation of fault tolerant full adder
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Figure 5. 4×4 MIG gate: (a) symbol and functionality, (b) quantum equivalent representation. 

 
 
 

Table 1. Truth table of the F2PG gate. 
 

A B C D E P Q R S T 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 1 

0 0 0 1 0 0 0 0 1 0 

0 0 0 1 1 0 0 0 1 1 

0 0 1 0 0 0 0 1 0 0 

0 0 1 0 1 0 0 1 0 1 

0 0 1 1 0 0 0 1 1 0 

0 0 1 1 1 0 0  1 1 1 

0 1 0 0 0 1 1 1 0 0 

0 1 0 0 1 1 1 1 0 1 

0 1 0 1 0 1 1 1 1 0 

0 1 0 1 1 1 1 1 1 1 

0 1 1 0 0 0 1 0 1 0 

0 1 1 0 1 0 1 0 1 1 

0 1 1 1 0 0 1 0 0 0 

0 1 1 1 1 0 1 0 0 1 

1 0 0 0 0 0 1 1 0 1 

1 0 0 0 1 0 1 1 0 0 

1 0 0 1 0 0 1 1 1 1 

1 0 0 1 1 0 1 1 1 0 

1 0 1 0 0 1 1 0 1 1 

1 0 1 0 1 1 1 0 1 0 

1 0 1 1 0 1 1 0 0 1 

1 0 1 1 1 1 1 0 0 0 

1 1 0 0 0 1 0 0 1 0 

1 1 0 0 1 1 0 0 1 1 

1 1 0 1 0 1 0 0 0 0 

1 1 0 1 1 1 0 0 0 1 

1 1 1 0 0 1 0 1 1 0 

1 1 1 0 1 1 0 1 1 1 

1 1 1 1 0 1 0 1 0 0 

1 1 1 1 1 1 0 1 0 1 
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Figure 6. Symbol and functionality of 5×5 F2PG gate. 
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Figure 7. Quantum equivalent realization of 5×5 F2PG gate. 
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Figure 8. Boolean functions of 5×5 F2PG gate: (a) XOR and AND, (b) NAND (c) NOT, NXOR 
and OR, (d) NOR.     

 
 
 
circuit has been studied (Islam and Begum, 2008; Islam 
et al., 2009; Haghparast and Navi, 2008; Bruce et al., 
2002). It has been proved (Islam and Begum, 2008) that any 
realization of a fault tolerant reversible full adder circuit 
needs at least three garbage outputs and two constant 
inputs. The circuit requires six parity preserving reversible 

gates (two FRGs and four F2Gs) (Haghparast and Navi, 
2008) and four FRGs (Bruce et al., 2002). The rest uses 
two IGs (Islam and Begum, 2008) and two MIGs (Islam et 
al., 2009), respectively. This paper presents a new design 
of fault tolerant reversible full adder circuit that uses only 
one F2PG, which is described in Figure 9. 



 
 
 
 

 A
B

Cin

0
0  

 
Figure 9. F2PG gate as reversible fault tolerant full adder. 
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Figure 10. Symbol and functionality of 
MNFT gate. 
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Figure 11. Quantum equivalent realization of MNFT gate. 

 
 
 

Table 2. Truth table of the MNFT gate. 
 

A B C P Q R 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 1 1 0 

1 0 0 1 1 1 

1 0 1 0 1 1 

1 1 0 1 0 1 

1 1 1 1 0 0 

 
 
 

Evaluation of the proposed fault tolerant full adder 
circuit 
 
The designed fault tolerant reversible full adder circuit is 
more efficient than the existing presented (Islam and 
Begum, 2008; Islam et al., 2009; Haghparast and Navi, 
2008; Bruce et al., 2002). Evaluation can be compre-
hended   easily   with the   help of the comparative results 
from Table 3. The proposed circuit needs only one gate 
and its quantum cost is 14, and constant inputs and 
garbage  outputs  are  two  and  three  respectively,  while  
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these are the minimum theoretically. So far, the best 
circuit is two gates, and the quantum cost is 14 (Islam 
MS, Begum, 2008; Islam et al., 2009). Hence, the 
designed circuit in the present study is better than all the 
existing counterparts.  

In the digital signal processing, the speed of multiplier 
has played an important role in the performances of chips 
and systems. Generally, the speed of multiplier depends 
on the algorithm and structure. It can be implemented in 
shift-add algorithm, Pezaris algorithm or Baugh-Wooley 
algorithm (Baugh and Wooley, 1973; Ma GK and Taylor, 
1990). The shift-add algorithm is based on the unsigned 
number, and has some deficiencies such as long delay 
and low speed. It is unsuitable for very-large-scale 
integration (VLSI). Pezaris and Baugh-Wooley algorithms 
can be directly used in the complement multiplier, 
improving the speed of multiplier. However, because 
heterogeneous full-adders have irregular multiplication 
rules used in the Pezaris algorithm, it is of no benefit in 
designing the layout of VLSI. Hence, a reversible signed 
multiplier based on Baugh-Wooley algorithm is adopted. 
It only needs one kind of full adder which requires 
supplements, which can be achieved by MNFT gate. As a 
result of the low quantum cost of MNFT, the designed 
multiplier can save time and promote the speed of 
operation.  

In this paper, the multiplication is implemented in the 
form of the modified Baugh-Wooley method (Akbar et 
al., 2011). Fault tolerant reversible signed multiplier 
circuits have two parts. First, the partial products are 
generated in parallel. Second, multi-operand addition is 
performed in Wallace tree method. The operation of 5×5 
multiplier is depicted in Figure 12. It consists of 25 partial 
product bits of the form xiyj (i=0,1,…4, j=0,1,…4).  
 
 
Fault tolerant reversible signed multiplier based on 
F2PG and MNFT 
 
Fault tolerant reversible partial product generation 
circuit 
 
To perform AND and NAND gates, the FRG gate and the 
MNFT gate are applied. At the meantime, we make use of 
cascaded gates and “Copying circuit” (e.g. F2G) to 
increase the fan-out. So, output signals of one gate can 
be inputs of the other gates. The reversible fault tolerant 
partial products can be generated in parallel as shown in 
Figure 13.  
 
 

Fault tolerant reversible signed multiplier based on 
F2PG gate and Wallace tree 
 
In the signed multiplier, a Wallace tree structure is used 
for implementing one time of addition for n operands. In 
order to reduce the carry transfer delay of partial product 
in adder array of the multiplier,  it  is  necessary to  design 
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Table 3. Comparative results of different fault tolerant full adder circuits. 
 

 Gate count   
Constant 

inputs 
Garbage 
outputs 

Total quantum

cost 

Total logical 
calculation 

Islam and Begum (2008) 2 (2=2IGs) 2 3 14 8α+6β+2δ 

Islam et al. (2009) 2 (2=2MIGs) 2 3 14 6α+4β+2δ 

Haghparast and Navi (2008) 6 (6=2FRGs+4F2Gs) 5 6 18 12α+8β+4δ 

Bruce et al. (2002) 4 (4=4FRGs) 2 3 20 8α+16β+8δ 

Proposed 1 (1=1F2PG) 2 3 14 10α+3β 
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Figure 12. 5×5 Signed multiplier by modified Baugh-Wooley. 

 
 
 

 

 
 

Figure 13. 5×5 fault tolerant reversible partial products generation circuit. 
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Figure 14. Circuit of 5×5 fault tolerant reversible signed multiplier. 
 
 
 

 
 
Figure 15. The result of signed multiplier’s function simulation. 

 
 
 

its Wallace tree. In other words, it improves the operating 
speed in the whole adder array. Different from the design 
of ripple carry adder array, in the Wallace tree, those bits 
with the same weight in the corresponding partial 
products are added together, rather than one by one. 
Usually, the full adder is used to accomplish the addition 
of bits with the same weight. While in this paper, one bit 
full adder is applied. In the per layer of Wallace tree, the 
number of the partial product vectors can be decreased 
according to the proportion of 3-2, e.g., every 3 figures 
produce one sum bit and one carry bit. The whole array 

delay is reduced from O (n×n) to O (n×log(n)). The 5×5 
fault tolerant signed multiplier is as shown in Figure14 
using a F2PG gate as a reversible full adder and a MIG 
gate as a half adder. It is also possible to use a F2PG 

gate as a half adder as mentioned earlier in this study, 
where it needs less hardware complexity and quantum 
cost in the reversible half adder with a MIG gate, e.g. the 
quantum cost of a MIG gate is 7, whereas for F2PG it is 
14.  
 
 
Fault tolerant reversible signed multiplier’s function 
simulation 
 
When two complement operands are encoded in Verilog 
hardware description language (HDL), 1 bit for sign, 4 bits 
for value, the Wallace tree is applied in the summation of 
the partial products. As shown in Figure 15, in the 
simulation   of   the  signed  multiplier,  the  operands  are  
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Table 4. Characteristics of 5×5 fault tolerant reversible partial product generation circuit. 
 

Gate 
count 

Constant 
inputs 

Garbage 
outputs 

Total quantum 
cost 

Total logical 
calculation 

37* 49 34 149 98α+76β+34δ 
 

*MNFT: 8, FRG: 17. F2G, 12 

 
 
 

Table 5. Characteristics of 5×5 fault tolerant reversible signed multiplier circuit. 
 

Gate 
count 

Constant 
inputs 

Garbage 
outputs 

Total quantum 
cost 

Total logical 
calculation 

57* 90 90 401 270α+132β+38δ 
 

*MNFT: 8, FRG: 17, F2G: 12, F2PG: 16, MIG: 4.     
 

 
 

expressed in decimal form. Its correctness is indicated in 

the four test cases, such as 12×13, -12×13, 12×(-13) and 

-12×(-13). 
 
 
EVALUATION OF THE DESIGNED FAULT TOLERANT 
REVERSIBLE SIGNED MULTIPLIER CIRCUIT 
 
After fault tolerant reversible signed multiplier circuit is 
designed, the evaluation can be comprehended easily 
with the help of the results from Tables 4 and 5. The 
quantum cost of a F2PG

 
is 14. The quantum cost of MIG, 

F2G, FRG and MNFT is equal to 7, 2 (Parhami, 2006), 5 
(Fredkin and Toffoli, 1982) and 5, respectively. Total 
logical calculation TC of F2PG, MIG, F2G, FRG and 
MNFT is 10α+3β, 3α+2β+δ, 2α, 2α+4β+2δ and 5α+β, 
respectively.  

Table 4 gives the characteristics of 5×5 fault tolerant 
reversible partial product generation of the circuit. Table 5 

gives the characteristics of 5×5 fault tolerant reversible 
signed multiplier of circuit. 
 
 

CONCLUSIONS AND FUTURE WORK 
 
In this paper, the fault tolerant reversible signed multiplier 
is composed of two kinds of new reversible logic gates, 
such as F2PG and MNFT, whose hardware complexity 
and quantum implementation are presented. The 
quantum cost of the 5*5 multiplier that is composed of 57 
gates is 401. In future works, it is necessary to study the 
optimization of fault tolerant reversible gate network. 
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